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ABSTRACT The deadlock control problem in automated manufacturing systems (AMSs) has received
much attention in recent years due to the flexibility of an AMS. In the framework of Petri nets, resource-
transition circuits and siphons are often used to characterize and derive a deadlock control policy for
an AMS. This paper mainly focuses on a class of Petri nets, namely, the system of simple sequential
processes with resources, which contains some special resource places. For such a class of Petri nets,
the relationship between a multi-step look-ahead deadlock avoidance control method and the structure of
the model is established and expanded in a mathematical way. Unlike the one-step look-ahead deadlock
avoidance policy (DAP) proposed in the literature, the DAPs reported in this research are applicable to
more complex situations, including a model with one-unit resource shared by two or more perfect resource-
transition circuits that do not contain each other. Compared with the existing work, some results are archived
for expanded models. Finally, for the model with two shared one-unit resources, specific solutions are also
presented. Meanwhile, examples are used to demonstrate the proposed results.

INDEX TERMS Automated manufacturing system, Petri net, deadlock avoidance policy.

I. INTRODUCTION
MUCH attention in recent years has focused on the modeling
and control of automated manufacturing systems (AMSs).
An AMS consists of a finite set of resources, each of which
is able to process multiple kinds of parts according to a
specified sequence of operations. Generally, a great challenge
of harnessing an AMS is to make its operation more effi-
cient. Deadlocks are deemed as a fundamental and common
issue in the management of an AMS, since their occurrence
can disable the consecutive operation of an overall AMS.
Consequently, it is generally recognized that the problem
of deadlock avoidance or prevention should be effectively
resolved.

As a widely used tool and profitable technology for
discrete event systems [23], an important class of man-
made systems that are usually computer-integrated [17]–[20],
Petri nets are powerful for production system modeling [30],
[35], scheduling and control [23], [25], [29], [32], [34], [35],
[40]–[42], [44]–[46], [57]. To control an AMS is to restrict

its behavior to satisfy the desired control specifications.
By using Petri nets, a lot of work has been done to handle
deadlock problems and there are mainly three types of meth-
ods: deadlock prevention, detection and recovery, and avoid-
ance [2], [5]–[10], [15], [16], [33], [36], [38], [39]. Moreover,
different Petri net classes are also developed for many other
purpose [47].

Currently, the research on deadlock control is mainly
based on structural analysis, such as siphons [27], [28], [52],
[53] and resource-circuits or reachability graphs. The work
in [8] reports a siphon-based deadlock control policy by
exploring the fact that an unmarked siphon at a marking
implies the occurrence of a deadlock state. A control place,
sometimes called a monitor, is designed for each siphon such
that the siphon cannot be emptied at any reachable marking.
However, this method suffers from the structural complexity
problem, since the number of control places is equal to that
of siphons to be controlled. In 2004, Li and Zhou [14] put
forward the concept of elementary siphons. They prove that
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deadlocks can be prevented by adding a control place for each
elementary siphon to ensure that, under some conditions,
all the siphons are marked at any reachable marking. This
method requires less control places and thus is applicable to
large-sized Petri nets. In order to avoid a complete siphon
enumeration, the work in [43] develops a mixed integer
programming (MIP)-based deadlock detection method that
enumerates a portion of siphons only. A series of studies on
a variety of deadlock control approaches with the Petri net
formalism is reviewed and compared in [21] from the stand-
point of structural complexity, behavior permissiveness, and
computational complexity of designing a liveness-enforcing
supervisor for an AMS.

Inspired by the work in [1], [16], and [9], this paper
investigates the synthesis problem of a deadlock avoidance
police (DAP), with polynomial-complexity, for AMSs in the
framework of Petri nets. Deadlocks can be described by the
maximal perfect resource-transition circuits (MPRT-circuits)
that are saturated at a reachable state. As their name suggests,
a resource-transition circuit in a Petri net modeling an AMS
is a circuit consisting of resource places and transitions only.
A resource is said to be a ξ -resource if its capacity is one and
shared by two or moreMPRT-circuits that do not contain each
other. By using the deadlock characteristic description, it is
first proved that there are only two types of reachable mark-
ings: deadlock and non-deadlock ones in anAMSmodeled by
an S3PR without a ξ -resource [2]. Under this circumstance,
a DAP needs to prohibit the transitions whose firing leads
a system to deadlocks only. Consequently, an optimal DAP
can be formulated by a one-step look-ahead policy [2], [3]
to check whether the forthcoming state is deadlock or not.
Furthermore, the proposed optimal DAP in [2] and [3] is of
polynomial complexity with respect to the system scale. For
an S3PR containing ξ -resources, the work in [3] indicates that
it is worthy to explore a multiple-step look-ahead policy such
that its computation remains tractable.

This work is mainly devoted to this kind of problem.
Enlightened by the work in [1]–[3], an optimal DAP for
more general S3PR with a ξ -resource is reported. The work
in [1] mainly focuses on the DAP of a subclass of S3PR
with only one ξ -resource, namely the US3PR. By introduc-
ing a conservative multiple-step look-ahead law, it is proved
that the steps to look ahead in an optimal DAP merely
depend on the structure of a US3PR, which is the inherent
nature of the model. Meanwhile, a multiple-step look-ahead
method is presented. By following the laws, a US3PR needing
k-step to look ahead can be obtained. Compared with the
results in [1]-[3], this work explores the multiple-step look-
ahead DAP on more general net structures, namely α-nets
and binary S3PRs. Through analysis, it can be concluded
that the conservative multiple-step look-ahead law in [1] is
not applicable to an α-net. Therefore, the computing of a
multiple-step look-ahead DAP on it needs to take more into
consideration. It is shown that the number of look-ahead steps
to check the safety of a state depends on the structure of a
net model. Furthermore, a DAP on a class of S3PR with two

ξ -resources is presented. Through these expanded results,
more objective rules about a multi-step look-ahead DAP on
an S3PR with ξ -resources begin to take shape.
The rest of the paper is organized as follows. Section II

reviews some basic concepts and characterizations of Petri
nets and S3PR. Section III develops a multiple-step look-
ahead DAP for a subclass of S3PR namely an α-net. Mean-
while, the α-net is classified into two subclasses, which are
α1-net and α2-net, respectively. By demonstrating examples,
some rules and mathematical relations between the structures
and their optimal DAP are presented. In Section IV, a DAP
for an S3PR with two ξ -resources is explored. We discuss
some interesting problems regarding deadlock prevention and
avoidance in Section V based on the findings of this research.
Finally, some conclusions and future work are summarized in
Section VI.

II. PRELIMINARIES
This section briefly presents pertinent definitions and nota-
tions for Petri nets [11], [37], S3PR and ξ -resources.

A. BASIC DEFINITIONS OF PETRI NETS
A Petri net N is a four-tuple N=(P,T ,F,W ), where P is a
set of places and T is a set of transitions. P and T are finite,
nonempty and disjoint sets, i.e.,P 6= ∅,T 6= ∅, andP∩T = ∅.
F ⊆ (P × T ) ∪ (T × P) is called the set of directed arcs
from places to transitions or from transitions to places. W :
(P × T ) ∪ (T × P)→ N = {0, 1, 2, · · · } is a mapping that
assigns a weight to each arc, i.e., if f ∈F ,W (f )>0; otherwise,
W (f ) = 0.W is called theweight function of a Petri net. From
graph theory point of view, a Petri net is a bipartite digraph.

A marking M of a Petri net N = (P,T ,F,W ) is a
mapping: P → N. (N ,M0) is referred to as a net sys-
tem or marked net with M0 being the initial marking. For
simplicity, a Petri net N with initial marking M0 is denoted
as (N ,M0) or (P,T ,F,W ,M0). Let p ∈ P be a place of a
Petri net N . Place p is marked at M if M (p) > 0. A set of
places D ⊆ P is marked at M if at least one place in D is
marked, viz., ∃p ∈ D,M (p) > 0. M (D) =

∑
p∈D

M (p) is the

total number of tokens in D at M .
Let x ∈ P ∪ T be a node of a Petri net N = (P,T ,F,W ).

The preset of x, denoted by •x, is defined as •x = {y ∈ P∪T |
(y, x) ∈ F} and its postset x• is defined as x• = {y ∈ P ∪ T |
(x, y) ∈ F}. Given a place (transition) p (t), the elements in its
preset are called the pre-transitions (pre-places) of p (t), while
the postset of p (t) is named as post-transitions (post-places).
Let N = (P,T ,F,W ) be a Petri net. A transition t ∈ T

is enabled at M if for all p ∈•t , M (p) > W (p, t), denoted
by M [t〉. An enabled transition t can fire and and its firing
transfers the Petri net to a new marking M ′ such that for all
p ∈ P,M ′(p) = M (p)−W (p, t)+W (t, p), which is denoted
as M [t〉M ′. A Petri net is said to be free of self-loop if there
do not exist a place p and a transition t such that (p, t) ∈ F
and (t, p) ∈ F . A self-loop-free Petri net can be represented
by an incidence matrix [N ](p, t) = W (t, p)−W (p, t) that is
an integer matrix indexed by P and T .
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Marking M ′ is reachable from M1 if there exist a feasible
firing sequence of transitions (transition sequence for the sake
of simplicity) σ = t1, t2, · · · , tn and markings M2, · · · ,Mn
such that M1[t1〉M2[t2〉 · · ·Mn[tn〉M ′ holds. Given a Petri net
(N ,M0), the set of markings generated fromM0 is called the
reachability set of (N ,M0), denoted by R(N ,M0).
A vector I: P −→ Z indexed by P with Z being the set of

integers is called a
P-vector. A P-vector I is called a P-invariant if IT [N ] = 0T .
It is called a P-semiflow if for all p ∈ P, I (p) > 0. Let I be a P-
vector. ||I || = {p|I (p) > 0} is called its support. A non-empty
place subset S ⊆ P is a siphon if •S ⊆ S•. A siphon S is
minimal if the removal of any place from S makes the fallacy
of •S ⊆ S•. A siphon is strict if it does not contain the support
of a P-semiflow. The set of strict minimal siphons in a Petri
net is denoted by 5.

A path α in a Petri net is a string of nodes, i.e., α =
x1x2 . . . xn, where xi ∈ P ∩ T and i ∈ {1, 2, . . . , n}. A circuit
is a path with x1 = xn. A simple circuit is a circuit where no
node can appear more than once except x1 or xn.

B. S3PR Models
This section reviews the primary notions and properties of the
system of simple sequential processes with resources, which
is called S3PR, defined from the standpoint of Petri nets [8].
It represents an important net type that canmodel a large class
of automated manufacturing systems. Such a class of Petri
nets has been extensively studied, due to its generality, perfect
structural and behavioral properties.
Definition 1: A simple sequential process (S2P) is a Petri

net N = (PA ∪ {p0},T ,F), satisfying the following state-
ments:
1) PA 6= ∅ is called the set of activity (operation) places;
2) p0 /∈ PA is called the process idle place or idle place;
3) N is a strongly connected state machine;
4) Every circuit of N contains the place p0.
Definition 2: An S2P with resources (S2PR) is a Petri net

N = ({p0} ∪ PA ∪ PR,T ,F), satisfying
1) The subnet generated from X = PA∪{p0}∪T is an S2P.
2) PR 6= ∅, (PA ∪ {p0}) ∩ PR = ∅.
3) ∀p ∈ PA,∀t ∈•p,∀t ′ ∈ p•, ∃rp ∈ PR, •t ∩ PR = t ′• ∩

PR = {rp}.
4) ∀r ∈ PR, ••r ∩ PA = r•• ∩ PA 6= ∅; ∀r ∈ PR, •r ∩

r• = ∅.
5) ••(p0) ∩ PR = (p0)•• ∩ PR = ∅.
Definition 3: Given an S2PR N = (PA ∪ {p0} ∪PR,T ,F),

an initial marking M0 is said to be acceptable for N if:
1) M0(p0) ≥ 1;
2) M0(p) = 0,∀p ∈ PA;
3) M0(r) ≥ 1,∀r ∈ PR.
Definition 4: An S3PR, i.e., a system of S2PR, can be

defined recursively as follows:
1) An S2PR is an S3PR.
2) Let Ni = (PAi ∪ {p

0
i } ∪ PRi ,Ti,Fi) (i ∈ {1, 2}) be

two S3PR, satisfying (PA1 ∪ {p
0
1}) ∩ (PA2 ∪ {p

0
2}) = ∅,

PR1 ∩PR2 = PC 6= ∅. A Petri net N = (PA∪{p0}∪PR,T ,F)
composed of N1 and N2 through PC is still an S3PR, defined
as PA = PA1 ∪ PA2 , P

0
= {p01} ∪ {p

0
2}, PR = PR1 ∪ PR2 ,

T = T1 ∪ T2, and F = F1 ∪ F2.
Given a resource r ∈ PR in an S3PR, the set of holders of r

is denoted as H (r) = (••r) ∩ PA. For a siphon S in an S3PR,
S = SR ∩ SA, where SR = S ∩ PR and SA = S ∩ PA.

C. RT-CIRCUIT AND ξ-RESOURCE
Let θ be a directed circuit in an S3PR. It is called a resource-
transition circuit (RT-circuit) if it contains resource places
and transitions only. Let T (θ ) and R(θ ) denote the sets of
all transitions and resource places in θ , respectively. Let 〈p〉t
and t〈p〉 denote the input and output operation place of t ,
respectively. Similarly, Let 〈t〉p and p〈t〉 denote the input
and output transitions of p, respectively. By the structural
properties of an S3PR, each transition has a unique input
operation place and a unique output operation place, i.e., both
〈p〉t and t〈p〉 are unique in an S3PR. An RT-circuit is said
to be perfect if it satisfies (〈p〉T (θ ))• = T (θ ), by defining
〈p〉T (θ ) =

⋃
t∈T (θ )
{
〈p〉t}. A perfect RT-circuit (PRT-circuit)

in an S3PR (N ,M0) is said to be saturated at a marking
M ∈ R(N ,M0) if M (〈p〉T (θ )) = ψ(R(θ )) =

∑
r∈R(θ )

ψ(r),

where ψ(r) is the capacity of the resource r , i.e., ψ(r) =
M0(r). When a maximal perfect RT-circuit (MPRT-circuit) is
saturated, deadlocks occur in an S3PR [2], [3].

In an S3PR, a resource is called a ξ -resource if it
is of one-unit (capacity) and is shared by two or more
MPRT-circuits that do not contain each other. In fact, it is
proved that, in an S3PR without ξ -resource, there exist only
two types of reachable markings: deadlock and non-deadlock
(safe) markings [2]. The safe markings are states belonging
to the live zone (LZ) [7] that, from the viewpoint of the
reachability graph, forms the maximal strongly connected
component including the initial marking.
Definition 5: Given an S3PR (N ,M0), suppose that there

exist two RT-circuits θ1 and θ2 such that R(θ1)∩R(θ2) = {r}.
Resource r is called a ξ -resource if M0(r) = 1.
Definition 6: Given an S3PR (N ,M0), r ∈ PR is said to be

independent if there does not exist a strict minimal siphon S,
such that H (r)∩SA 6= ∅; otherwise, r is said to be dependent.
Let SRin denote the set of independent resources in PR.
Definition 7: Given a resource r ∈ PR in an S3PR,

a holder-resource circuit (HR-circuit) associated with r,
denoted byH(r), is a simple circuit containing r as the unique
resource place, an activity place p ∈ H (r) and transitions. An
HR-circuitH(r) is said to be monoploid if r ∈ SRin.
To help clarify the above definitions [1], Fig. 1 illus-

trates an S3PR, where there are nine RT-circuits, includ-
ing p12t13p13t2p12, p13t12p15t11p16t4p14t3p13, p16t10p17t7p16,
p16t10p17t5p16, p12t13p13t12p15t11p16t4p14t3p13t2p12, p13
t12p15t11p16t10p17t7p16t4p14t3p13, p13t12p15t11p16t10p17t5
p16t4p14t3p13, p12t13p13t12p15t11p16t10p17t7p16t4p14t3p13
t2p12 and p12t13p13t12p15t11p16t10p17t5p16t4p14t3p13t2p12.
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FIGURE 1. An S3PR net.

According to Definition 5, p13 is the unique ξ -resource
in this S3PR. Note that p16 is not a ξ -resource since
M0(p16) > 1. There are 6 strict minimal siphons in this
model, one of which is S = {p4, p10, p13, p14, p15, p16}.
According to Definition 6, p14, p15 and p21 are indepen-
dent resources, i.e., SRin = {p14, p15, p21}. Moreover, there
are 13 HR-circuits in this model, such as p12t1p1t2p12 and
p17t5p5t6p17. However, only p14t3p3t4p14, p15t11p9t12p15 and
p21t15p20t1p21 are monoploid.

III. DAP FOR α-NET
It is shown in [1] that for a class of S3PR, namely a unitary
S3PR (US3PR) with one ξ -resource, the deadlock avoidance
problem can be solved by a multi-step look-ahead DAP and
it is of polynomial complexity. Definition 8 below describes
the US3PR in detail. Based on this model, the results obtained
in [1] are extended in this paper. In this section, different from
US3PR, a kind of S3PR with a ξ -resource, namely an α-net,
is presented along with its DAP. Some relationships between
the number of steps needed to look ahead, denoted byK, and
the resource configuration are revealed, verified and proved.
Definition 9 and 10 classify the independent resources and
monoploid HR-circuits. On the basis of that, the definition of
an α-net is presented in Definition 11.
Definition 8: An S3PR (N ,M0) is said to be unitary if there

is only one ξ -resource and for all r ∈ PR, there exists an RT-
circuits θ , such that r ∈ R(θ ), where PR is a set of resource
places in N .
Definition 9: Given an S3PR (N ,M0) with n RT-circuits

θ1, θ2, · · · , θn, let SRin be the set of independent resources in

N , where SRin ⊆ PR. Let SRsin = {r|r ∈ S
R
in ∩ (PR \

n⋃
i=1

R(θi))}.

SRsin ⊆ SRin is said to be the set of strongly independent
resources of N . SRwin = SRin\S

R
sin is said to be the set of weakly

independent resources of N .
Definition 10: A monoploid HR-circuitH(r) is denoted by

Hs(r) if r ∈ SRsin, namely a strongly monoploid HR-circuit.

It is denoted by Hw(r) if r ∈ SRwin, namely a weakly mono-
ploid HR-circuit.
Definition 11: Let SRsin 6= ∅ be the set of strongly indepen-

dent resources in an S3PR (N ,M0) with N = (P0 ∪ PA ∪
PR,T ,F,W ). (N ,M0) is called an α-net if it has only one
ξ -resource.
To help understanding Definitions 9 and 10, consider the

marked S3PR again in Fig. 1. It is not a US3PR since resource
place p21 does not belong to any of the nine RT-circuits.
As for the independent resources, i.e., SRin = {p14, p15, p21},
it can be concluded that only p21 is strongly independent
in this model. In other words, SRsin = {p21} and SRwin =
{p14, p15}. According to Definition 11, this S3PR is an α-net.
The relationship among the resources in an α-net is depicted
by the Venn diagram in Fig. 2.

FIGURE 2. Inclusion relationship among strongly (weakly) independent
resource sets in an α-net.

According to Definition 11, an α-net contains at least a
strongly monoploid HR-circuit. As for weakly monoploid
HR-circuits, since SRwin = ∅ is acceptable, an α-net does not
necessarily contain a weakly independent resource. Accord-
ing to the definitions of US3PRs [1] and α-nets, it can be
concluded that: First, as sub-nets of S3PRs, both of these
two models contain only one ξ -resource and a number of
HR-circuits. Second, since an α-net without any strongly
monoploid HR-circuit can be regarded as a US3PR, we con-
sider that US3PR is a subclass of α-nets.
By the structural features, α-nets can be divided into two

subclasses, denoted as α1-nets and α2-nets. In the following
subsections, we give their definitions and study their optimal
DAP respectively.

A. DAP OF α1-NET
Definition 12: Let Hs(r) be an arbitrary strongly mono-

ploid HR-circuit in an α-net (N ,M0). (N ,M0) is said to be
an α1-net if for all p ∈ Hs(r), |〈t〉(p•• ∩ PA)| ≤ 1, where

〈t〉(p••∩PA) =
〈t〉⋃

x∈p••∩PA
x and PA is the set of operation places

in N .
Note that |〈t〉(p••∩PA)| = 0 is feasible, which implies that

〈t〉(p••∩PA) = ∅. That is to say, in an α1-net, there may exist
a place p ∈ Hs(r) such that p•• ∩ PA = ∅ holds. In other
cases, |〈t〉(p•• ∩ PA)| = 1, implying p•• ∩ PA 6= ∅.
Next, some examples and their simulation results are

presented to illustrate these characteristics. Fig. 3 shows
a parameterized α1-net which contains a strongly mono-
ploid HR-circuit Hs(r), i.e., Hs(r) = t1p1t2p9t1. In Fig. 3,
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FIGURE 3. A parameterized α1-net.

the initial marking is given as follows. For the independent
resource places, M0(p9) = v and M0(p11) = z (v, z ∈ N+).
For other resource places, we setM0(p10) = x andM0(p13) =
y (x, y ∈ N+). In particular, to make this model include a
ξ -resource initially, we have M0(p12) = 1.
Each idle places has 20 tokens, while the holder places

carry no resource. In [1], it is shown that, in an S3PR, the idle
places with enough tokens at the initial marking do not affect
the number of steps to look ahead for checking the safety of
a marking. Thus, for convenience, we remove the idle places
and the corresponding arcs associated with them and consider
the reduced version only as shown in Fig. 4.

FIGURE 4. A reduced parameterized α1-net.

In Fig. 4, we aim to find the relation betweenK and the four
parameters v, z, x and y for an optimal DAP, i.e., for checking
the safety of a reachable marking. The result is presented
in Table 1. Note that hereafter we use ‘‘×’’ to denote an
arbitrary integer that can be applied to a parameter which
has no effect on K. Apparently, none of the three parame-
ters, i.e., M0(p11),M0(p10) and M0(p13), can impact K. Thus
z, x and y here can be an arbitrary positive integer. In fact,
K = v + 2 is always true in this case. Moreover, we should
point out that the simulations on M0(p10) and M0(p13) are

TABLE 1. Simulation results of Fig. 4.

in accord with the result in [1]. That is to say, in a US3PR,
the dependent non-ξ -resources do not affectK as well. Mean-
ingfully, if the unique strongly monoploid HR-circuit Hs(r)
in Fig. 4 is removed from this model, according to [1],K = 2
holds. Therefore, it is natural to suppose that there exists a
linear relation between the parameterK of this model and the
initial marking of the resource in the strongly monoploid HR-
circuitHs(r). In order to further confirm this finding, in what
follows, we test it by using some other typical α1-nets, which
will help us derive the expected relationship between K and
the initial resource configuration.

A more complex example is shown in Fig. 5 (a) with
an initial token distribution. There are six parameters,
i.e., M0(p11) = v,M0(p12) = u,M0(p14) = z1,M0(p15) =
z2,M0(p13) = x andM0(p17) = y. In this model, we focus on
the relationship between K and these parameters. The test
results are shown in Table 2. Similar to Fig. 4, it is clear
that we can leave M0(p14),M0(p15),M0(p13) and M0(p17)
out of consideration. The relationship between the number

FIGURE 5. Two reduced parameterized α1-nets.

TABLE 2. Simulation results of Fig. 5 (a).
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of look-ahead steps and the parametersM0(p11) andM0(p12)
can be derived, though it is not intuitive. According to
Table 2, the analytical expression of v, u and K satisfies
K = v + 2u + 3, where the constant 3 may stem from
the sub-net without the two strongly monoploid HR-circuits,
i.e., t12p11t11p10t12 and t11p12t10p9t11 in Fig. 5 (a). To show
the relationship between the number of look-ahead steps and
the parameters in this kind of model more clearly, a study on
the third example is conducted.

The model in Fig. 5 (b) is obtained by extending the
one in Fig. 5 (a). In Fig. 5 (b), there are five strongly
monoploid HR-circuits. We have nine parameters in this
α1-net, i.e., M0(p14) = w,M0(p15) = v,M0(p17) = u,
M0(p16) = u1,M0(p19) = z1,M0(p20) = z2,M0(p23) = u2,
M0(p18) = x and M0(p22) = y. According to the above
examples, K is likely to be affected by u, u1, u2, v and w.
To figure it out, according to the experimental results given
in Table 3, K = w + 2v + 3u + u1 + u2 + 3. It seems
that once there are two or more strongly monoploid HR-
circuits, there exists a first-order polynomial relation between
K and the related parameters. Furthermore, for each unknown
in the polynomial, i.e., the initial marking of r ∈ SRsin,
the coefficients of the unknowns depend on the location of
the strongly monoploid HR-circuit.

TABLE 3. Simulation results of Fig. 5 (b).

Based on the above analysis, two results are summa-
rized as follows. According to a reduced parameterized
α1-net shown in Fig. 7, first, this class of α-net can be
divided into two parts: one containing the strongly monoploid
HR-circuits and the other is Hs(r)-free, called the
H-component and R-component, respectively. Note that the
R-component is a sub-net of an α1-net, where there is no
strongly monoploid HR-circuit. Each of these two parts con-
tributes partially to K, denoted by KH and KR, respectively.
Accordingly, we have K = KR + KH . The R-component
is clearly a US3PR, according to Definition 8. Since the
resource configuration of the monoploid HR-circuits within
the R-component does not affect KR, the parameters of the
initial marking in the corresponding resource places, i.e., zij
(i ∈ {1, 2, 3, 4}, j ∈ {1, 2, · · · }), can be arbitrary positive
integers. m, n, p and q represent the numbers of weakly
monoploid HR-circuits in the R-component (m, n, p, q ∈ N).
x and y denote the initial markings of the two dependent non-
ξ -resources and can be arbitrary positive integers as well.
As shown in Fig. 7, such a partition in a US3PR is reasonable
due to the uniqueness of the ξ -resource.

FIGURE 6. R-component of the α1-net in Fig. 5 (b).

On the basis of the above discussion,KR = max{n+2, p+
2}, where n and p represent the numbers of the weakly mono-
ploid HR-circuits that are structurally associated with the
ξ -resource, as shown in Fig. 7. For details, one can refer to the
work in [1]. However, to help clarify this statement, we give
an example. As shown in Fig. 6, the R-component (sub-net of
this α1-net but without any stronglymonoploid HR-circuit) of
the model in Fig. 5 (b) is boxed in red. According to [1], n and
p are the numbers of weakly monoploid HR-circuits within
the R-component of this net. Since p20t11p9t10p20 is the only
weakly monoploid HR-circuit on the right side of the RT-
circuit p18t11p20t10p21t4p19t3p18, we have n = 1. However,
in the RT-circuit p21t9p22t5p21, there is no weakly indepen-
dent resource. Therefore, p = 0. Thus,KR = max{n+2, p+
2} = 3 holds.
Second, for the H-component, it consists of four sub-parts,

namely H1, H2, H3 and H4. Each of the four sub-parts gen-
erates KH1 ,KH2 ,KH3 and KH4 steps that need to look ahead,
and therefore, KH = KH1 + KH2 + KH3 + KH4 . Moreover,
these four parts contain ω1, ω2, ω3 and ω4 strongly mono-
ploid HR-circuits, respectively. As for the resource allocation
among these strongly monoploid HR-circuits, there are ψij
(i ∈ {1, 2, 3, 4}, j ∈ {1, 2, · · · , ωi}) tokens distributing in the
strongly independent resources, as shown in Fig. 7. Based on
that, the following four equations hold.

KH1 = ψ11 + 2ψ12 + · · · + ω1ψ1ω1 =

ω1∑
i=1

iψ1i

KH2 = ψ21 + 2ψ22 + · · · + ω2ψ2ω2 =

ω2∑
i=1

iψ2i

KH3 = ψ31 + 2ψ32 + · · · + ω3ψ3ω3 =

ω3∑
i=1

iψ3i

KH4 = ψ41 + 2ψ42 + · · · + ω4ψ4ω4 =

ω4∑
i=1

iψ4i (1)
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FIGURE 7. A general reduced parameterized α1-net.

On the basis of the above analysis, we have the following
result.
Proposition 1: Given an α1-net (N ,M0), an optimal DAP

K satisfies

K = KR +KH = max{n+ 2, p+ 2} +
4∑
j=1

(
ωj∑
i=1

iψji) (2)

where
• n and p are the numbers of weakly monoploid
HR-circuits within the R-component in N (n, p ∈ N);

• ωj (j ∈ {1, 2, 3, 4}) is the number of strongly mono-
ploid HR-circuits in Hj (j ∈ {1, 2, 3, 4}) within the
H-component in N (ωj ∈ N);

• ψji (i ∈ {1, 2, · · · , ωj}, j ∈ {1, 2, 3, 4}) is the ini-
tial marking of a corresponding strongly monoploid
resource place within the H-component inN (ψji ∈ N+).
Proof: First, for the R-component, considering the ini-

tial markings of the two non-ξ -resources in N , parameters
x and y have no effect on KR. The conclusion of this state-
ment is presented in [1]. Thus, KR = max{n + 2, p + 2}
holds.

Next, for the H-component, it can be proved through the
structural analysis and the transmission of tokens. Suppose
that there is a set of correlative HR-circuits in this part of
the S3PR. As mentioned in [2], the deadlock problem is
characterized by a perfect resource-transition circuit that is
saturated at a reachable marking, which implies that, for
all post-operation places of the transitions in an RT-circuit,
if their token sum is equal to the capacity of the resource
places within this circuit, it is said to be saturated. That is,
at the states in DZ∗ [1], i.e., a sub-set of states that belong to
the dead zone (DZ) [7], no strict minimal siphon of the Petri
net is emptied, and for each RT-circuit, at least one resource
place is not emptied. Particularly, this resource is exactly the
ξ -resource in the α1-net. However, for the states other than
DZ∗ in DZ, on the contrary, there exists an emptied resource
place in an RT-circuit of an α1-net. Moreover, for the dead
markings, two perfect RT-circuits are both emptied.
We first consider the part H1. In H1, ψ11, ψ12, · · · , ψ1ω1

(suppose ψ1i > 1 and i ∈ {1, 2, · · · , ω1}) are the initial
markings of the corresponding strongly monoploid resource
places. For the resource place that contains ψ11 tokens

as its initial marking, denoted as r1, with the help of its
post-transitions, it needs ψ11 times of transition firings to
make it emptied. Meanwhile, the resource place that contains
ψ12 tokens, denoted as r2, needs ψ12 times to make its cor-
responding holder place hold ψ12 tokens. However, different
from r1, for r2, there are alsoψ12 tokens that flow to r1 simul-
taneously. Hence, it needs another ψ12 times to empty r1,
in the procedure of emptying r2. Overall, in this case, r2
needs 2ψ12 times to be emptied thoroughly. By analogy, from
resource places that containψ11, ψ12, · · · , ψ1ω1 tokens, there
needψ11, 2ψ12, 3ψ13, · · · , ω1ψ1ω1 times of transition firings
to empty the resource places, respectively. Clearly, there is a
relationship between K and all parameters in H1 part. That is
to say, KH1 is the linear combination of ψ11, ψ12, · · · , ψ1ω1 .

Thus, KH1 = ψ11 + 2ψ12 + · · · + ω1ψ1ω1 =
ω1∑
i=1

iψ1i holds.

Iteratively, this principle holds in H2, H3 and H4 as well.

Thus, we have KH = KH1 +KH2 +KH3 +KH4 =

ω1∑
i=1

iψ1i+

ω2∑
i=1

iψ2i +
ω3∑
i=1

iψ3i +
ω4∑
i=1

iψ4i =
4∑
j=1

(
ωj∑
i=1

iψji) and accordingly

K = KR +KH = max{n+ 2, p+ 2} +
4∑
j=1

(
ωj∑
i=1

iψji). �

In summary, this subsection discusses a formal construc-
tive method of a DAP for a kind of α-net, namely α1-net.
First, it shows that the conservation law [1] partially holds
in this kind of model. In plain words, the R-component of
the α1-net keeps its speciality with US3PR, i.e., the initial
marking of a weakly independent resource does not affect
K for an optimal DAP. Second, for the H-component, four
equations illustrate the relation among the structure, resource
configuration and K. As for this relationship, there is a sum-
mative equation to indicate that the total K is dependent on
both the H-component and the R-component. That is to say,
the structure of an α1-net is the key to figure out its optimal
DAP by looking ahead. Once the structure and the initial
resource configuration are fixed, the number of look-ahead
steps for an optimal DAP is determined as well.

B. DAP FOR α2-NET
This subsection introduces another kind of α-net that hasmul-
tiple branches in a process and analyzes the number of steps
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to look-ahead for its optimal DAP, namely α2-net. According
to the definitions and characteristic in Definition 13, as a
subclass of α-net, there is a difference between an α2-net and
an α1-net.
Definition 13: An α-net (N ,M0) is said to be an α2-net if

there exists a place p ∈ Hs(r) such that |〈t〉(p•• ∩ PA)| > 1,

where 〈t〉(p••∩PA) =
〈t〉⋃

x∈p••∩PA
x and PA is the set of operation

places in N .
The difference between Definitions 13 and 12 (α1-net) is

mainly the cardinality of the transition set, i.e., 〈t〉(p•• ∩ PA).
In fact, in an α2-net, there exists a place p that belongs to a
strongly monoploid HR-circuit, such that |〈t〉(p••∩PA)| = λ,
where λ = {2, 3, · · · }. On the basis of the value of λ, α2-nets
can be classified and denoted as α22-net, α

3
2-net, · · · , α

λ
2 -net,

respectively, where λ > 1 and λ ∈ N. For an α2-net, λ can
be regarded as the structural parameter, which represents the
number of branches in its S2P. Note that if λ ≤ 1 in an α2-net,
it is actually an α1-net by Definition 12.

As mentioned in the last section, the idle places can be
removed from our study, since the final outcome depends on
the resources only. For simplicity, hereinafter, we use α2-net
(αλ2 -net) to denote the reduced one.
A simple parameterized and reduced α22-net is used to

illustrate the number of steps to look-ahead for a DAP in this
kind of model. As shown in Fig. 8, according to Definition 13,
λ = 2. Let M0(p14) = 1. Then, p14 is a ξ -resource. The
token distribution for other resources is demonstrated above.
ParametersM0(p10),M0(p12),M0(p13),M0(p11) andM0(p15)
are denoted by v, z1, z2, x and y, respectively.

FIGURE 8. A parameterized α2
2-net.

From the simulation results shown in Table 4, some
properties can be revealed. Different from a US3PR model,

TABLE 4. Simulation results of Fig. 8.

the initial marking of the strongly independent resource,
i.e., M0(p10), has influence on K for a DAP. In this
example, two rules can be summarized. The first is that
M0(p12),M0(p13),M0(p11) and M0(p15) do not affect K.
Second, the relationship between K and v is K = v + 3. It
seems that there exists some mathematical relation between
the number of steps to look-ahead and the structure of this
model.

Next, more examples are used to expound the rules behind
the models. As shown in Fig. 9, the model is extended
from Fig. 8 by adding a strongly monoploid HR-circuit in
the process. ParametersM0(p11),M0(p13),M0(p14),M0(p15),
M0(p12) and M0(p17) are denoted by v, z1, z2, u, x and y,
respectively. Table 5 presents the simulation results.

FIGURE 9. A parameterized α2
2-net.

TABLE 5. Simulation results of Fig. 9.

By comparing Tables 5 with 4, the relation between
the number of steps to look-ahead and these parameters is
K = v + 2u + 3. Clearly, it is easy to figure out that
M0(p13),M0(p14),M0(p12) and M0(p17) have no effect on
K for an optimal DAP either. Let us further consider the
model in Fig. 10. As usual, M0(p12), M0(p14), M0(p15),
M0(p16),M0(p17),M0(p13) andM0(p19) are parameterized as
w, v, z1, z2, u, x and y, respectively.

The relationship betweenK and these parameters are given
in Table 6. Apparently, by observing this table, it can be found
that a relationship exists between K and w, v and u, which
is K = w + 2v + 3u + 3. By inference, when the number
of strongly monoploid HR-circuits increases, it can still be
confirmed that K can be calculated by using a linear func-
tion of the partial parameters. Consequently, a more general
illustration is depicted Fig. 11.
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FIGURE 10. A parameterized α2
2-net.

TABLE 6. Simulation results of Fig. 10.

FIGURE 11. A parameterized α2
2-net.

As shown in Fig. 11, a parameterized α22-net is depicted.
In this model, the α22-net is divided into two parts that are
denoted as the R′-component and H′-component, respec-
tively. In the R′-component, m, n, p and q represent the num-
bers of weakly monoploid HR-circuits in the corresponding
location. τ is the number of strongly monoploid HR-circuits,
i.e.,Hs(r) in the H′-component. ϕ1, ϕ2, · · · , ϕτ represent the
initial markings of these strongly monoploid HR-circuits,
respectively. For the parameter zij (i ∈ {1, 2, 3, 4}, j ∈
{1, 2, · · · }), due to the same reason elaborated in Fig. 7, as the
initial marking in its corresponding resource, it represents the
arbitrary positive integer. Parameters x and y are the initial
markings of the two dependent non-ξ -resources and can be

considered as arbitrary positive integers as well. Accordingly,
we have the following result.
Proposition 2: Given an α22-net (N ,M0), an optimal

DAP K satisfies

K =
τ∑
i=1

iϕi + max{n+ 2, p+ 2} (3)

where
• n and p are the numbers of weakly monoploid
HR-circuits within the R′-component in N (n, p ∈ N);

• τ is the number of strongly monoploid HR-circuits
within the H′-component in N (τ ∈ N);

• ϕi (i ∈ {1, 2, · · · , τ }) is the initial marking of the
corresponding stronglymonoploid resource placewithin
the H′-component in N (ϕi ∈ N+).
Proof: K can be divided into two parts. The first part

is KR′ due to an Hs(r)-free sub-net, i.e., the R′-component.
The second part isKH ′ induced by the H′-component. As pre-
viously mentioned, parameters x and y do not affect KR′ .
Therefore, KR′ = max{n + 2, p + 2} [1]. As for the
H′-component, by analyzing the structure and token flow,
the proof is similar to that given in Proposition 1.More specif-
ically, the strongly monoploid resource place that contains ϕ1
tokens, denoted as r ′1, needs ϕ1 times of transition firings to
convey all resource units to its related holder place and then to
be emptied. For the one that holds ϕ2 resource units, denoted
as r ′2, in addition to ϕ2 times of transition firings to its holder
place, it also conveys ϕ2 tokens to r ′1 simultaneously, which
requires extra ϕ2 times of transition firings to empty r ′1. Thus,
it takes 2ϕ2 times to empty r ′2 completely.
By parity of reasoning, for the resource places that

initially contain ϕ3 or ϕ4 token(s), it needs 3ϕ3 or 4ϕ4 times
to be emptied. Iteratively, for the parameter ϕτ , the coefficient
is τϕτ . Therefore,KH ′ = ϕ1+2ϕ2+3ϕ3+4ϕ4+· · ·+ τϕτ .

In summary, K = KR′ +KH ′ =
τ∑
i=1

iϕi +max{n+ 2, p+ 2}.

�
Furthermore, in an α2-net, we can still find solutions to

calculate K in case of λ > 2. In order to solve this prob-
lem, a parameterized α42-net is presented in Fig. 12, where
M0(p14) = w1, M0(p15) = w2, M0(p16) = v, M0(p17) = u1,
M0(p18) = u2,M0(p19) = u3,M0(p21) = z,M0(p20) = x and
M0(p23) = y are the parameters. To help figure K out in this
α2-net, Table 7 displays the final results.
By analyzing this example, it is obvious that only the

resource places in the strongly monoploid HR-circuits have
effect on K. More specifically, K = w1 + 2w2 + v + u1 +
2u2+3u3+2 holds. This fully testifies the linear relationship
between parameters in the H′-component and R′-component.
Moreover, this kind of characteristics can be quantified to
a first-order polynomial relation, i.e., in the H′-component,
each strongly independent resource can affect K indepen-
dently. Meanwhile in the R′-component, KR′ depends on its
structure only. Particularly, for the latter, the initial marking
of a weakly independent resource place does not affect KR′ .
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TABLE 7. Simulation results of Fig. 12.

FIGURE 12. A parameterized α4
2-net.

FIGURE 13. An αλ
2-net.

Compared with the α42-net in Fig. 12, Fig. 13 depicts an
αλ2 -net. Similar to Fig. 11, it is divided into the R′-component
and H′-component as well. Specifically, in this parameter-
ized αλ2 -net, ϕi1, · · · , ϕiτi (i = 1, 2, · · · , λ − 1) represent
the initial markings of the strongly independent resources
in the H′-component. In the R′-component, as the initial
marking of each weakly independent resource, the parameter

zij (i ∈ {1, 2, 3, 4}, j ∈ {1, 2, · · · }) can be regarded as the
arbitrary positive integer.m, n, p and q represent the numbers
of weakly monoploid HR-circuits. As in Propositions 1 and 2,
the initial markings of dependent resources x and y are arbi-
trary positive integers. Based on this setting, we have the
following result.
Proposition 3: Given an αλ2 -net (N ,M0), an optimal

DAP K satisfies

K =
λ−1∑
j=1

(
τj∑
i=1

iϕji)+ max{n+ 2, p+ 2} (4)

where

• n and p are the numbers of weakly monoploid
HR-circuits within the R′-component in N (n, p ∈ N);

• τj (j ∈ {1, 2, · · · , (λ − 1)}) is the number of
strongly monoploid HR-circuits of an S2P within the
H′-component in N (τj ∈ N);

• ϕji (i ∈ {1, 2, · · · , τj}, j ∈ {1, 2, · · · , (λ − 1)}) is
the initial marking of a corresponding strongly mono-
ploid resource place within the H′-component in N
(ϕji ∈ N+).
Proof: The approach to prove this result is similar to

the proof of the α22-net given in Proposition 2. K is the sum
of KR′ contributed by the R′-component and KH ′ by the
H′-component. KR′ = max{n + 2, p + 2} and its proof can
be referred to Proposition 2. For simplicity, we consider the
H′-component only. Through the analysis, each branch
of the S2P, which contains sets of strongly indepen-
dent resources, is independent of each other in the
H′-component on contributing K. Thus, the total KH ′ is the
sum of steps that are generated from each branch of the S2P

in the H′-component, i.e., KH ′ =
λ−1∑
j=1

(
τj∑
i=1

iϕji). Thereby,

Proposition 3 holds. �

C. COMPARISON BETWEEN α1-NET AND α2-NET
Finally, we point out that α1-net and α2-net do have some
common characteristics. Firstly, both of the two kinds of
models are subclasses of the α-net. The conservation law
reported in [1] is not applicable to these Hs(r)-contained
models, since the initial marking change of their resource
places can definitely influence K. For the H-component
(H′-component) in α1-net (α2-net), KH (KH ′ ) varies accord-
ing to the changes of the initial making of each strongly
independent resource place in Hs(r). In fact, by comparing
the optimal steps K of α1-net and α2-net, it can be con-
cluded that for an α-net (N ,M0), its optimal K depends
on not only the structure and the initial marking within the
Hs(r)-contained subnet, but also the structure of the Hs(r)-
free subnet. Moreover, the expression of K with respect to
α1-net is similar to the one with α2-net, which shows the uni-
formity of these two subnets, i.e., they are α-net essentially.
In summary, for a net with a ξ -resource, we aim to find a

relation between K and the structure as well as the resource
configuration, which can be applied to more general models,
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to avoid deadlocks efficiently. However, for further investi-
gation, the S3PR with more than one ξ -resource is necessary
to study. Such cases are introduced in Section IV, where
an optimal DAP for a kind of net with two ξ -resources is
considered.

IV. A DAP FOR S3PR WITH TWO ξ-RESOURCES
This section analyzes the number of look-ahead steps to
obtain a DAP for an S3PR with two ξ -resources. In the
previous sections, we present some optimal multi-step look
ahead approaches for two kinds of S3PRswith one ξ -resource
only. By an algorithm, the bad markings (those in DZ, but
not dead markings generated from the considered S3PR) are
divided into two parts. The first part contains the markings
at which at least a strict minimal siphon of the S3PR model
is emptied. Such bad markings can be found directly. The
other part of bad markings at which no siphon is emptied
can be distinguished as well. On the other hand, for an S3PR
without a ξ -resource, there is an algorithm with polynomial
complexity to determine the safety of any reachable state.
Therefore, an optimal DAP with polynomial complexity is
constructed by a one-step look-ahead method [2]. Different
models may lead to different optimal DAP as well as the look-
ahead steps K.
In this section, the above mentioned system is expanded to

the S3PR with two ξ -resources. It can be verified that there
do exist both similarity and difference between the S3PRs
with one and that with more than one ξ -resource. Meanwhile,
a kind of S3PR with two ξ -resources, namely a binary S3PR
and its optimal DAP are introduced and analyzed.

We start from an S3PR with two ξ -resources as shown
in Fig. 14. Note that we omit the idle places, as discussed
before. In this parameterized model, p11 and p13 are config-
ured to be the two ξ -resources, i.e.,M0(p11) = M0(p13) = 1.
More specifically, p11 is a ξ -resource shared by RT-circuits
θ1 = p10t10p11t2p10 and θ2 = p11t9p13t4p12t3p11. Simi-
larly, p13 is a ξ -resource shared by RT-circuits θ2 and θ3,
i.e., p11t9p13t4p12t3p11 and p13t8p14t5p13. Obviously, θ2 con-
tains two ξ -resources. Furthermore, as the only parameter,

FIGURE 14. A parameterized S3PR model with two ξ-resources.

M0(p12), denoted as v, is supposed to be changed in order
to find out the basic rules for calculating K for this model.

TABLE 8. Simulation results of Fig. 14.

Through the experimental results shown in Table 8, it is
easy to find out that M0(p12) does not exert influence on K
for constructing a DAP in this model. Meanwhile, to decipher
the relationship between K and the model structure, it is
necessary to deconstruct the structure itself, i.e., study each
sub-net of the whole model separately. In Fig. 15, the two
deconstructions of the S3PR in Fig. 14, i.e., the two sub-nets
B1 and B2, are presented as follows. Each part consists of a ξ -
resource and two RT-circuits. Accordingly, K is divided into
two parts which are denoted as KB1 and KB2 , respectively.
For B1 in Fig. 15 (a), p11 is the only ξ -resource of the
sub-model, and according to the conclusions in [1], it is
convenient to compute KB1 by structural analysis. That is
KB1 = max{n + 2, p + 2} = max{2, 3} = 3. For B2
in Fig. 15 (b), similarly, KB2 = max{n + 2, p + 2} =
max{2, 2} = 2. Note that KB1 + KB2 = 5, which is exactly
K shown in Table 8. It spontaneously reminds us of the
connection between this structure and its optimal DAP.

FIGURE 15. Deconstructions of the parameterized S3PR in Fig. 14.
(a) Part B1 of the model. (b) Part B2 of the model.

To conclude, as shown in Fig. 15, a subclass of S3PR
namely binary S3PR (BS3PR) is presented. Furthermore, its
optimal DAP is formulated in Proposition 4. The definition
of BS3PR is described below.
Definition 14: An S3PR (N ,M0) is said to be binary if

there are two ξ -resources rξ1 and rξ2 that are intersected by
three RT-circuits, i.e., θ1, θ2 and θ3, where R(θ1) ∩ R(θ2) =
{rξ1},R(θ2) ∩ R(θ3) = {rξ2} and R(θ1) ∩ R(θ3) = ∅. For all r
∈ SRin, r ∈ SRwin and for all r ∈ PR \ S

R
win,M0(r) = 1.

Definition 14 presents a fundamental understanding of
a binary S3PR. Note that there is no strongly monoploid
HR-circuit in a BS3PR, since all independent resources are
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not strongly independent. Meanwhile, all weakly indepen-
dent resources belong to a resource-transition circuit and all
dependent resources (including two ξ -resources) are initially
marked by one.

Now we analyze the model in Fig. 16. There are three
RT-circuits, θ1, θ2 and θ3, intersecting with each other
in order, and two ξ -resources rξ1 and rξ2 . Specifically,
θ1 = p9t2prξ1 t7p9, θ2 = prξ1 t2n′+1pz21 t2n′ · · · t22
pz2n′ t21prξ2 t1m′+1pz1m′ t1m′ · · · t12pz11 t11prξ1 and θ3 =

p10t3prξ2 t6p10. In θ2, zij (i ∈ {1, 2}, j ∈ {1, 2, · · · }) represents
the arbitrary integer that is assigned to a resource in SRwin
within θ2 as initial marking parameters. m′ and n′ represent
the numbers of weakly monoploid HR-circuits (m′, n′ ∈
N). As shown in Figs. 17 and 18, the model in Fig. 16 is
partitioned into two main parts, i.e., B1 and B2. To calculate
K for a DAP, we have the following result.

FIGURE 16. A parameterized binary S3PR.

FIGURE 17. Part B1 of the parameterized binary S3PR in Fig. 16.

Proposition 4: Given a BS3PR, an optimal DAP K satis-
fies

K = m′ + n′ + 4 (5)
Proof: The proof of this proposition is based on the

net deconstruction. In a BS3PR, on the one hand, for B1,
according to the conclusions in [1],KB1 = max{2,m′+2} =
m′ + 2 (m′ ∈ N). Similarly, for B2, KB2 = max{n′ + 2, 2} =
n′ + 2 (n′ ∈ N). To sum up, K for a BS3PR consists of
KB1 and KB2 , i.e., K = KB1 + KB2 = m′ + 2 + n′ + 2 =
m′ + n′ + 4 (m′, n′ ∈ N). �
Note that m′(n′) ≥ 0; therefore, for a BS3PR, Kmin = 4.

In other words, a four-step-look-ahead DAP is the simplest

FIGURE 18. Part B2 of the parameterized binary S3PR in Fig. 16.

case for this class of S3PR, which contains no weakly mono-
ploid HR-circuit. Last but not the least, this equation shows
that all the initial markings of these independent resources
in each monoploid H(r) have no effect on the results, which
corresponds to the conservation law presented in [1].

V. DISCUSSION
As known, deadlocks in a resource allocation system stem
from the improper competition of limited resources. In this
paper, resources are categorized into different classes for
the computation of the look-ahead steps of an optimal DAP
by identifying their roles contributed to an optimal DAP.
It is well noted that the existence of a ξ -resource perplexes
and exacerbates the design of a deadlock avoidance or pre-
vention policy. Specifically, if there is no ξ -resource in
an S3PR, an optimal DAP can be obtained within polyno-
mial time, or an optimal (maximally permissive) liveness-
enforcing Petri net supervisor (represented by monitors) can
be established by adding a monitor for each strict minimal
siphon [2].

However, an interesting result exposed in this paper is that
the resources contributed to the steps of an optimal DAP do
not contribute to deadlocks. As defined, strongly independent
resources are not included in any resource-transition circuit
that is a counterpart of siphon causing deadlocks. From the
viewpoint of deadlock prevention by computing a set of mon-
itors in an off-line mechanism, they are not shared resources
and thus do not contribute to deadlocks. Actually, by Petri net
reduction rules proposed in [37] and [48], these resources can
be removed from a plant such that the pertinent analysis and
computation are significant reduced. In summary, strongly
independent resources can be dropped when designing a
liveness-enforcing supervisor for deadlock prevention; while
they cannot be ignored when designing a DAP since they
impact to a large extent the number of look-ahead steps.
As well-known, if the number of steps to look-ahead is
large, the computational cost will increase. That is to say,
the computational cost of a DAP is significantly contributed
by the resources that do not cause deadlocks. Such a finding
motivates us to deliberate upon the strategy of choosing
deadlock avoidance and prevention given a system. In this
sense, such a finding can be thought of as a substantiation
of the power of Petri net theory in the supervisory control of
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discrete event systems. In the future work, it is necessary to
slim down an optimal DAP. It is worth of noting that from both
perspectives of deadlock avoidance and prevention, the ker-
nel of causing deadlocks is the component containing the
ξ -resource, which is the US3PR defined in [1].

VI. CONCLUSION
Based on the considered S3PRmodels, some structural analy-
sis approaches are proposed in this paper. To achieve the goal
of deadlock avoidance, in particular, here the main focus is
on structural analysis that does not require the enumeration
of the reachability set of a marked net by analyzing the
relationship between the structure and the DAP policy. First,
a kind of special S3PR models with a ξ -resource, namely
α-nets, is presented to expand the results in [1]. Through
experiments and simulations, it is formally shown that
whether the strongly monoploid HR-circuits are associated
with one of the processes or combined as one or several
branches of an S2P, their initial marking can inevitably affect
K. Then, an S3PR model with two ξ -resources, i.e., BS3PRs,
is examined and its multi-step look-ahead-based DAP is
proposed. Through the analysis on this kind of models,
it is clear that there exists some common characteristics
betweenmodels with two ξ -resources and thosewith only one
ξ -resource. The research target in future is to apply these
methods and results to more general types of Petri net models.
We also consider the optimal DAP for a system if there are
faults [26], [54]–[56].
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