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ABSTRACT The problem of optimal temporal partitioning of a multicore server processor for virtual
machine allocation in cloud computing is addressed as multivariable optimization problems and solved algo-
rithmically and numerically. Analytical models for virtual machines are developed, i.e., partially available
multi-server systems. The problem of optimal temporal partitioning of amulticore server processor for virtual
machine allocation is formulated, where the overall performance (i.e., the average task response time) of a
group of virtual machines is optimized. An algorithm is developed to solve the problem numerically. The
problem of optimal temporal partitioning of a multicore server processor with power consumption constraint
is also formulated and solved, where the overall performance of a group of virtual machines is optimized
and the total power consumption of the virtual machines does not exceed certain available power. A virtual
machine is treated as a queuing system with multiple servers, i.e., an M/M/m queuing system. The system
performance measures are the average task response time and the average power consumption. Two core
speed and power consumption models are considered, namely, the idle-speed model and the constant-speed
model. Numerical examples are presented to demonstrate our methods.

INDEX TERMS Energy consumption, multicore server processor, queuing model, response time, temporal
partitioning, virtual machine.

I. INTRODUCTION
A. MOTIVATION
Cloud computing provides an effective way of sharing com-
puting resources over the Internet to achieve economies of
scale similar to a utility such as the electricity grid [1].
Sharing of computing resources can be implemented in such
a way that a large server is partitioned into multiple small
servers or a physical server is configured into multiple vir-
tual servers. These small or virtual servers are called virtual
machines (VM) in cloud computing, which are implemented
on a large multicore server processor, where multiple vir-
tual machines can be deployed simultaneously [5]. Each
VM acts as a physically or logically independent and self-
contained server with its own processor cores, main memory,
input/output devices, and network resources, and its own copy
of an operating system. Each VM is employed to run one type
of applications, or allocated to an end user for his/her own
applications.

The partitioning and sharing of a physical server can be
implemented in two different ways, namely, spatial parti-
tioning and temporal partitioning [7]. Spatial partitioning
(horizontal partitioning) involves the ability to divide a sin-
gle large server into multiple physically independent small

servers, with each partition functioning independently [4].
Each partition is typically employed to run one type of
applications, such as enterprise resource planning, serving
and caching Web pages, retrieving and managing databases,
data warehousing, encrypting secure communications, and
streamingmultimedia. Server partitioning technologies allow
system administrators to consolidate multiple applications
into one physical server box, thereby promoting central-
ized server management, saving space, and reducing admin-
istrative and management costs. Server and system par-
titioning technology has been around for a while in the
mainframe space and large-scale parallel processing systems
[10], [18], [22], but it started to gain attention in distributed,
grid, Internet computing only in the past few years.
Temporal partitioning (vertical partitioning) involves the

ability to divide a time interval into multiple subintervals,
with each subinterval allocated to a logically independent
VM. The underlying concept of cloud computing comes
from time-sharing [21], i.e., allowing multiple users to share
a costly large-scale mainframe for eliminating periods of
inactivity and a greater return of investment [3]. Server virtu-
alization is a major priority for large enterprises, since it pro-
vides an effective technology for consolidation, i.e., reducing
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FIGURE 1. A spatial (horizontal) partition of a multicore server processor into small servers.

server sprawl, increasing server utilization, and reducing
power/cooling expenses [20]. Virtualization has been consid-
ered as a catalyst of IT modernization, which helps IT behave
as a cloud computing and service provider, and business as a
consumer [6]. Virtualization has been developed into a key
technology in cloud computing because of its fundamental
advantages such as increased computing resource utilization
and improved system manageability. Virtualization is also
a key aspect that makes a cloud computing infrastructure
fundamentally different from a grid computing infrastructure.

Figure 1 illustrates an m-core server processor divided
into n virtual machines VM1, VM2, . . . , VMn with
m1,m2, . . . ,mn cores and core speeds s1, s2, . . . , sn respec-
tively. Figure 2 illustrates an m-core server processor shared
by n virtual machines VM1, VM2, . . . , VMn with a time
interval of length τ being divided into subintervals of lengths
τ1, τ2, . . . , τn, and core speeds s1, s2, . . . , sn respectively.
Due to increased popularity of cloud computing, optimal

server partitioning and performance analysis of VMs have
been important research problems with significant practical
impact. In [17], the problem of optimal spatial partitioning of
a multicore server processor in a cloud computing environ-
ment is considered, i.e., optimal virtual server configuration
for some given types of applications [8], [11], [23], [24]. Such
optimization is important for dynamic resource provision and
on-demand server customization in a cloud computing envi-
ronment for certain specific types of applications, such that
the overall system performance is optimized without exceed-
ing certain energy consumption budget. Performance analy-
sis of VMs has been investigated by a number researchers
[12]–[14], [19]. However, the problem of optimal temporal
partitioning of a multicore server processor has not been well
studied. The problem involves optimal virtual machine con-
figuration for several end users with different service require-
ments, such that the overall system performance is optimized
without exceeding certain energy consumption budget. Such
optimization is significant in cloud computing to provide the
best quality of service and customer satisfaction, especially
for users sharing the same resources.

B. CONTRIBUTIONS
The contributions of the present paper are three fold.
• First, we develop analytical models for virtual machines,
i.e., partially available multi-server systems. A Markov
model is obtained for a multi-server system with ran-
domized availability. An accuratemodel is obtained for a
multi-server systemwith deterministic availability. Such
models will be extremely useful in many other studies in
cloud computing.

• Second, we formulate the problem of optimal temporal
partitioning of a multicore server processor for virtual
machine allocation, such that the overall performance
(i.e., the average task response time) of a group of virtual
machines is optimized.We develop an algorithm to solve
the problem numerically.

• Third, we formulate and solve the problem of optimal
temporal partitioning of a multicore server processor
with power consumption constraint, such that the overall
performance of a group of virtual machines is optimized
and that the total power consumption of the virtual
machines does not exceed certain available power.

A virtual machine is treated as a queuing system with mul-
tiple servers, i.e., an M/M/m queuing system. The system
performance measures are the average task response time
and the average power consumption. Two core speed and
power consumption models are considered, namely, the idle-
speed model and the constant-speed model. Our optimal
temporal partitioning problems are formulated as multivari-
able optimization problems and solved algorithmically and
numerically. To the best of our knowledge, such analytical
investigation of optimal temporal partitioning of a multicore
server processor for virtual machine allocation has not been
seen in the literature.

The rest of the paper is organized as follows. In Section 2,
we present our server and power consumption models. In
Section 3, we develop analytical models for virtual machines,
i.e., partially available multi-server systems. In Section 4,
we formulate and solve the problem of optimal temporal
partitioning of a multicore server processor for virtual
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FIGURE 2. A temporal (vertical) partition of a multicore server processor into virtual servers.

machine allocation. In Section 5, we formulate and solve
the problem of optimal temporal partitioning of a multicore
server processor with power consumption constraint. We also
present numerical examples to demonstrate our methods.
In Section 6, we conclude the paper.

II. THE SERVER AND POWER MODELS
A. THE SERVER MODEL
Assume that a multicore server processor S has m identical
cores. In this paper, a multicore server processor is treated
as an M/M/m queuing system which is elaborated as fol-
lows [16]. There is a Poisson stream of tasks with arrival
rate λ, i.e., the inter-arrival times are independent and iden-
tically distributed (i.i.d.) exponential random variables with
mean 1/λ. A multicore server S maintains a queue with
infinite capacity for waiting tasks when all the m cores are
busy. The first-come-first-served (FCFS) queuing discipline
is adopted. The task execution requirements (measured by the
number of instructions to be executed) are i.i.d. exponential
random variables r with mean r̄ . The m cores of server S
have identical execution speed s (measured by the number of
instructions that can be executed in one unit of time). Hence,
the task execution times on the cores of server S are i.i.d.
exponential random variables x = r/s with mean x̄ = r̄/s.

Let µ = 1/x̄ = s/r̄ be the average service rate, i.e.,
the average number of tasks that can be finished by a proces-
sor core of server S in one unit of time. The core utilization
is

ρ =
λ

mµ
=
λx̄
m
=
λ

m
·
r̄
s
,

which is the average percentage of time that a core of S is
busy. Let pk denote the probability that there are k tasks
(waiting or being processed) in the M/M/m system for S.
Then, we have ([15, p. 102])

pk =


p0

(mρ)k

k!
, k ≤ m;

p0
mmρk

m!
, k ≥ m;

where

p0 =
(m−1∑
k=0

(mρ)k

k!
+

(mρ)m

m!
·

1
1− ρ

)−1
.

The probability of queuing (i.e., the probability that a newly
arrived task must wait because all processor cores are busy)
is

Pq =
pm

1− ρ
= p0

(mρ)m

m!
·

1
1− ρ

.

The average number of tasks (in waiting or in execution)
in S is

N̄ =
∞∑
k=0

kpk = mρ +
ρ

1− ρ
Pq.

Applying Little’s result, we get the average task response time
as

T =
N̄
λ

= x̄ +
Pq

m(1− ρ)
x̄

= x̄
(
1+

Pq
m(1− ρ)

)
= x̄

(
1+

pm
m(1− ρ)2

)
.

To formulate and solve our optimization problems analyti-
cally, we need a closed-form expression of T . To this end, let
us use the following closed-form approximation,

m−1∑
k=0

(mρ)k

k!
≈ emρ,

which is very accurate when m is not too small and ρ is not
too large. We also need Stirling’s approximation of m!, i.e.,

m! ≈
√
2πm

(m
e

)m
.
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Therefore, we get the following closed-form approximation
of p0,

p0 ≈
(
emρ +

(eρ)m
√
2πm

·
1

1− ρ

)−1
,

and the following closed-form approximation of pm,

pm ≈

(eρ)m
√
2πm

emρ + (eρ)m
√
2πm
·

1
1−ρ

,

namely,

pm ≈
1− ρ

√
2πm(1− ρ)(eρ/eρ)m + 1

.

By using the above closed-form expression of pm, we get a
closed-form approximation of the average task response time
as

T ≈
r̄
s

(
1+

1

m(1− ρ)(
√
2πm(1− ρ)(eρ/eρ)m + 1)

)
.

Our discussion in this paper is based on the above closed-form
expression.

B. THE POWER MODEL
Power dissipation and circuit delay in digital CMOS circuits
can be accuratelymodeled by simple equations, even for com-
plex microprocessor circuits. CMOS circuits have dynamic,
static, and short-circuit power dissipation; however, the dom-
inant component in a well designed circuit is dynamic power
consumption P (i.e., the switching component of power),
which is approximately P = aCV 2f , where a is an activity
factor, C is the loading capacitance, V is the supply voltage,
and f is the clock frequency [9]. Since s ∝ f , where s is the
processor speed, and f ∝ V φ with 0 < φ ≤ 1 [25], which
implies that V ∝ f 1/φ , we know that power consumption is
P ∝ f α and P ∝ sα , where α = 1 + 2/φ ≥ 3. For ease
of discussion, we will assume that the power allocated to a
processor core with speed s is simply sα .
We will consider two types of core speed models. In the

idle-speed model, a core runs at zero speed when there is no
task to perform. Since the power for speed s is sα , the average
amount of energy consumed by a core in one unit of time is

ρsα =
λ

m
r̄sα−1,

where we notice that the speed of a core is zero when it is
idle. The average amount of energy consumed by an m-core
server S in one unit of time, i.e., the power supply to server S,
is

P = mρsα = λr̄sα−1,

where mρ = λx̄ is the average number of busy cores
in S. Since a processor core still consumes some amount
of power P∗ even when it is idle (assume that an idle core
consumes certain base power P∗, which includes static power

dissipation, short circuit power dissipation, and other leakage
and wasted power [2]), we will include P∗ in P, i.e.,

P = m(ρsα + P∗) = λr̄sα−1 + mP∗.

Notice that when P∗ = 0, the above P is independent of m.
In the constant-speed model, all cores run at the speed s

even if there is no task to perform. Again, we use P to repre-
sent the power allocated to server S. Since the power for speed
s is sα , the power allocated to server S is P = m(sα + P∗).

III. PARTIALLY AVAILABLE MULTI-SERVER SYSTEMS
In a partially available multi-server system, the time inter-
val is divided into alternate subintervals A1,U1,A2,U2,A3,
U3, . . .. During subintervalsA1,A2,A3, . . ., the server system
is available for service. During subintervals U1,U2,U3, . . .,
the server system is not available for service; however,
the system still accepts arrival tasks and puts the tasks into
a waiting queue. When the Aj’s and the Uj’s are random
variables, a server system has variable and randomized avail-
ability. When the Aj’s and the Uj’s are known values, a server
system has fixed and deterministic availability.

A. RANDOMIZED AVAILABILITY
Assume that the arrival tasks form a Poisson stream of
intensity λ, i.e., the interarrival times are i.i.d. exponential
random variables with mean 1/λ. Task service times are i.i.d.
exponential random variables with mean 1/µ. The lengths of
the subintervals A1,A2,A3, . . . are i.i.d. exponential random
variables with mean 1/ζ . The lengths of the subintervals
U1,U2,U3, . . . are i.i.d. exponential random variables with
mean 1/η.

A partially available m-server queuing system with the
above assumptions can be modeled by aMarkov chain, which
contains states 0, 2, 4, 6, . . . , 2i, . . ., and 1, 3, 5, 6, . . . , 2i +
1, . . ., where state 2i, i ≥ 0, means that there are i tasks in the
queueing system and the m servers are available, while state
2i + 1, i ≥ 0, means that there are i tasks in the queueing
system and the m servers are not available. Figure 3 shows
the state-transition-rate diagram for the first 2(K + 1) states.
Let pi denote the probability that a partially available m-

server system is in state i, where i ≥ 0. Unfortunately, there is
no closed-form expression of pi. To obtain a numerical solu-
tion, we can use the first 2(K +1) states as an approximation,
where K is sufficiently large, so that the numerical solution is
accurate enough. The pi’s, 0 ≤ i ≤ 2K + 1, can be obtained
from the following system of linear equations:

(λ+ ζ )p0 = ηp1 + µp2;

(λ+ iµ+ ζ )p2i = λp2i−2 + ηp2i+1 + (i+ 1)µp2i+2,

1 ≤ i ≤ m− 1;

(λ+ mµ+ ζ )p2i = λp2i−2 + ηp2i+1 + mµp2i+2,

m ≤ i ≤ K − 1;

(mµ+ ζ )p2K = λp2K−2 + ηp2K+1;

(λ+ η)p1 = ζp0;
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FIGURE 3. A Markov chain for a partially available multi-server.

(λ+ η)p2i+1 = λp2i−1 + ζp2i, 1 ≤ i ≤ K − 1;

ηp2K+1 = λp2K−1 + ζp2K ;
2K+1∑
i=0

pi = 1.

The above system of linear equations can be solved by using
any available algorithm.

The average availability of the server system is

1/ζ
1/ζ + 1/η

=
η

ζ + η
,

which is also the maximum server utilization. This implies
that

ρ =
λ

mµ
<

η

ζ + η
,

and

λ <

(
η

ζ + η

)
mµ.

The average number of tasks in the queueing system is

N =
K∑
i=0

i(p2i + p2i+1).

By Little’s result, the average task response time is

T =
N
λ
.

Unfortunately, there is no closed-form expression of T .
The above analytical result can be easily validated by

simulation. In Table 1, we compare the simulation results
and analytical data on the average task response time of a
partially available server system, where the parameters are
set as m = 7, µ = 1, ζ = η = b with b = 1, 10, 100,
and λ = zη/(ζ + η)mµ with z = 0.50, 0.55, 0.60, . . . , 0.95.
For each combination of b and λ, we calculate the analytical
datum by using the above procedure, where K = 600.
The simulation result is obtained by simulating a partially
available server system for 1,000,000 tasks, recording the
response time of each task, and reporting the average task
response time. The maximum 99% confidence interval of
the simulation results is ±0.256%. We have two important
observations. First, our analytical data are very close to the
simulation results, which confirms the correctness of our

TABLE 1. Comparison of simulation and analytical results (exponential
distribution).

analysis. Second, as b increases, a partially available server
system becomes an M/M/m queueing system with service
rate (η/(ζ + η))µ, whose average task response time is also
given in the table.

B. DETERMINISTIC AVAILABILITY
As we have already known, if ζ, η → ∞ and η/(ζ + η)
is a fixed constant, then a partially available server sys-
tem becomes an M/M/m queueing system with service rate
(η/(ζ + η))µ. In fact, if the Aj’s and the Uj’s have uni-
form distributions, a partially available server system behaves
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TABLE 2. Comparison of simulation and analytical results (uniform
distribution).

close to an M/M/m queueing system even when b is small.
In Table 2, we compare the simulation results and analytical
data on the average task response time of a partially available
server system, where the parameters are set as m = 7,
µ = 1, ζ = η = b = 5, and λ = zη/(ζ + η)mµ with
z = 0.50, 0.55, 0.60, . . . , 0.95. The Aj’s have a uniform dis-
tribution in the range [(1−δ)/ζ, (1+δ)/ζ ], and theUj’s have a
uniform distribution in the range [(1−δ)/η, (1+δ)/η], where
δ = 0.9, 0.5, 0.1. The maximum 99% confidence interval
of the simulation results is ±0.254%. It is observed that a
partially available server system has less average response
time and behaves closer to an M/M/m queueing system, if
the Aj’s and the Uj’s have smaller variations.

The best case is when Aj = 1/ζ and Uj = 1/η for all
j ≥ 1, i.e., a partially available server system has determinis-
tic availability. In Table 3, we compare the simulation results
and analytical data on the average task response time of a
partially available server system, where the parameters are
set as m = 7, µ = 1, ζ = η = b with b = 1, 10, 100, and
λ = zη/(ζ + η)mµ with z = 0.50, 0.55, 0.60, . . . , 0.95. The
maximum 99% confidence interval of the simulation results
is ±0.254%. It is observed that no matter how big or small
b is, a partially available server system behaves very close to
an M/M/m queueing system.

TABLE 3. Comparison of simulation and analytical results (deterministic
availability).

Our main conclusion in modeling a partially available
server system can be summarized as follows. Assume that an
m-core processor or any physical machine with m processors
is shared by n virtual machines VM1, VM2, . . . ,VMn in such
a way that during every τ time, VMi is allocated τi time,
where τ1 + τ2 + · · · + τn = τ . If VMi has a Poisson stream
of arrival tasks, and the physical machine has exponential
service time with service rate µi in the τi time allocated to
VMi, then VMi can be treated as an M/M/m server with
service rate (τi/τ )µi.

IV. OPTIMAL TEMPORAL PARTITIONING
A. PROBLEM DEFINITION
Assume that we have a multicore server processor with m
cores. There are n types of applications. The tasks of the
ith type form a Poisson stream with arrival rate λi, where
1 ≤ i ≤ n. Let λ = λ1 + λ2 + · · · + λn. The task execution
requirements of the ith type are i.i.d. exponential random
variables with mean r̄i, There are n virtual machines VM1,
VM2, . . . ,VMn, where VMi is used to process requests of the
ith type of applications. We divide a time interval of length τ
into n subintervals τ1, τ2, . . . , τn, such that τi is allocated to
VMi, where 1 ≤ i ≤ n, and τ1 + τ2 + · · · + τn = τ .
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Based on our discussion in the last section, VMi is treated
as anM/M/m server with effective service rateµ′i = (τi/τ )µi,
where µi = si/r̄i, and si is the execution speed of the m cores
when they are allocated to VMi. The average task response
time of VMi is

Ti =
r̄i
s′i

(
1+

1

m(1− ρi)(
√
2πm(1− ρi)(eρi/eρi)m + 1)

)
,

where s′i = (τi/τ )si is the effective execution speed of VMi,
and ρi is the utilization of VMi given by

ρi =
λi

mµ′i
=
τ

τi
·
λi

mµi
. =

τ

τi
·
λir̄i
msi
=
λir̄i
ms′i

.

The average task response time of all the n types of
applications is

T =
λ1

λ
T1 +

λ2

λ
T2 + · · · +

λn

λ
Tn.

Wewill view T as a function of τ1, τ2, . . . , τn, represented by
T (τ1, τ2, . . . , τn).
Our optimal temporal multicore server processor parti-

tioning problem can be formally defined as a multivariable
optimization problem. Given task arrival rates λ1, λ2, . . . , λn,
mean task execution requirements r̄1, r̄2, . . . , r̄n, the number
of available cores m, the core speeds s1, s2, . . . , sn, and the
length of a time interval τ , the problem is to find lengths
of subintervals τ1, τ2, . . . , τn, such that T (τ1, τ2, . . . , τn) is
minimized subject to the constraint that

J (τ1, τ2, . . . , τn) = τ,

where

J (τ1, τ2, . . . , τn) = τ1 + τ2 + · · · + τn.

B. THE METHOD
We can minimize T by using the method of Lagrange
multiplier, namely,

∇T (τ1, τ2, . . . , τn) = φ∇J (τ1, τ2, . . . , τn),

that is,

∂T
∂τi
= φ

∂J
∂τi
= φ,

for all 1 ≤ i ≤ n, where φ is a Lagrange multiplier.
Let us rewrite Ti as

Ti =
τ

τi
·
r̄i
si
(1+ Fi),

where

Fi =
1

m(1− ρi)(
√
2πm(1− ρi)(eρi/eρi)m + 1)

.

It is clear that

∂T
∂τi
=
λi

λ
·
∂Ti
∂τi
= τ ·

λi

λ
·
r̄i
si

(
−
1+ Fi
τ 2i
+

1
τi
·
∂Fi
∂τi

)
,

for all 1 ≤ i ≤ n.

We rewrite Fi as

Fi =
1

m(1− ρi)(
√
2πm(1− ρi)Gi + 1)

=
1

√
2πm3/2(1− ρi)2Gi + m(1− ρi)

,

where

Gi = (eρi/eρi)m.

Notice that

∂Gi
∂ρi
= m

(
eρi

eρi

)m−1 1
e
·
eρiρi − eρi

ρ2i

= m
(
eρi−1

ρi

)m−1
eρi−1 ·

ρi − 1

ρ2i

= mem(ρi−1) ·
ρi − 1

ρm+1i

.

Therefore, we have

∂Fi
∂ρi
= −F2

i

(
√
2πm3/2

(
−2(1− ρi)Gi

+ (1− ρi)2
∂Gi
∂ρi

)
− m

)
= F2

i

(
√
2πm3/2

(
2(1− ρi)Gi

+mem(ρi−1) ·
(1− ρi)3

ρm+1i

)
+ m

)
.

Since
∂ρi

∂τi
= −

τ

τ 2i
·
λir̄i
msi
= −

ρi

τi
,

we get

∂Fi
∂τi
=
∂Fi
∂ρi
·
∂ρi

∂τi

= −
ρi

τi
·
∂Fi
∂ρi

= −
ρi

τi
F2
i

(
√
2πm3/2

(
2(1− ρi)Gi

+mem(ρi−1) ·
(1− ρi)3

ρm+1i

)
+ m

)
,

for all 1 ≤ i ≤ n.
Summarizing the above discussion, we get

∂T
∂τi
= −τ ·

λi

λ
·
r̄i
si

(
1+Fi
τ 2i
+
ρi

τ 2i
F2
i

(
√
2πm3/2

(
2(1− ρi)Gi

+ mem(ρi−1) ·
(1− ρi)3

ρm+1i

)
+ m

))
= φ,

for all 1 ≤ i ≤ n. By observing that

τ

τi
·
λir̄i
si
= mρi,
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we have

∂T
∂τi
= −

m
λ
·
ρi

τi

(
1+ Fi + ρiF2

i

(
√
2πm3/2

(
2(1− ρi)Gi

+mem(ρi−1) ·
(1− ρi)3

ρm+1i

)
+ m

))
= φ,

for all 1 ≤ i ≤ n.

C. AN ALGORITHM
It is clear that there is no closed-form solution to
τ1, τ2, . . . , τn and φ. Instead, we will describe an algorithm
to find numerical solutions.

We observe that ∂T/∂τi < 0 is an increasing function
of τi. Hence, for a given φ, we can find τi(φ) which satisfies
∂T/∂τi = φ by using the classic bisection method to search
for τi(φ) in an interval (lb, ub). Based on the condition that
ρi < 1, we can set lb = (λir̄i/msi)τ . The ub can be τ .
Furthermore, we notice that

J (φ) =
n∑
i=1

τi(φ)

is an increasing function of φ. Therefore, φ < 0 that satisfies
J (φ) = τ can also be found by the bisection method to search
for φ in an interval (lb, ub), where lb is sufficiently small such
that J (φ) < τ , and ub = 0.

D. A NUMERICAL EXAMPLE
Notice that since

ρi =
τ

τi
·
λir̄i
msi

< 1,

we have
λir̄i
si

<
τi

τ
m,

which gives rise to
n∑
i=1

λir̄i
si

< m.

Our input parameters must satisfy the above condition.
We consider a physical server with m = 64 cores to be

temporally partitioned into n = 8 virtual machines. The task
arrival rates are λi = ((i + 5)/76)λ, for all 1 ≤ i ≤ n. The
mean task execution requirements are r̄i = 1, and the core
speeds are si = 1, for all 1 ≤ i ≤ n. The length of a time
interval is τ = 1. In Table 4, for each λ = 12, 24, 36, 48, 60,
we display λi, si, τi, ρi,Ti, for all 1 ≤ i ≤ n, as well as
the minimized average task response time T . All the data are
calculated with the length of a search interval reduced to no
longer than 10−13.
We have the following observations.
• τi is determined in such away that a virtualmachineVMi
with larger service requirement is allocated a larger τi.

• The n virtual machines have different utilization. A vir-
tual machine with heavy service requirement has higher

utilization than a virtual machine with light service
requirement.

• The n types of applications have different average task
response times. A type of application with heavy service
requirement has shorter average task response time than
a type of application with light service requirement.

V. OPTIMAL SERVER SPEEDS
We will consider two types of power consumption and core
speed models. In the idle-speed model, a core runs at zero
speed when there is no task to perform. Since the power of
a core with speed s is sα , the average amount of energy con-
sumed by anm-core VMi in one unit of time, i.e., the average
power supply Pi to VMi, is

τi

τ
mρisαi ,

where τi/τ is the actual percentage of time a physicalmachine
is allocated to VMi, and ρi is the utilization of VMi. Since a
processor core still consumes some amount of power P∗ even
when it is idle, we will include P∗ in Pi, i.e.,

Pi =
τi

τ
m(ρisαi + P

∗) = λir̄is
α−1
i +

τi

τ
mP∗,

for all 1 ≤ i ≤ n. In the constant-speed model, all cores of
VMi run at the speed si even if there is no task to perform.
Therefore, the power allocated to VMi is

Pi =
τi

τ
m(sαi + P

∗),

for all 1 ≤ i ≤ n.

A. PROBLEM DEFINITION
In this section, we will allow the virtual machines to set
their execution speeds, such that the overall performance
of a group of virtual machines is optimized and that the
total power consumption of the virtual machines does not
exceed certain available power. The average task response
time of all the n types of applications is viewed as a
function of τ1, τ2, . . . , τn and s1, s2, . . . , sn, represented by
T (τ1, τ2, . . . , τn, s1, s2, . . . , sn).
Our optimal temporal multicore server processor par-

titioning with power constraint problem can be formally
defined as a multivariable optimization problem. Given task
arrival rates λ1, λ2, . . . , λn, mean task execution require-
ments r̄1, r̄2, . . . , r̄n, the number of available cores m, the
length of a time interval τ , the base power consump-
tion P∗, and the total available power P, the problem is
to find lengths of subintervals τ1, τ2, . . . , τn and the core
speeds s1, s2, . . . , sn of the virtual machines, such that
T (τ1, τ2, . . . , τn, s1, s2, . . . , sn) is minimized subject to the
constraints that

J (τ1, τ2, . . . , τn) = τ,

where

J (τ1, τ2, . . . , τn) = τ1 + τ2 + · · · + τn,
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TABLE 4. Numerical data for optimal temporal partitioning.

and that

K (s1, s2, . . . , sn) = P,

where

K (s1, s2, . . . , sn) =
n∑
i=1

(
λir̄is

α−1
i +

τi

τ
mP∗

)
=

n∑
i=1

λir̄is
α−1
i + mP∗,

for the idle-speed model, or

K (τ1, τ2, . . . , τn, s1, s2, . . . , sn) = P,

where

K (τ1, τ2, . . . , τn, s1, s2, . . . , sn) =
n∑
i=1

τi

τ
m(sαi + P

∗)

= m
n∑
i=1

τi

τ
sαi + mP

∗,

for the constant-speed model.

B. THE METHOD
We can minimize T by using the method of Lagrange
multiplier.
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For the idle-speed model, we have

∇T (τ1, τ2, . . . , τn, s1, s2, . . . , sn)

= φ∇J (τ1, τ2, . . . , τn)+ ψ∇K (s1, s2, . . . , sn),

that is,
∂T
∂τi
= φ

∂J
∂τi
= φ,

for all 1 ≤ i ≤ n, where φ is a Lagrange multiplier, and
∂T
∂si
= ψ

∂K
∂si
= ψλir̄i(α − 1)sα−2i ,

for all 1 ≤ i ≤ n, where ψ is another Lagrange multiplier.
For the constant-speed model, we have

∇T (τ1, τ2, . . . , τn, s1, s2, . . . , sn)

= φ∇J (τ1, τ2, . . . , τn)

+ψ∇K (τ1, τ2, . . . , τn, s1, s2, . . . , sn),

that is,
∂T
∂τi
= φ

∂J
∂τi
+ ψ

∂K
∂τi
= φ +

m
τ
sαi ,

for all 1 ≤ i ≤ n, where φ is a Lagrange multiplier, and
∂T
∂si
= ψ

∂K
∂si
= ψ

τi

τ
mαsα−1i ,

for all 1 ≤ i ≤ n, where ψ is another Lagrange multiplier.
We have already obtained ∂T/∂τi in Section 4.2, i.e.,

∂T
∂τi
= −

m
λ
·
ρi

τi

(
1+ Fi + ρi

∂Fi
∂ρi

)
,

for all 1 ≤ i ≤ n. As for ∂T/∂si, let us rewrite Ti as

Ti =
mρi
λi

(1+ Fi).

Since
∂ρ

∂si
= −

τ

τi
·
λir̄i
ms2i
= −

ρi

si
,

we have
∂T
∂si
=
λi

λ
·
∂Ti
∂si

=
m
λ

(
∂ρi

∂si
(1+ Fi)+ ρi

∂Fi
∂ρi
·
∂ρi

∂si

)
=

m
λ
·
∂ρi

∂si

(
1+ Fi + ρi

∂Fi
∂ρi

)
= −

m
λ
·
ρi

si

(
1+ Fi + ρi

∂Fi
∂ρi

)
,

where
∂Fi
∂ρi
= F2

i

(
√
2πm3/2

(
2(1− ρi)Gi

+mem(ρi−1) ·
(1− ρi)3

ρm+1i

)
+ m

)
,

with

Gi = (eρi/eρi)m,

for all 1 ≤ i ≤ n.

C. THE IDLE-SPEED MODEL
We have the following theorem for the idle-speed
model.
Theorem 1: For the idle-speed model, we have

τi =

(
τ

P− mP∗

)
λir̄is

α−1
i ,

for all 1 ≤ i ≤ n.
Proof: First, we have

∂T
∂τi
= −

m
λ
·
ρi

τi

(
1+ Fi + ρi

∂Fi
∂ρi

)
= φ,

for all 1 ≤ i ≤ n. Also, we have

∂T
∂si
= −

m
λ
·
ρi

si

(
1+ Fi + ρi

∂Fi
∂ρi

)
= ψλir̄i(α − 1)sα−2i ,

for all 1 ≤ i ≤ n. The above two equations imply that

τi =
ψ

φ
(α − 1)λir̄is

α−1
i ,

for all 1 ≤ i ≤ n. Since

τ =

n∑
i=1

τi =
ψ

φ
(α − 1)

n∑
i=1

λir̄is
α−1
i ,

and
n∑
i=1

λir̄is
α−1
i = P− mP∗,

we get

τ =
ψ

φ
(α − 1)(P− mP∗),

and

ψ

φ
(α − 1) =

τ

P− mP∗
.

Consequently, we have

τi =

(
τ

P− mP∗

)
λir̄is

α−1
i ,

for all 1 ≤ i ≤ n.
The above theorem means that the average task response

time is now a function of execution speeds s1, s2, . . . , sn,
denoted by T (s1, s2, . . . , sn). Our optimization problem is to
find the core speeds s1, s2, . . . , sn of the virtual servers, such
that T (s1, s2, . . . , sn) is minimized subject to the constraint
that K (s1, s2, . . . , sn) = P.

To solve this problem, we consider

∇T (s1, s2, . . . , sn) = ξ∇K (s1, s2, . . . , sn),

that is,

∂T
∂si
= ξ

∂K
∂si
= ξλir̄i(α − 1)sα−2i ,

for all 1 ≤ i ≤ n, where ξ is a Lagrange multiplier.

VOLUME 6, 2018 54735



K. Li: Optimal Temporal Partitioning of a Multicore Server Processor for VM Allocation

Notice that

ρi =
τ

m
λir̄i ·

1
τisi

=
τ

m
λir̄i

((
τ

P− mP∗

)
λir̄isαi

)−1
=

(
P
m
− P∗

)
1
sαi
,

and
∂ρi

∂si
=

(
P
m
− P∗

)
(−α)

1

sα+1i

= −α
ρi

si
,

for all 1 ≤ i ≤ n. Hence, we get

∂T
∂si
=

m
λ
·
∂ρi

∂si

(
1+ Fi + ρi

∂Fi
∂ρi

)
= −α

m
λ
·
ρi

si

(
1+ Fi + ρi

∂Fi
∂ρi

)
= ξλir̄i(α − 1)sα−2i ,

that is,

−
α

α − 1
·
m
λ
·

ρi

λir̄is
α−1
i

(
1+ Fi + ρi

∂Fi
∂ρi

)
= ξ,

for all 1 ≤ i ≤ n.

1) AN ALGORITHM
It is clear that there is no closed-form solution to s1, s2, . . . , sn
and ξ . Instead, we will describe an algorithm to find numeri-
cal solutions.

We observe that the left-hand side of the last equation
is an increasing function of si. Hence, for a given ξ , we
can find si(ξ ) which satisfies the last equation by using the
classic bisection method to search for si(ξ ) in an interval
(lb, ub). Based on the condition that ρi < 1, we can set
lb = (P/m − P∗)1/α . The ub can be a sufficiently large
position number. Furthermore, we notice that

K (ξ ) =
n∑
i=1

λir̄i(si(ξ ))α−1 + mP∗

is an increasing function of ξ . Therefore, ξ < 0 that satisfies
K (ξ ) = P can also be found by the bisectionmethod to search
for ξ in an interval (lb, ub), where lb is sufficiently small such
that K (ξ ) < P, and ub = 0.

D. THE CONSTANT-SPEED MODEL
We have the following theorem for the constant-speed model.
Theorem 2: For the constant-speed model, all virtual

machines have the same execution speed,
i.e., s1 = s2 = · · · = sn = s, where

s =
(

φ

ψα − 1
·
τ

m

)1/α

,

and

s =
(
P
m
− P∗

)1/α

.

Proof: First, we have

∂T
∂τi
= −

m
λ
·
ρi

τi

(
1+ Fi + ρi

∂Fi
∂ρi

)
= φ +

m
τ
sαi ,

for all 1 ≤ i ≤ n. Also, we have

∂T
∂si
= −

m
λ
·
ρi

si

(
1+ Fi + ρi

∂Fi
∂ρi

)
= ψ

τi

τ
mαsα−1i ,

for all 1 ≤ i ≤ n. The above two equations imply that

φ +
m
τ
sαi = ψα

m
τ
sαi ,

that is

si =
(

φ

ψα − 1
·
τ

m

)1/α

,

for all 1 ≤ i ≤ n. By the constraint

K (τ1, τ2, . . . , τn, s1, s2, . . . , sn) =
n∑
i=1

τi

τ
m(sαi + P

∗)

= m(sα + P∗) = P,

we get

s =
(
P
m
− P∗

)1/α

.

This proves the theorem.
The above theorem means that for the constant-speed

model, the optimal temporal multicore server processor par-
titioning with power constraint problem becomes the optimal
temporal multicore server processor partitioning problem,
and can be solved by using the method in Section 4.2 and
the algorithm in Section 4.3.

E. A NUMERICAL EXAMPLE
Let us consider a physical server with m = 64 cores to be
temporally partitioned into n = 8 virtual machines. The task
arrival rates are λi = ((i + 5)/76)λ, for all 1 ≤ i ≤ n.
The mean task execution requirements are r̄i = 1, for all
1 ≤ i ≤ n. The length of a time interval is τ = 1. The
base power is P∗ = 2 and the total power is P = 192.
We set α = 3. In Table 5, for the idle-speed model and for
each λ = 12, 24, 36, 48, 60, we display λi, si, τi, ρi,Ti, for
all 1 ≤ i ≤ n, as well as the minimized average task response
time T . All the data are calculated with the length of a search
interval reduced to no longer than 10−13.

We have the following observations.
• τi is determined in such away that a virtualmachineVMi
with larger service requirement is allocated a larger τi.

• However, si is determined in such a way that a vir-
tual machine VMi with larger service requirement is
assigned a slower core speed si.

• The n virtual machines have different utilization. A vir-
tual machine with heavy service requirement has higher
utilization than a virtual machine with light service
requirement.
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TABLE 5. Numerical data for optimal server speeds.

• The n types of applications have different average task
response times. A type of application with heavy service
requirement has shorter average task response time than
a type of application with light service requirement.

For the constant-speed model, we have s = 1 by
Theorem 2. Thus, all the data are identical to those in Table 4.
It is noticed that the idle-speed model results in higher core
speeds and shorter average task response times than the
constant-speed model.

VI. CONCLUDING REMARKS
We have emphasized the importance of studying the prob-
lem of optimal temporal partitioning of a multicore server

processor for virtual machine allocation in cloud computing.
For the first time in the literature, we have addressed the
problem as multivariable optimization problems and solved
them algorithmically and numerically. Our approach is based
on a queueing model of a virtual machine, i.e., an accurate
model for a multi-server system with deterministic availabil-
ity. The model will be extremely useful in many other studies
of virtual machines in cloud computing.
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