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ABSTRACT Social Internet of Vehicles (SIoV) is a new paradigm that enables social relationships
among vehicles by integrating vehicle-to-everything communications and social networking properties into
the vehicular environment. Through the provision of diverse socially-inspired applications and services,
the emergence of SIoV helps to improve the road experience, traffic efficiency, road safety, travel comfort,
and entertainment along the roads. However, the computation performance for those applications have been
seriously affected by resource-limited on-board units as well as deployment costs and workloads of roadside
units. Under such context, an unmanned aerial vehicle (UAV)-assisted mobile edge computing environment
over SIoV with a three-layer integrated architecture is adopted in this paper. Within this architecture,
we explore the energy-aware dynamic resource allocation problem by taking into account partial computation
offloading, social content caching, and radio resource scheduling. Particularly, we develop an optimization
framework for total utility maximization by jointly optimizing the transmit power of vehicle and the UAV
trajectory. To resolve this problem, an energy-aware dynamic power optimization problem is formulated
under the constraint of the evolution law of energy consumption state for each vehicle. By considering
two cases, i.e., cooperation and noncooperation among vehicles, we obtain the optimal dynamic power
allocation of the vehicle with a fixed UAV trajectory via dynamic programming method. In addition, under
the condition of fixed power, a search algorithm is introduced to derive the optimized UAV trajectory based
on acceptable ground-UAV distance metric and the optimal offloaded data size of the vehicle. Simulation
results are presented to demonstrate the effectiveness of the proposed framework over alternative benchmark
schemes.

INDEX TERMS Internet of Vehicles, social networks, unmanned aerial vehicles, mobile edge computing,
resource allocation.

I. INTRODUCTION
As a typical mobile Internet of Things, Internet of Vehi-
cles (IoV) has emerged to provide ubiquitous information
exchange and content sharing via its internal and external
environment with little or no human intervention [1]–[3].
With the help ofOn-BoardUnits (OBUs) installed on vehicles
and Road-Side Units (RSUs) deployed along the sides of
roads, together with benefits of the interaction of vehicle-
to-everything techniques, IoV is highly characterized by

gathering, sharing, processing, computing, and secure release
of data services onto information platforms [4]. Undoubtedly,
IoV has become a promisingway to realize the evolution from
Intelligent Transportation System into intelligent vehicles [5],
autonomous driving [6], electric vehicles [7], and Smart
Cities [8]. In addition, the widespread use of smart devices
and the recent advances in next generation vehicles promote
the inseparable relationships between smart devices and their
human carriers. It has becomemuchmore possible for drivers
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and passengers in IoV scenario to socialize and exchange
information with other commuters in the context of temporal-
spatial proximity on the roads [1], [9]–[11]. Thus, integra-
tion of advanced vehicle-to-everything communications and
social networking properties into the IoV environment has
emerged as a new paradigm of Social Internet of Vehicles
(SIoV) [12], [13].

By enabling social interdependencies among vehicles,
SIoV make drivers and passengers enjoy various socially-
inspired applications which improve road experience, traf-
fic efficiency, road safety, travel comfort, and entertainment
along the roads. For instance, real-time traffic information
with drivers’ mutual interests, socially-aware interactive
navigation, and same trip or route sharing with common
preferences are the preferred services. In general, these attrac-
tive applications and services that hold massive content vol-
ume always require sustainable computation resources and
constrained time delays. However, the vehicle-carried OBU
often has low computation capability compared to core net-
works [14], [15]. Due to backhaul loading at peak-hours, it is
challenging for core networks to meet the latency require-
ments of these resource-hungry services. As a result, the ten-
sion between resource-limited vehicle-carried terminals and
computation-intensive applications becomes the bottleneck
for improvement of user satisfaction and quality of experi-
ence to socially-aware services in SIoV.

To resolve this issue, mobile edge computing (MEC) has
been recognized as a cost-effective method to enhance the
computation capability in proximity to mobile devices [16].
It liberates mobile devices from heavy computation work-
loads, by enabling them to offload computation tasks to
nearby MEC servers instead of relying on a remote cloud.
Compared with cloud computing, MEC can offer benefits
such as low latency by removing long backhaul delay, low
energy consumption of mobile devices, and high privacy and
security [17], [18]. In this regard, lots of recent efforts and
research interests have been attracted from both academia and
industry. Especially, SIoV also significantly benefits from
MEC applications by deploying high-performance computa-
tion and geo-distributed servers at roadside RSUs [14]–[16].
However, rapid mobility of vehicles and radio obstacles due
to physical characteristics or external interferences in SIoV
make socially-aware service demands of drivers and passen-
gers vary greatly temporally and spatially. To alleviate the
workloads at roadside RSUs and reduce the costs of deployed
RSUs, unmanned aerial vehicles (UAV) assisted MEC as
flying RSUs has been proposed to improve computation
performance owing to their low cost and flexible deploy-
ment [16]–[20]. Fig. 1 illustrated a typical UAV assistedMEC
environment over SIoV under a three-layer integrated archi-
tecture, comprising physical-world layer, edge computing
layer, and social networking layer. In physical-world layer,
the physical objects (e.g., vehicles, smart devices, OBUs,
drivers, and passengers) form vehicular networks via vehicle-
to-vehicle (V2V) and vehicle-to-infrastructure (V2I) commu-
nications. The popular social contents such as traffic and trip

FIGURE 1. Illustration of the UAV assisted MEC environment over SIoV
under a three-layer integrated architecture.

sharing information generated by social-based applications
and mobile social platforms are cached at roadside RSUs
during off-hours, to reduce backhaul loading at peak-hours.
In edge computing layer, UAV acting as flying RSUs support
the MEC services by executing offloaded computation tasks
from vehicles. Finally, the social relationships of vehicles are
constructed according to their social ties and interest simi-
larities in social networking layer. Motivated by the above
discussions, we can find that the UAV assisted MEC system
under the scenario of the SIoV architecture will become
highly valuable. Correspondingly, our objective in this paper
is to achieve the energy-aware optimal resource allocation
by maximizing the total utility under the condition of this
architecture. To the best of our knowledge, this is the first
work that considers the joint design framework to optimize
both the transmit power of vehicle and the UAV trajectory in
the UAV assisted MEC environment over SIoV.

A. RELATED WORK
Many works have been dedicated to resource allocation in
MEC environment, and most of them were focused on joint
computation offloading and resource allocation [21]–[25].
In [21], the total revenue maximization problem was stud-
ied by jointly integrating computation offloading deci-
sion, resource allocation, and content caching. In [22], the
framework of joint computation offloading and interference
management was developed from the perspective of MEC
computing overhead in terms of execution time and energy.
In [23], by leveraging the collaborative properties of aug-
mented reality applications, the resource allocation method
for both communication and computation resources was pro-
posed, aiming to reduce sum energy consumption of all users.
In comparison with the mentioned optimization objectives
in [21]–[23], the work in [24] concentrates on maximizing
the weighted sum computation rate by jointly optimizing the
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computing mode selection and the system transmission time
allocation. In [25], the virtual resource allocation strategy
for communication, computing and caching was defined as
joint optimization problem, by taking into account the vir-
tualization architecture of information centric heterogeneous
networks.

In UAV assisted wireless networks, there also have been
some recent studies that focused on either resource alloca-
tion or trajectory optimization [26]–[29]. In [26], the power
allocation scheme for sum-ratemaximization in UAV assisted
communication system was presented, which reduces energy
consumption for UAV with non-orthogonal multiple access.
In [27], the resource allocation problem for UAV assisted
networks was investigated, and the average throughput was
maximized by satisfying the energy causality constraint
under a harvest-transmit-store model. In addition, some other
research efforts have been devoted to the issue of joint trans-
mit power and trajectory optimization. In [28], the cooper-
ative throughput maximization problem was studied, which
optimizes transmit power, power-splitting ratio and trajectory
of UAV in UAV assisted cooperative system with wireless
information and power transfer. In [29], the throughput max-
imization problem in UAV enabled relaying systems was
explored by optimizing source/relay transmit power along
with UAV relay trajectory.

There are even fewer works for resource allocation in UAV
assisted MEC system [19], [20]. In [19], under the mobile
cloud computing architecture based on a UAV-mounted
cloudlet, the minimization of total energy consumption was
investigated by jointly optimizing bit allocation, computa-
tion, and trajectory. In [20], the computation rate maxi-
mization problem in UAV enabled MEC wireless powered
system was studied under both partial and binary compu-
tation offloading modes, in which computation resources
and transmit power are derived. Most of the works in UAV
assisted MEC system were mainly focused on integrated
architecture or platform [17], [30], [31] and cyber-threat
detection [18].

Although that the theoretical studies has made impressive
progress in resource allocation in MEC environment
[21]–[25], resource allocation and trajectory optimization in
UAV assisted wireless networks [26]–[29], and resource allo-
cation in UAV assisted MEC system [19], [20], our work dif-
fers from them based on two points. First, resource allocation
and trajectory optimization in their works were to optimize
one or several objectives through the assumption that finite
time horizon is divided into fixed time slots in a discrete way.
However, our work is to conduct dynamic resource allocation
in which the transmit power and UAV trajectory should be
dynamically adjusted according to the current instant time
in the practical dynamic environment. Secondly, their works
were primarily targeted at the static network setting involving
simple users, sensors, andwireless devices. Those nodeswere
assumed to be statically located at fixed positions in the net-
works. However, we study the dynamic resource allocation in
UAV assistedMEC environment over dynamic SIoV, wherein

each vehicles belong to the rapidly moving nodes. The mobil-
ity properties of vehicles result in the dynamic trajectory of
vehicles and the time varying SIoV topology with respect to
time dependency. Therefore, the dynamic network topology
of SIoV poses extra challenges on optimizing UAV trajectory.

B. MAIN CONTRIBUTIONS
In this paper, our goal is to achieve the energy-aware optimal
resource allocation by maximizing the total utility under
the UAV assisted MEC environment over SIoV. To reach
this goal, we investigate the optimization framework for the
total utility maximization problem by jointly allocating the
transmit power of vehicle and optimizing the trajectory of
UAV. The main contributions of the paper are summarized
as follows.
• An approximate approach is designed to generate the
probability distribution of the access efficiency associ-
ated with a given social content in social content library
by leveraging mathematical statistics method. Based on
this approximate probability distribution, a popularity
factor of a given social content is defined, which deter-
mines the probability that the caching server in the RSU
stores a part of replicas of the social content.

• We develop a novel optimization framework for the total
utility maximization problem by jointly optimizing the
transmit power of vehicle and the trajectory of UAV.
We convert this optimization problem into an energy-
aware dynamic power optimization problemwhich com-
bines the utility of instant power reduction and the cost
of energy consumption for vehicle.

• Under the case of noncooperation and cooperation,
we obtain the optimal dynamic power allocation of vehi-
cle with the fixed UAV trajectory by the aid of dynamic
programming method. We also rigorously characterize
the evolution law of the optimal energy consumption
state of vehicle. Besides, with the fixed optimal transmit
power, a search algorithm to find the optimized UAV
trajectory is presented bearing in mind the acceptable
ground-UAV distance metric over the horizontal plane
and the optimal data size of the offloaded bits by vehicle.

The remainder of this paper is organized as follows.
Section II introduces the system model including the com-
putation and social content caching models, and further
presents the problem formulation. In Section III, we propose
the framework of the energy-aware dynamic resource allo-
cation, consisting of the transmit power optimization with
fixed trajectory and trajectory optimization with fixed power.
Simulation results are provided in Section VI, followed by
conclusion in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
Consider a UAV assisted MEC system over a SIoV sce-
nario as shown in Fig. 2, where a flying rotary wing UAV
is deployed to provide MEC services for a set of M =

{1, 2, · · · ,M} of M vehicles on the ground within a finite
time horizon T. All the vehicles are independent of each other,

56702 VOLUME 6, 2018



L. Zhang et al.: Energy-Aware Dynamic Resource Allocation in UAV-Assisted MEC Over SIoV

FIGURE 2. The system model.

and are distributed as Poisson point process on the straight
unidirectional multi-lane road segment with length dS and
width dW . We assume that each vehicle drives in a straight
line at a constant speed denoted by V, and never leaves
the road. The UAV is mounted with a transceiver, a single
antenna, and a MEC server. In particular, the MEC server
connects to the core network through wireless backhaul and
provides computation resources to vehicles by adopting a
powerful computing processor. A RSU is installed along
the road to make drivers and passengers enjoy the socially-
inspired services and require the cached popular social con-
tents via the social content caching server. The cacheable
RSU with a radius dR ≤ dS/2 is stationary after deployment.
We assume thatM vehicles are within the coverage region of
the RSU. Thereby, M vehicles can request the cached social
contents from the RSU via V2I link. Each vehicle is equipped
with a single-antenna OBU which can communicate with the
UAV, the RSU and other vehicles. Here, the vehicle-carried
OBU has an on-chip microprocessor with limited computing
capability to execute local computation task. In this context,
the computation task of each vehicle can be partitioned in
bitwise for partial local computing and partial computation
offloading.

Without loss of generality, we consider a three dimen-
sional Cartesian coordinate system to describe the loca-
tions of the ground vehicles and the flying UAV. As shown
in Fig. 3, the finite time horizon T is divided into N time
slots with equal length τ , i.e., τ = T/N . Let tn corre-
spond to the instant time within the nth time slot, for tn ∈
[t0 + (n− 1) τ, t0 + nτ ], where t0 is an initial time of time
horizon T . It is should be noted that there exist continuous
time during each time slot, which differs from fixed time slot
division in a discrete way. At the nth time slot, the instant
location of the mth vehicle over the horizontal plane coor-
dinate can be denoted as qm (tn) = [xm (tn) , ym (tn)]. Under
such circumstances, the mobility constraint of themth vehicle
is determined as

‖qm (T )− qm (0)‖ = VT ≤ 2dR, ∀m (1)

FIGURE 3. The time slot allocation for computation offloading from
M vehicles to UAV by using a TDMA-based co-channel media access.

In this system, we focus on the scenario where the UAV
flies at a fixed hovering altitude H aiming to keep contin-
uous flying over the air. This stable hovering of the UAV
contributes to avoidance of frequent aircraft ascending and
descending owing to terrain or building blockage. Then the
instant location of the UAV mapped onto the horizontal
plane coordinate at the nth time slot can be denoted by
qU (tn) = [xU (tn) , yU (tn)]. We further assume that the start
and end locations of the UAV are pre-determined, which
can be also given as qsU = [xsU , y

s
U ] and qeU = [xeU , y

e
U ],

respectively. Technically, τ can be chosen to be sufficiently
small such that the location of the UAV stays approximately
at a fixed location at each time slot [20], [28], [32]. In this
way, by incorporating the locations of N time slots, the flying
trajectory of the UAV within time horizon T can be modeled
by qU =

{
qsU ,qU (t1) , · · · ,qU (tN ) ,q

e
U

}
. Thereby, the tra-

jectory constraints of the UAV can be represented as

‖qU (tn)− qU (tn−1)‖ ≤ τVmax
U , ∀n

qsU = qU (0) , ∀n

qeU = qU (T ) , ∀n (2)

where Vmax
U is the UAV’s maximum flight speed. We assume

that the wireless channel from ground vehicles to the UAV
is dominated by the line-of-sight (LoS) transmission link
[20], [28], [32]. A quasi-static block fading channel model is
utilized to represent the ground-UAV LoS link. In this case,
the channel remains unchanged within each fading block, and
is subject to distance dependent power attenuation. Therefore,
at the nth time slot, the channel gain between the mth vehicle
and the UAV can be formulated as

hm (tn) = η0d−ζm (tn) =
η0(

‖qU (tn)− qm (tn)‖2 + H2
)ζ/2

(3)

where η0 is the channel gain at a reference distance d0, dm (tn)
is the distance between the mth vehicle and the UAV over the
horizontal plane, and ζ ≥ 2 is the path-loss exponent.

A. COMPUTATION MODEL
In this paper, we assume that the vehicles adopt a partial com-
putation offloading model. That is, the computation task can
either be executed locally at the vehicles, or be offloaded to
and executed by the UAV assisted MEC server. Here, we use
the size of computation input data including the program
codes and input parameters to describe the computation task
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of each vehicle. LetBCOMm (tn) (in bits) be the total data size of
the computation task for the mth vehicle at the nth time slot.
It is clear that BCOMm (tn) can be partitioned into two parts,
namely, the data size with B(L)m (tn) (in bits) executed by the

local CPU of the mth vehicle, and the data size with B(O)m (tn)
(in bits) computed by the UAV.

1) LOCAL COMPUTING
As for a target time slot, we assume that the local com-
putation data for each vehicle must be executed within the
corresponding time slot. Let f (L)m (tn) (in CPU cycles per sec-
ond) denote the local computational capability of the mth
vehicle at the nth time slot. As such, the total number of CPU
cycles required to execute the data size B(L)m (tn) is given as
τ f (L)m (tn). In addition, we denote the number of CPU cycles
required for computing one bit of raw at the mth vehicle
as wm. Thus, the total computation data size executed by
local CPU of the mth vehicle at the nth time slot can be
calculated by

B(L)m (tn) =
τ f (L)m (tn)

wm
=
Tf (L)m (tn)
Nwm

(4)

2) COMPUTATION OFFLOADING
In order to avoid the co-channel multiple access interfer-
ence during computation offloading, we use a TDMA-based
media access scheme as exhibited in Fig. 3. To be specific,
each time slot is divided into three stages, i.e., the offload-
ing stage, the computing stage, and the downloading stage
[20], [33]. In the offloading stage, M vehicles offload their
computation data to the UAV one by one during each time
slot. For simplicity, we assume that the computation task
offloading forM vehicles at each time slot are undertaken on
the same frequency band with bandwidth WC . We represent
the transmit power of the mth vehicle at the nth time slot by
pm (tn). In practice, the instant transmit power pm (tn) should
be adjusted in a continuous way but must be also limited
by the maximum power threshold P̄m at the nth time slot,
i.e., 0 < pm (tn) ≤ P̄m. Thanks to the quasi-static block
fading channel model, the maximum power threshold of the
mth vehicle at the given ground-UAV distance dm (tn) during
the nth time slot can be approximately formulated as [34]

P̄m (dBm) = P0 (dBm)− 10ζ lg
dm (tn)
d0

(5)

P̄m(mW) = 100.1P0(dBm)−ζ lg
dm(tn)
d0 (6)

where P0 is the receiving reference power by the UAV at a
reference distance d0. Based on the Shanon-Hartley formula,
the achievable transmission rate (in bps/Hz) of themth vehicle
at the nth time slot in the offloading stage can be immediately
expressed as

Rm (tn) = log2 (1+ 0 · γm (tn))

= log2

(
1+ 0 ·

pm (tn) hm (tn)
σ 2

)
(7)

where γm (tn) is the achieved signal-to-noise ratio (SNR)
along the LoS link from themth vehicle to the UAV at the nth

time slot, σ 2 is the noise power spectral density at the UAV,
and 0 = −φ1/ log2 (φ2 · BER) is the constant processing
gain factor with φ1 and φ2 depending upon an acceptable
bit error rate (BER) of the LoS link along with the specific
modulation and coding scheme.We assume a theoretical SNR
threshold γ thm for the mth vehicle to maintain the quality of
service (QoS) requirement. Then the achieved SNR of the
mth vehicle at the nth time slot should be subject to the QoS
constraint, i.e., γm (tn) ≥ γ thm . Let Em (tn) denote the energy
consumption state of the mth vehicle at the nth time slot.
Similar to [35], the evolution law of the energy consumption
state of the mth vehicle can be defined as a linear differential
equation as the following

dEm (tn)
dtn

= τ

(
pm (tn)+

σ 2

hm (tn)
γm (tn)

)
+ Em (tn) (8)

It is noted that the energy consumption of themth vehicle is
a dynamic variable influenced by the transmit power as well
as the achieved SNR and its instant energy consumption level
at the nth time slot. Denote by τm (n) the duration allocated
to the mth vehicle to offload its computation data to the UAV
at the nth time slot. Further considering the communication
overhead (e.g., encryption and packer header) denoted by
µm (in bits) for the mth vehicle during τm (n) [24], the total
number of data size to be offloaded to the UAV can be given
as µmB

(O)
m (tn), which can be also defined by

µmB(O)m (tn) = Rm (tn) ·WC · τm (n) (9)

Therefore, the total computation data size of the mth vehi-
cle computed by the UAV at the nth time slot can be written
as

B(O)m (tn) =
WCτm (n)
µm

log2 (1+ 0 · γm (tn)) (10)

After receiving all the computation data of M vehicles at
the nth time slot, the UAV computes and sends the com-
putation results to M vehicles in the downloading stage.
In fact, the UAV assisted MEC server has a much powerful
computation capability (e.g., a high-speed multi-core CPU)
and a much higher transmit power than the ground vehicles
[20], [24], [33]. To this end, we can neglect the computing
time consumed at the UAV and the downloading time of the
vehicle during each time slot as shown in Fig. 3. Thus, the data
size with B(O)m (tn) of the mth vehicle computed by the UAV
at the nth time slot can be rewritten as

B(O)m (tn) =
WCτ

Mµm
log2

(
1+ 0 ·

pm (tn) hm (tn)
σ 2

)
(11)

Therefore, under the partial computation offloadingmodel,
the total data size BCOMm (tn) of the computation task for the
mth vehicle at the nth time slot can be written by

BCOMm (tn)

= B(L)m (tn)+ B(O)m (tn)

=
Tf (L)m (tn)
Nwm

+
WCτ

Mµm
log2

(
1+ 0 ·

pm (tn) hm (tn)
σ 2

)
(12)
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Algorithm 1 The Generation Algorithm to Derive Approxi-
mate Probability Distribution of the AE of the fth Content

1: Initialize the AE of the fth content for M vehicles
ϕf ,1(1TA), ϕf ,2(1TA), · · · , ϕf ,M (1TA).
2: Sort ϕf ,1(1TA), ϕf ,2(1TA), · · · , ϕf ,M (1TA) in a ascending
order with the minimum value labeled by ϕ′f ,1 and the max-
imum value labeled by ϕ′f ,M to generate a sorted sequence:
ϕ′f ,1, ϕ

′

f ,2, · · · , ϕ
′
f ,M .

3: ∀ϕmin
f , ϕmax

f > 0, for ϕmin
f < ϕ′f ,1 and ϕ

max
f > ϕ′f ,M .

4: Divide interval [ϕmin
f , ϕmax

f ] into L equal subintervals:ϕmin
f =

ρ0 < ρ1 < ρ2 < · · · < ρL−1 < ρL = ϕ
max
f .

5: for ` = 1→ L do
6: ρ` − ρ`−1 = (ϕmax

f − ϕmin
f )/L.

7: Calculate the number of the AE of the fth content
within subinterval (ρL−1, ρL ] denoted by 8`.
8: Calculate the probability value by using ξf ,` = 8`/M .
9: end for
10: Return P(ξf ) = {ξf ,1, ξf ,2, · · · , ξf ,L}.

B. SOCIAL CONTENT CACHING MODEL
We consider a social content library of F contents, denoted
by a set F = {1, 2, · · · ,F}. The content size of the fth social
content is defined as sf (in bps), for f ∈ F . We assume
that a ground vehicle can be abstracted into a social node,
regardless of how many passengers in the vehicle except the
driver will access the cached social contents via the RSU. Due
to limited caching capacity, the caching server in the RSU can
only store a part of replicas of the contents according to the
popularity of the social contents. Next, we turn to formulate
the popularity of the fth content. For a given time duration
1TA � T , the access efficiency (AE) of the fth content for
the mth vehicle can be defined as the average access duration
under one access of the fth content, which is specifically
given by

ϕf ,m (1TA)
1
=
Df ,m (1TA)
Af ,m (1TA)

, ∀f ∈ F (13)

where Df ,m (1TA) > 0 (in seconds) is the access duration
of the fth content under a given 1TA, and Af ,m (1TA) > 0
is the access numbers of the fth content under a given 1TA.
Note that the AE ϕf ,m (1TA) can be considered as a random
variable due to the uncertainty of the access duration and the
access numbers of the fth content caused by the popularity of
social content for the mth vehicle. By using the mathematical
statistics method, we propose an approximate approach in
Algorithm 1 to generate the probability distribution of the AE
of the fth content. We wish to remark that the probability dis-
tribution P

(
ξf
)
follows a complete probability distribution,

i.e.,
∑L
`=1 ξf ,` = 1. For a given α ∈ (0, 1], the popularity

factor of the fth content, denoted by βf , can be formally
formulated as

βf
1
= sup

{
θf
∣∣Pr {ξf ≥ θf } ≥ α} , ∀f ∈ F (14)

where θf is the pre-defined random variable. It is worth noting
that the higher βf will result in the case that the fth content

will be more popular for the ground vehicles. Due to the
constraint of limited caching capacity, the RSUneed to decide
whether to cache the replica of the social content via a caching
strategy. To describe whether the social content of the fth
content has been cached at the RSU, we devise a caching
decision profile as a binary matrix given as follows

G =
[
gf
]
1×F (15)

where gf is a binary variable, which should satisfy

gf =

{
1, If the f th content is cached at the RSU
0, Otherwise

(16)

We use rm to denote the content request rate of the mth
vehicle. According to [36], the content request probability
that arises from the mth vehicle can be expressed as

$m =
rm∑M
m=1 rm

(17)

To sum up, the total number of bits of the social content
caching distributed by the RSU for the mth vehicle at the nth
time slot can be obtained as follows

BCACm (tn) =
F∑
f=1

τ · gf · βf · sf ·$m (18)

C. PROBLEM FORMULATION
Under the above setup, our objective is to maximize the total
utility by jointly combines the computation bits in (12) and
the caching bits in (18), while optimizing the transmit power
of each vehicle and the trajectory of theUAV.Mathematically,
the problem can be formulated as follows.

(P1) :

max
P,qU (tn)

M∑
m=1

N∑
n=1

λm

[
WCτ

Mµm
log2

(
1+ 0 ·

pm (tn) hm (tn)
σ 2

)

+
Tf (L)m (tn)
Nwm

+

F∑
f=1

τgf βf sf$m


(19)

s.t. C1 : t0 + (n− 1) τ ≤ tn ≤ t0 + nτ, ∀n

C2 : 0 < pm (tn) ≤ P̄m, ∀n, ∀m

C3 : γm (tn) ≥ γ thm , ∀n, ∀m

C4 :
dEm (tn)
dtn

= τ

(
pm (tn)+

σ 2

hm (tn)
γm (tn)

)
+ Em (tn) , ∀n, ∀m

C5 : ‖qU (tn)− qU (tn−1)‖ ≤ τVmax
U ,

qsU = qU (0) , qeU = qU (T ) , ∀n

C6 : ‖qm (T )− qm (0)‖ ≤ 2dR, ∀m (20)

where P = [pm (tn)]N×M is the transmit power allocation
matrix for M ground vehicles within time horizon T , and
λm > 0 is the weight of the mth vehicle which characterizes
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both the priority and the fairness among all the vehicles.
C1 is the instant time constraint within the time horizon.
C2 limits the transmit power level of each vehicle for com-
putation offloading. C3 guarantees the QoS requirement for
each vehicle. C4 represents the evolution law constraint of
energy consumption state for each vehicle. C5 expresses the
UAV’s trajectory constraint and the start and end location
constraint of the UAV, respectively. Finally, C6 specifies the
mobility constraint of each vehicle. It is worth noting that
the optimization problem (P1) in (19) under the constraints
of (20) is evidently non-convex with respect to {P,qU (tn)},
which cannot be simply solved with the standard convex
optimization techniques. Therefore, it is necessary to trans-
form and simplify the optimization problem (P1) through an
appropriate setting of subproblem. In the following, we first
investigate the subproblem of the optimization problem (P1),
i.e., energy-aware dynamic power optimization with the fixed
UAV trajectory. Then, we consider the trajectory optimization
under the framework of energy-aware power optimization.

III. ENERGY-AWARE DYNAMIC RESOURCE ALLOCATION
A. PROBLEM TRANSFORMATION
From the optimization problem (P1), we can easily observe
that if we allocate the maximum power threshold P̄m to the
mth vehicle with the fixed trajectory of the UAV, the total util-
ity maximization can be easily achieved. However, the total
utility maximization is attained at the expense of energy con-
sumption of each vehicle. Obviously, this maximum power
allocation is not an optimal solution to the optimization prob-
lem (P1). Thus, we are inclined to devise the first subproblem
(P2), aiming to derive a trade-off between the optimal power
allocation and the energy consumption of each vehicle.

Due to the constraint of the maximum power threshold,
the value of power reduction for the mth vehicle at the nth
time slot is equal to P̄m − pm (tn). Thus, the efficiency of
power reduction for the mth vehicle at the nth time slot can
be expressed as

δm (tn) =
P̄m − pm (tn)

P̄m
(21)

We use δm (tn) to denote the price factor for power reduc-
tion for themth vehicle at the nth time slot. Therefore, the util-
ity of power reduction for the mth vehicle at the nth time
slot can be given as δm (tn) ·

(
P̄m − pm (tn)

)
. Similar to [35],

we also denote by ψ the factor to balance the units of the
power reduction and the energy consumption. By taking the
utility of power reduction and the cost of energy consumption

into account, we then formulate the utility function as follows

Um (tn) =
P̄m − pm (tn)

P̄m

(
P̄m − pm (tn)

)
− ψEm (tn) (22)

Our objective is to maximize the utility function in (22)
throughout the entire time slot by choosing the optimal trans-
mit power and the optimal energy consumption of each vehi-
cle with the fixed UAV’s trajectory. Thus, we convert the total
utility maximization problem (P1) into a subproblem (P2) to
maximize the utility function in (22) with respect to pm (tn)
throughout the nth time slot. Specifically, the subproblem can
be mathematically formulated as

(P2) : arg max
pm(tn),m∈M

∫ t0+nτ

t0+(n−1)τ
e−ε(tn−t0−(n−1)τ )

×

((
P̄m − pm (tn)

)2
P̄m

− ψEm (tn)

)
dtn (23)

s.t. C1,C2,C4 (24)

where ε ∈ (0, 1) is the constant discount factor by which the
future utility must be multiplied in order to obtain the present
value. The remaining work is thus to solve the subproblem
(P2) under the cooperation or noncooperation cases.

B. OPTIMAL POWER ALLOCATION:
NONCOOPERATION CASE
The selfish behavior in the partial computation offloading
brings about the noncooperation case where all the vehi-
cles compete with each other. Under this case, we then
concentrate on the derivation of an optimal solution to the
subproblem (P2) by applying Bellman’s dynamic program-
ming method [37]. Here, we use pNCm (tn) to represent the
noncooperative optimal solution to the subproblem (P2).
For mathematical tractability, we assume that there exists a
continuously differentiable auxiliary function ϒNC

m (pm,Em)
which is subject to the partial differential equation given by
(25) at the bottom of this page.
Theorem 1: The optimal dynamic power allocation

pNCm (tn) of the mth vehicle constitutes a noncooperative opti-
mal solution to the subproblem (P2) if and only if the optimal
power allocation pNCm (tn) and the continuously differentiable
auxiliary function ϒNC

m (pm,Em) are respectively given by

pNCm (tn) = P̄m

(
1−

τψ

2 (1− ε)

)
(26)

∂ϒNC
m (pm,Em)
∂Em (tn)

=
ψ

1− ε
(27)

εϒNC
m (pm,Em) = arg max

pm(tn),m∈M

{
(P̄m − pm(tn))2

P̄m
− ψEm(tn)+

∂ϒNC
m (pm,Em)
∂Em(tn)

(τ (pm(tn)+
σ 2

hm(tn)
γm(tn))+ Em(tn))

}
(25)

3τ 2P̄m
4

(
∂ϒNC

m (pm,Em)
∂Em(tn)

)2

− (2τ P̄m + Em(tn))
∂ϒNC

m (pm,Em)
∂Em(tn)

+ εϒNC
m (pm,Em) = 0 (29)
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Proof: We first perform the maximization operation of
the right hand side of (25) with respect to pm (tn). After
some necessary mathematical simplifications, we can easily
obtain the noncooperative optimal dynamic power allocation
pNCm (tn) given as

pNCm (tn) = P̄m

(
1−

τ

2
∂ϒNC

m (pm,Em)
∂Em (tn)

)
(28)

Substituting pNCm (tn) in (28) into (25), after some algebraic
manipulations, we can easily have a partial differential equa-
tion given in (29) at the botom of the previous page. Upon
solving the partial differential equation in (29), we can repre-
sent the auxiliary function ϒNC

m (pm,Em) as the constraint of
partial differential equationwhich can be expressed as in (27).
Substituting the partial differential equation constraint (27)
into (28), we finally obtain the optimal power allocation
pNCm (tn) given as in (26) which constitutes the noncooperative
optimal solution to the subproblem (P2). �

Let ENCm (tn) be the optimal energy consumption of themth
vehicle at the nth time slot under the noncooperation case.
Based on Theorem 1, the evolution law of the optimal energy
consumption state of the mth vehicle can be characterized by

dENCm (tn)
dtn

= 2τ P̄m

(
1−

τψ

2 (1− ε)

)
+ ENCm (tn) (30)

Note that (30) is a linear differential equation. By solving
(30), the optimal energy consumption ENCm (tn) follows that

ENCm (tn) = C1etn − 2τ P̄m

(
1−

τψ

2 (1− ε)

)
= C1etn − 2τ100.1P0(dBm)−ζ lg

dm(tn)
d0
−3

×

(
1−

τψ

2 (1− ε)

)
(31)

where C1 > 0 is a constant number. Therefore, the optimal
dynamic transmit power allocation matrix for M vehicles
within time horizon T can be expressed as

PNC (mW)

=

[
100.1P0(dBm)−ζ lg

dm(tn)
d0

(
1−

τψ

2 (1−ε)

)]
N×M

, ∀n, ∀m

(32)

C. OPTIMAL POWER ALLOCATION: COOPERATION CASE
Different from the noncooperation case as stated before,
the cooperative behavior will also exist in the partial compu-
tation offloading. This results in the cooperation case where
all the vehicles form a grand coalition through full coopera-
tion for their common interests. Under this case, our objec-
tive is to maximize the sum of the utility functions of all
the vehicles throughout the entire time slot while satisfying
the evolution law constraint of energy consumption state
for each vehicle. Hence, we present a dynamic optimization
subproblem (P3) as follows to maximize the sum of the utility
functions of all the vehicles

(P3) : arg max
p1(tn),p2(tn),··· ,pM (tn)

M∑
m=1

∫ t0+nτ

t0+(n−1)τ
e−ε(tn−t0−(n−1)τ )

×

((
P̄m − pm (tn)

)2
P̄m

− ψEm (tn)

)
dtn (33)

s.t. C1,C2,C4 (34)

Under the cooperation case, we use pCm (tn) to stand for
the cooperative optimal solution to the subproblem (P3).
We also assume that there exists a continuously differentiable
auxiliary function ϒC

m (pm,Em) which satisfies the partial
differential equation given in (35) at the bottom of this
page.
Theorem 2: The optimal dynamic power allocation pCm (tn)

of the mth vehicle constitutes a cooperative optimal solution
to the subproblem (P3) if and only if the optimal power allo-
cation pCm (tn) and the continuously differentiable auxiliary
function ϒC

m (pm,Em) are respectively expressed by

pCm (tn) = P̄m

(
1−

τ
∑M

m=1 ψ

2 (1− ε)

)

= P̄m

(
1−

τMψ
2 (1− ε)

)
(36)

∂ϒC
m (pm,Em)
∂Em (tn)

=

∑M
m=1 ψ

1− ε
=

Mψ
1− ε

(37)

Proof: The proof is similar to Theorem 1. The only
difference is that the objective function of the subproblem
(P3) is to maximize the sum of the utility functions of all

εϒC
m (pm,Em) = arg max

p1(tn),p2(tn),··· ,pM (tn)

×

{
M∑
m=1

((
P̄m − pm (tn)

)2
P̄m

−ψEm (tn)

)
+
∂ϒC

m (pm,Em)
∂Em (tn)

(
τ

(
pm (tn)+

σ 2

hm (tn)
γm (tn)

)
+Em (tn)

)}
(35)

M∑
m=1

(
τ 2P̄m
4

(
∂ϒC

m (pm,Em)
∂Em (tn)

)2)
−τ 2P̄m

(
∂ϒC

m (pm,Em)
∂Em (tn)

)2

+
(
2τ P̄m + Em (tn)

) ∂ϒC
m (pm,Em)
∂Em (tn)

−εϒC
m (pm,Em)− ψ

M∑
m=1

Em (tn) = 0 (39)
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the vehicles. We also perform the maximization operation
of the right hand side of (35) with respect to pm (tn). After
some mathematical simplifications, the cooperative optimal
dynamic power allocation pCm (tn) can be expressed as

pCm (tn) = P̄m

(
1−

τ

2
∂ϒC

m (pm,Em)
∂Em (tn)

)
(38)

Upon plugging pCm (tn) in (38) into (35), we can also easily
obtain a partial differential equation given in (39) at the
bottom of the previous page. Next, we turn to derive the
derivative of ϒC

m (pm,Em) with respect to Em (tn) in (39).
Upon solving the partial differential equation, after some
simplifications, the auxiliary function ϒC

m (pm,Em) can be
written by (37). Then, substituting ϒC

m (pm,Em) in (37) into
(38), we obtain the final result in (36), thus completing the
proof. �

Let ECm (tn) be the optimal energy consumption of the mth
vehicle at the nth time slot under the cooperation case. By the
aid of Theorem 2, it is readily checked that the evolution law
of the optimal energy consumption state of the mth vehicle
can be given as follows

dECm (tn)
dtn

= 2τ P̄m

1−

τ
M∑
m=1

ψ

2 (1− ε)

+ ECm (tn) (40)

By solving linear differential equation in (40), the optimal
energy consumption ECm (tn) can be obtained as

ECm (tn)

= C2etn − 2τ P̄m

1−

τ
M∑
m=1

ψ

2 (1− ε)



= C2etn − 2τ100.1P0(dBm)−ζ lg
dm(tn)
d0
−3

1−

τ
M∑
m=1

ψ

2 (1− ε)


(41)

where C2 > 0 is a constant number. Therefore, the optimal
dynamic transmit power allocation matrix for M vehicles
within time horizon T can be formulated as

PC (mW)

=

[
100.1P0(dBm)−ζ lg

dm(tn)
d0

(
1−

τMψ
2 (1−ε)

)]
N×M

, ∀n, ∀m

(42)

D. TRAJECTORY OPTIMIZATION
With the fixed power of each vehicle, the subproblem of the
optimization problem (P1) to optimize the UAV’s trajectory

can be transformed as follows

(P4) :

max
qU (tn)

M∑
m=1

N∑
n=1

λm

[
WCτ

Mµm
log2

(
1+ 0 ·

p∗m (tn) hm (tn)
σ 2

)

+
Tf (L)m (tn)
Nwm

+

F∑
f=1

τgf βf sf$m

 (43)

s.t. C1,C3,C5,C6 (44)

where p∗m (tn) (W) refers to the given optimal dynamic trans-
mit power of the mth vehicle at the nth time slot under the
noncooperation or cooperation case, which can be summa-
rized as

p∗m (tn) = 100.1P0(dBm)−ζ lg
dm(tn)
d0
−3
℘∗ (45)

where ℘∗ is an auxiliary variable which is defined as

℘∗ =


1−

τψ

2 (1− ε)
, for noncooperation case

1−
τMψ

2 (1− ε)
, for cooperation case

(46)

Obviously, (43) is a non-convex optimization problem.
Thus, we resort to the problem simplification through relax-
ing some constraints to find a suboptimal solution to subprob-
lem (P4). In what follows, we first characterize an acceptable
ground-UAV distance metric over the horizontal plane under
the framework of the optimal transmit power. According to
the constraint of the theoretical SNR threshold, the achieved
SNR of the mth vehicle at the nth time slot should satisfy
the QoS constraint γm (tn) ≥ γ thm . This immediately yields
that

p∗m (tn) hm (tn)
σ 2 ≥ γ thm (47)

Theorem 3: The optimal dynamic ground-UAV distance
d∗m (tn) for the mth vehicle at the nth time slot must satisfy
the following upper bound

d∗m (tn) ≤

√√√√(100.1P0(dBm)−3+ζ lg d0η0℘∗
σ 2γ thm

) 1
ζ

(48)

Proof: See Appendix. �
Note that the upper bound in (48) gives the constraint

metric for the trajectory of the UAV over the horizontal plane
under the given spatial location of each vehicle. From the sub-
problem (P4), under the constraint of fixed power, we need to
improve the achieved SNR of each vehicle along the LoS link
in order to gain the total utility maximization. It is worthy to
mention that the achieved SNR of each vehicle along the LoS
link can be significantly enhanced by shortening the ground-
UAV distance over the horizontal plane. However, under
the constraint of the QoS constraint as well as the spatial
location of each vehicle, it will not be realistic to arrange
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FIGURE 4. Simulation scenario: Two pre-determined benchmark
trajectories of UAV and M=4 vehicles over the horizontal plane with
N=30 time slots, unidirectional two-lane road segment with length
dS = 150m and width dW = 20m. The straight solid lines marked by
vehicle 1, vehicle 2, vehicle 3, and vehicle 4 correspond to the trajectories
of M=4 vehicles driving from left to right.

FIGURE 5. Comparison between minimum values and maximum values
of AE used in Algorithm 1 among F=8 social contents, marked from
SC1 to SC8.

an optimal achieved SNR allocation by simply decreasing
the ground-UAV distance. After rechecking (43), the total
utility maximization depends on how to maximize the total
data size computed by the UAV via computation offloading.
In order to maximize the total data size of the offloaded
bits, each vehicle wants to find out a minimum ground-
UAV distance under the condition of single UAV. For a given
single UAV, we assume that the minimum ground-UAV dis-
tance for the mth vehicle at the nth time slot is denoted by

d̃m (tn) =
√∥∥q̃U (tn)− q̃m (tn)

∥∥2 + H2. In theory, for the
given p∗m (tn) and d̃m (tn), the optimal data size of the mth
vehicle computed by the UAV at the nth time slot can be

Algorithm 2 Search Algorithm for Trajectory Optimization

1: Initialize ς , κ , A, d0, ζ , η0, ℘∗, σ 2, P0, B̃
(O)
m (tn)

2: for n = 1→ N do
3: for m = 1→ M do
4: Initialize ql−1U (tn), qm(tn).

5: Calculate d l−1m (tn) =
√
‖ql−1U (tn)− qm(tn)‖2 + H2.

6: if d l−1m (tn) ≤
√
(100.1P0(dBm)−3+ζ lg d0η0℘∗/(σ 2γ thm ))

1
ζ

then
7: Set l = 1, Il−1 = 0, Jl−1 = B̃(O)m (tn).
8: Set 41 = 0, 42 = (

√
5− 1)/2.

9: Repeat
10: Set Il = Il−1+41(Jl−1−Il−1), Jl = Il−1+42(Jl−1−
Il−1).
11: Calculate b(Jl ).
12: Update B(O),lm (tn) =

2b(Jl )
π B(O),l−1m (tn) and qlU (tn).

13: Set l = l + 1.
14: Until |B̃(O)m (tn)− B

(O),l
m (tn)| < κ

15: Return d∗m(tn) and q
∗
U (tn)

16: else
17: go to step 4.
18: end if
19; end for
20: end for

given as

B̃(O)m (tn) =
WCτ

Mµm
log2

(
1+ 0 ·

η0p∗m(tn)d̃
−ζ
m (tn)

σ 2

)
=

WCτ

Mµm
log2

(
1+

100.1P0(dBm)−3+ζ lg d00η0℘
∗

σ 2

×(10lg d̃m(tn)d̃m(tn))−ζ
)

=
WCτ

Mµm
log2

(
1+

100.1P0(dBm)−3+ζ lg d00η0℘
∗

σ 2

×(d̃2m(tn))
−ζ

)
=

WCτ

Mµm
log2

(
1+

100.1P0(dBm)−3+ζ lg d00η0℘
∗

σ 2(‖q̃U (tn)−q̃m(tn)‖2 + H2)ζ

)
(49)

Based on the optimal data size of the mth vehicle in (49),
we next begin by deriving a suboptimal data size of the
offloaded bits. In order to obtain the suboptimal data size,
we then define a transition function as the searching function.
Specifically, for a given transition function b : R+→ R+ on
a domain x ⊂ R+, the transition function can be calculated as

b (x) = arctan
( x
A

)
(50)

where A > 0 corresponds to an adjusting scalar. It is noted
that b (x) is a monotonically increasing function with a trend
of more and more stable growth when x →+∞. The reason
for adopting b (x) as the transition function is two folds.
On one hand, b (x) that follows a rapid descent when x ≤ 5
helps to adjust the data size of the offloaded bits quickly.
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FIGURE 6. Approximate probability distributions of AE generated by Algorithm 1 with the number of subintervals
L=8 among F=8 social contents, marked social content 1 to social content 8, under the constraint of minimum values and
maximum values of AE given in Fig. 5.

FIGURE 7. Optimal transmit power vs. discount factor among M=4 vehicles during 5th time slot with length
τ = 0.05s and UAV hovering altitude H=50m.

On the other hand, b (x) is upper bounded by a constant 0.5π ,
which will aid in controlling the iterations for searching the
suboptimal solution. Denote by qlU (tn) =

[
x lU (tn) , y

l
U (tn)

]
the location of the UAV at the lth iteration mapped onto the
horizontal plane coordinate at the nth time slot. Similarly,
we use B(O),lm (tn) to represent the data size of the mth vehicle
computed by the UAV at the lth iteration during the nth
time slot Let ς and κ be a search factor and an acceptable
tolerant error, respectively, for κ > 0. Finally, under the given
optimal power, we present a search algorithm as summarized
in Algorithm 2 for finding a optimized trajectory q∗U (tn) of
the UAV.

IV. SIMULATION RESULTS
In this section, we conduct simulations to verify our anal-
ysis and evaluate the performance of our proposed frame-
work. As illustrated in Fig. 4, all the simulations are carried

out on a SIoV scenario within a given rectangular area
of 20m×150m over the horizontal plane coordinate. In this
scenario,M=4 vehicles drive at a same constant speed along
a unidirectional two-lane road segment with length dS=150m
and width dW=20m. The start locations and end locations
of these vehicles marked by vehicle 1, vehicle 2, vehicle 3,
and vehicle 4 are initialized as (0,5)m, (25,15)m, (75,5)m,
(100,15)m, and (50,5)m, (75,15)m, (125,5)m, (150,15)m,
respectively. For the benchmark, we consider the case that
the UAV flies at a fixed hovering altitude H=50m along two
pre-determined trajectories, i.e., straight-line and semi-circle
trajectories, with the same start location and end location
over the horizontal plane, denoted by (0,10)m and (150,10)m.
The finite time horizon T is divided into N=30 time slots
with equal length τ = 0.05s, and the initial time of time
horizon T is set to t0 = 0s. We adopt a quasi-static block
fading channel model to describe the ground-UAV LoS link.
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FIGURE 8. Optimal transmit power vs. time slot length among M=4 vehicles during 5th time slot with discount
factor ε = 0.5 and UAV hovering altitude H=50m.

In this model, the path-loss exponent is set to ζ = 2, and the
channel gain η0 at the reference distance d0 = 3m is assumed
to be 9.7×10−4. Moreover, we set the receiving reference
power by the UAV at the reference distance d0 = 3m as
P0 = 20dBm. We further employ a processing gain factor
0 = −1.5/ log2 (5 · BER) where the acceptable BER 10−3

of the LoS link for multiple quadrature amplitude modulation
with symbol period 52.5µs. In addition, the noise power
spectral density at the UAV is set to σ 2

= −30dBm. For
the computation model, we assume that each vehicle has the
same local computational capability during time horizon T.
Thenwe set the local computational capability f (L)m (tn) as 106

CPU cycles per second for each vehicle. The number of CPU
cycles required for computing one bit of raw at each vehicle
is assumed to be wm = 5.3× 10−3.

In all the simulations, we consider a social content library
of F=8 contents which are assumed to have the same content
size sf=4.6Kbps. Due to the lack of empirical data about
the AE of social content, we assume that minimum value
and maximum value of the AE used in Algorithm 1 among
F=8 social contents is initialized in Fig. 5. We also set the
number of subintervals in Algorithm 1 to L=8 for each social
content. Under this setting, the approximate probability dis-
tribution of the AE generated by Algorithm 1 for F=8 social
contents can be assumed to satisfy the distribution provided
by Fig. 6. The list of other simulation parameters and their
values used in this paper are summarized in Table 1.

First the optimal transmit power with the fixed benchmark
UAV trajectories with hovering altitude H=50m is compared
among M=4 vehicles under the cases of noncooperation
and cooperation with the continuous evolution of discount
factor ε, as depicted in Fig. 7. It is shown that an increased
discount factor from 0.1 to 0.9 will reduce the optimal trans-
mit power among M=4 vehicles under the noncooperation
case or the cooperation case. This is due to the fact that

TABLE 1. System parameters and their values.

the discount factor has a direct affect on the optimal trans-
mit power of vehicles according to (26) and (36). Specifi-
cally, the optimal transmit power of each vehicle is inversely
related to discount factor ε regardless of the noncooperation
case or the cooperation case. From Fig. 7, it is also clearly
revealed that the optimal transmit power of vehicles under
cooperation case is obviously lower than that of the nonco-
operation case. This can be explained by the fact that the
maximized sum of the utility functions of all the vehicles
under the cooperation case has a bearing on the optimal
power allocation in (36) by adding a variableM which varies
inversely as the optimal power. This result from Fig. 7 further
validates that two benchmark trajectories also impact the
optimal transmit power of vehicles due to the time varying
ground-UAV distance.
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In Fig. 8, we show the optimal transmit power comparison
according to the evolution of the time slot length τ from
10ms to 100ms during 5th time slot under the noncooperation
and cooperation cases with given discount factor ε = 0.5
and the hovering altitude H=50m. It can be immediately
observed that the optimal power of vehicles for both the
noncooperation and cooperation cases will decrease with the
growth of the time slot length τ .This is because based on
(26) and (36), the optimal transmit power for both cases is
inversely proportional to the time slot length τ . It is worth
noting that this observation emphasizes the importance of
selecting the proper time interval of time slot on the optimal
transmit power. In addition, we can further find that the opti-
mal transmit power of vehicles under cooperation case is also
obviously lower than that of the noncooperation case. This
can be explained by the fact that the optimal transmit power
of vehicles by using our proposed optimization framework
entirely depends on the maximum transmit power P̄m, time
slot length τ , and discount factor ε.

FIGURE 9. Comparison of total utility of vehicle among M=4 vehicles
between benchmark straight-line and optimized trajectory of UAV during
time horizon T with N=30 time slots, time slot length τ = 0.05s, and UAV
hovering altitude H=50m.

Fig. 9 and Fig. 10 display the comparison of total utility of
individual vehicle between the benchmark UAV trajectories
and the optimized trajectory of UAV during time horizon
T with N=30 time slots, time slot length τ = 0.05s, and
UAV hovering altitudeH=50m. As can be observed, the total
utility of individual vehicle based on the optimized trajectory
of UAV during time horizon T outperforms the total utility of
individual vehicle using the benchmark trajectories. This is
because that our proposed optimization framework can obtain
the optimized trajectory of UAV and the optimized ground-
UAV distance under the condition of the optimal transmit
power of vehicles. However, as for the benchmark UAV
trajectories, although the optimal transmit power of vehicles
has been employed under the noncooperation or the cooper-
ation case, the time varying ground-UAV distance is not the
optimized distance due to the mobility of vehicles. Besides,
the total utility of individual vehicle by using straight-line

FIGURE 10. Comparison of total utility of vehicle among M=4 vehicles
between benchmark semi-circle and optimized trajectory of UAV during
time horizon T with N=30 time slots, time slot length τ = 0.05s, and UAV
hovering altitude H=50m.

trajectory is more than that of semi-circle trajectory during
time horizon T. The explanation is that straight-line trajectory
is located in middle positions between trajectories of vehicle
2/vehicle 4 and trajectories of vehicle 1/vehicle 3. Therefore,
the time varying ground-UAV distance under straight-line tra-
jectory tends to be an average stable distance in comparison
with the complex semi-circle trajectory.

FIGURE 11. Comparison of total utility of system with regard to
M=4 vehicles for two benchmark trajectories and optimized trajectory of
UAV under different UAV hovering altitudes during time horizon T with
N=30 time slots and time slot length τ = 0.05.

In Fig. 11, we look at the performance of the impact of
UAVhovering altitudesH from 20m to 70m on the total utility
of system for two benchmark trajectories and the optimized
trajectory of UAVduring time horizon TwithN=30 time slots
and τ = 0.05s. It can be observed from the figure that the total
utility of system decreases with the increase of UAV hovering
altitude H from 20m to 70m. On the other hand, the total util-
ity of system based on the optimized trajectory of UAVduring
time horizon T outperforms the total utility of system using
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the benchmark trajectories. This result can be interpreted by
the fact that the growth of UAV hovering altitude H will also
increase the ground-UAV distance. Apparently, the increased
UAV hovering altitude H will reduce the total data size of
the offloaded bits by each vehicle. Hence, the total utility of
system cannot be maximized in theory. Consequently, lower
UAV hovering altitude H yields more total utility of system.

V. CONCLUSION
In this paper, we studied the energy-aware optimal resource
allocation problem by maximizing the total utility under the
UAV assisted MEC environment over SIoV. We defined the
popularity factor of the given social content on the basis of the
derived approximate probability distribution of the AE with
regard to the given social content. Moreover, we formulated
the joint optimization framework of the transmit power of
vehicle and the UAV trajectory as the total utility maximiza-
tion problem. To solve this optimization problem, the energy-
aware dynamic power optimization problem was presented,
and the optimal dynamic power allocation of vehicle by con-
sidering noncooperation and cooperation cases was obtained
under the condition of fixed UAV trajectory. Finally, we pro-
posed the search algorithm to find the optimized UAV trajec-
tory with the fixed optimal power according to the acceptable
ground-UAV distance metric and the optimal offloaded data
size by vehicle, and validated the performance of the pro-
posed framework with simulations. What we have discussed
in this paper is the portion of foundation for the optimization
framework to achieve the energy-aware resource allocation in
the UAV assisted MEC environment over SIoV. In addition,
the energy-aware constraint under the proposed framework
is formulated bearing in mind the linear differential equation
which indicates the evolution law of energy consumption
state of vehicle. It is implicitly understood that the usage of
this linear differential equation seems to be ideal in currently
practical applications of SIoV. Thus, our future work will
focus on how to devise and improve the general constraint
equation to describe the energy consumption state of vehicle.

APPENDIX
PROOF OF THEOREM 3
Firstly, we consider the noncooperation case. Under this case,
by substituting p∗m (tn) in (45) and the ground-UAV channel
gain hm (tn) in (3) into the QoS constraint in (47), we have

100.1P0(dBm)−ζ lg
dm(tn)
d0
−3
(
1− τψ

2(1−ε)

)
η0d
−ζ
m (tn)

σ 2 ≥ γ thm

(51)

For simplicity, we use the auxiliary variable℘∗ to represent
1− τψ/2 (1− ε). Thus, we have

σ 2γ thm

100.1P0(dBm)−3η0℘∗
≤ 10−ζ lg

dm(tn)
d0 d−ζm (tn)

= 10−ζ lg dm(tn) × 10ζ lg d0 × d−ζm (tn)

(52)

Rearranging (50), we obtain

σ 2γ thm

100.1P0(dBm)−3+ζ lg d0η0℘∗
≤ 10−ζ lg dm(tn) × d−ζm (tn)

=

(
10lg dm(tn)dm (tn)

)−ζ
(53)

After taking 10lg dm(tn) = dm (tn) into account, we have:(
d2m (tn)

)ζ
≤

100.1P0(dBm)−3+ζ lg d0η0℘∗

σ 2γ thm
(54)

As a result, it can readily be shown that

dm (tn) ≤

√√√√(100.1P0(dBm)−3+ζ lg d0η0℘∗
σ 2γ thm

) 1
ζ

=

√√√√(100.1P0(dBm)−3+ζ lg d0η0
σ 2γ thm

(
1−

τψ

2 (1− ε)

)) 1
ζ

(55)

Now, the theorem is proved for the noncooperation case
that the optimal dynamic ground-UAV distance should satisfy
the upper bound constraint as given in (55). Hereinafter,
we consider the cooperation case when the auxiliary variable
is given by ℘∗ = 1 − τMψ/2 (1− ε). Similar to the proof
of upper bound under the noncooperation case, we can repeat
the above argument and show that

dm (tn) ≤

√√√√(100.1P0(dBm)−3+ζ lg d0η0
σ 2γ thm

(
1−

τMψ
2 (1− ε)

)) 1
ζ

(56)

To summarize, by combining (55) and (56), we claim
that the optimal dynamic ground-UAV distance d∗m (tn) must
follow the upper bound constraint given in (48), which com-
pletes the proof of Theorem 3.
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