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ABSTRACT We proposed a 3-D protein structure using a simple and connected graph, where nodes indicate
amino acids and edges represent contact distances between amino acids. Based on these graph structures,
we present a graphmining algorithm to determine the crucial subgraphs in these graphs, which can be applied
to classify protein structural families. The proposed algorithmwas comparedwith BLAST, BLAT, andDALI.
Moreover, an experiment was conducted, in which characteristic sub-structural patterns were found in several
protein families within the Protein Data Bank.

INDEX TERMS B-factor, bioinformatic algorithms, protein classifications, protein specific residue sub-
graph mining.

I. INTRODUCTION
In biology, graphs are commonly used to describe chemical
compounds [14], [22] and protein sequences. Moreover, they
can be applied for identifying residue packing patterns from
protein structures [15], [40], protein networks [35], and
functional sites in proteins [1], [4], [5], as well as multiple
sequence alignment algorithms of proteins with analogous
structures [10]. Graphs can also be used to provide informa-
tion about possible collaborative substructures in which con-
served sequence patterns in a group of homologous proteins
may have similar 3D arrangements.

In general, an algorithmic approach for mining frequent
subgraphs entails finding all connected subgraphs that appear
frequently in a large graph database. Several algorithms
are available for this problem, including the SUBDUE
algorithm [11], fast frequent subgraph mining algorithm
[14]–[16], [40], graph-based substructure pattern mining
algorithm [41], frequent subgraph discovery algorithm [20],
and graph/sequence/tree extraction algorithm [27], [28].
However, many scientific and commercial applications may
require locating frequent subgraphs in complex graph data
sets with numerous vertices and edges, which is highly time
consuming.

Although sequence alignment is associated with efficient
computation time in protein classification, its accuracy can be

further improved. In the current study, data mining and graph
theory approaches were used for protein family classification
on the basis of specific motif sequences from [21], [23], [24],
[31], and [32]. A recurring structural motif is an important
characteristic of protein structural series that are composed
of amino acids (residues) in proteins. A mining enumeration
algorithm was applied to the test protein to find the mark pat-
tern subgraph, which is useful for classification. Therefore,
recurring structural motifs within protein structures are cru-
cial for several applications such as the prediction of pro-
tein functions, analysis of active sites, and classification of
protein families. Recent studies have discovered millions of
such motifs [26], [44]. In Fig. 1, rectangular boxes indicate
Bcl-2 homolgy ‘‘BH’’ regions present in Bcl-xL. However,
the process of locating structural motifs remains impeded
by computational difficulties induced by the increasing com-
plexity of protein structures. Hence, the current study applied
the protein graph mining approach to identify the recurring
structural motifs. This process can considerably reduce the
time requirements.

When graphs are used to represent protein three-
dimensional structures [34], the recurring protein structure
motifs can be efficiently found using a frequent subgraph
mining algorithm. Graph nodes represent the 20 types of
amino acids, and edges are generated according to a threshold
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FIGURE 1. In the aligned sequences, black boxes represent strictly conserved residues, and gray boxes highlight conservative
substitutions [31].

regarding to the contact distance between each pair of amino
acids. For protein graph conformation, we used a particu-
lar value, called the ‘‘B-factor,’’ to considerably reduce the
search space and to ensure that we used stable atomic coor-
dinates of the amino acids.

The remainder of this paper is organized as follows:
Section II surveys some related studies. Section III gives
definitions and notations. Section IV proposes algorithms and
data structures for subgraph mining. Section V shows the per-
formance of the proposed algorithm using data sets. Finally,
we conclude this paper with some remarks in Section VI.

II. RELATED WORKS
There are two types of subgraph mining algorithms.
Algorithms of the first type utilize a level-wise search includ-
ing Apriori to enumerate the recurring subgraphs [17]. More-
over, AGM [17] and FSG [20] are typical algorithms for
mining graphs. Algorithms of the second type utilize a depth-
first search (DFS) for identifying candidate frequent sub-
graphs [19]. Some examples of representative algorithms
are graph-based substructure pattern (gSpan), GASTON, and
FFSM. Krishna et al. [19] conducted a comparative survey
of algorithms for frequent subgraph discovery, focusing on
the classification of frequent subgraph discovery algorithms
according to three factors: ‘‘search strategy,’’ ‘‘nature of
input,’’ and ‘‘completeness of output.’’ The performance of
each algorithm on three benchmark data sets was evaluated by
comparing execution time and the number of frequent graphs.
SUBDUE was proposed by Holder et al. [11] and is the earli-
est algorithm to be based on a greedy approach. Nevertheless,
it cannot produce a complete set of frequent subgraphs.

A. BFS STRATEGY
The AGM algorithm was proposed by Inokuchi et al. [17],
and can efficiently find all the frequent induced subgraphs
in a large database. The meaning of the induced subgraph is
that if there is an induced subgraphH of graphG, the vertices
V (H ) ⊆ V (G) contain all edges of G connecting vertices in
V (H ). If two vertices appear both in graph H and graph G,
it is obvious that the connected edge between two vertices will

certainly appear in graph G and graph H . Graphs are repre-
sented by the ‘‘adjacency matrix’’ and searching is performed
using a level-wise strategy. BFS is the first algorithm based
on the principle of the Apriori algorithm.

The other algorithm, called FSG, was proposed by
Kuramochi and Karypis [20]. Its purpose is to identify all
frequent connected subgraphs in a database. The greatest
difference between AGM and FSG lies in the extension of
mining subgraphs. AGM extends subgraphs by adding one
vertex at each level. By contrast, FSG extends subgraphs by
adding one edge at each level.

B. DFS STRATEGY
The gSpan algorithm was proposed by Yan and Han [41]
in 2002. The motivation was to solve the shortcomings of
the Apriori algorithm such as those related to candidate
generation and the graph isomorphism problem in calcu-
lating the frequency of a graph. These are the major com-
putational costs of frequent subgraph mining. The gSpan
algorithm is the first algorithm that uses DFS and applies a
canonical labeling system to avoid redundant computation.
Nijssen and Kok [27], [28] developed the GASTON algo-
rithm, which extracts the frequent paths, non cyclic trees, and
cyclic graphs. The GASTON algorithm utilizes an ‘‘embed-
ding list’’ to store all graph information. According to the
different types of graph, GASTON split up the search process
into different stages in order to reduce the running times,
especially for large databases. Huan et al. [14]–[16] and
Williams et al. [40] developed the FFSM algorithm for find-
ing all frequent connected subgraphs in a graph database.

III. PRELIMINARIES
A. GRAPH THEORY
For definitions and notations of graphs, please refer to [39].

B. PROTEIN STRUCTURE CHARACTERISTICS
1) LEVELS OF PROTEIN STRUCTURE
There are four levels of protein structure, as shown in Fig. 2.
In primary structures, proteins are constituted of and linked
together by staggered amino acids. Approximately 20 types
of amino acid occur naturally. Fig. 3 shows the relation
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FIGURE 2. Four levels of protein structure.

FIGURE 3. Primary structure of protein. (a) Amino acid structure with four
groups: C atom, −NH2 representing an amino group, −COOH
representing an acid group, and R representing a side chain. (b) Primary
protein structure: a chain of amino acids.

between amino acids and protein structure. The simplest
amino acid structure is composed of four groups as illus-
trated in Fig. 3(a): (a) Central carbon atom (C atom),
(b) amino group (−NH2), (c) acid group (−COOH), and
(d) R group(side chain). The secondary structure comprises
areas of folding or coiling within a protein such as alpha
helices and beta sheets, which are stabilized by hydrogen
bonding. The tertiary structure comprises the packing of
random coils, alpha helices, and beta sheets, regarding to
each other on the level of one complete polypeptide chain.
The quaternary structure exists only when more than one
polypeptide chain appear in a complex protein.

2) PDB
The PDB archive can be viewed as a repository of atomic
coordinates and other information illustrating proteins and
some other crucial biological macromolecules. Structural
biologists utilize approaches including nanomagnetic res-
onance (NMR) spectroscopy and X-ray crystallography to
identify the locations of atoms within the molecules. The
content of a PDB file is shown in Table 1. In this file, vital
information regarding amino acid residues, such as coordi-
nates and B-factors, can be obtained. The B-factor describes
the displacement of the atomic positions from an average
value. In other words, if the atom has a higher B-factor
value, it has a high mobility. B-factors are typically between
15 and 30, but are often high than 30 formore flexible regions.

IV. PROPOSED ALGORITHM
This section outlines the framework of the proposed method
for identifying characteristic patterns of subgraphs in a test

TABLE 1. Atomic coordinates of each amino acid in a PDB file from the
PDB [30].

protein graph database, including the enumeration of protein
graphs and their representation by using proper data struc-
tures. We then present an algorithm for classifying the test
proteins to determine whether they belong to a characteristic
sub structural pattern family.

A. CREATING PROTEIN GRAPHS
In this study, we used graphs to represent protein structures.
The vertices of each graph represent the amino acids so that
there are 20 labels. Due to the fact that the protein back-
bone determines the whole protein conformation, we use the
central carbon atom (Cα atom) to represent the amino acids.
To reduce computational complexity, the coordinate frame-
works are generated barely from the amino acids instead of
from all the atoms.

Two amino acids are connected by a ‘‘bond edge’’ in the
primary sequence, if they are consecutive. To construct the
three-dimensional structure of the protein, the ‘‘proximity
edge’’ is used to represent the graph edge.
Definition 1 (Proximity Edge): If the distance between the

two associated C atoms is less than or equal to the threshold
in a protein graph with n C atoms, where D(i, j) for 1 ≤ i,
j ≤ n is the distance between two atomic coordinates
i and j, then there exists a proximity edge between i and j and
D(i, j) ≡ D(j, i). The threshold (set by experiment) is inserted
only if the distance does not exceed 12Å [38].

There are several applications using displacement param-
eters (B-factor) [29], [43] (e.g., predicting protein flexibil-
ity prediction, protein thermal stability, and active sites and
protein structures analysis [33], [43]). B-factors indicate how
accurate a localized part of a structure is. The proposed
algorithm sets a threshold µ between 0 and 10 on the central
C atom in each amino acid. A C atomwith a largeµ is pruned
and not considered (Fig. 4).

B. REPRESENTING A PROTEIN GRAPH BY
AN ADJACENCY MATRIX
Each protein graph is assumed to be represented by an
adjacency matrix.
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FIGURE 4. (a) Graph G with completed nodes and edges. The B-factor
values of the black nodes are larger than the threshold µ. (b) Resulting
graph after pruning the nodes.

Definition 2 (Adjacency Matrix): A adjacency matrix M
of a graph G with n vertices is an n × n triangle matrix in
which mi,j represents the entry of the ith row and jth column
inM . In addition, the entrymi,i, 1 ≤ i ≤ n, indicates the label
of a vertex in G, and each entry mi,j, 0 < j ≤ i ≤ n, is 1 if
and only if there exists an edge between verticesmi,i andmj,j,
and is 0 if no edge exists between mi,i and mj,j. Moreover,
code(M ) is a string that representsM in a row-major manner.

FIGURE 5. Example of a test protein graph G and its adjacency matrix M,
where code(M)=a1b111b2011b3.

As shown in Fig. 5, the algorithm sorts all the amino acids
by using (1) one-letter codes (the label of a node in G), and
(2) the B-factor value of the node. For example, if there are
four nodes a, b1, b2, b3 and the B-factor value of the nodes is
(10.0, 12.0, 12.5, 13.0) respectively, then the ordering of the
four nodes is (a, b1, b2, b3).

C. CANONICAL ADJACENCY MATRIX TREE
In the proposed method, a test protein graph G is constructed
based on a data structure called the canonical adjacency
matrix (CAM), and then the desired subgraphs are enumer-
ated step by step. If some tag family pattern is matched by an
enumerated subgraph, G is assigned to the marked patterns.
The definition of a CAMs is as follows:

1) Each vertex is different from others.
2) A unique empty matrix represents the root.
3) Labeled vertices comprise Level 1 of the tree. Each

labeled vertex is a child of the root.
4) Vertices in level 2 are generated from those vertices in

level 1 by creating one adjacent vertex to each of them.

5) After generating the vertices of level 2, the CAM
Tree-Extension Case algorithm and the CAMTree-Join
Case algorithm are applied to enumerate the desired
subgraphs until the matrix of G can be formalized.

1) CASES FOR CAM-TREE-JOIN
The CAM-tree-join operation ‘‘superimposes’’ two graphs
to generate a new candidate graph. The CAM-tree-join may
produce one or two candidate graphs. Initially, two types of
matrix must be defined, namely (1) the inner matrix, and
(2) the outer matrix. An ‘‘inner’’ matrix is an adjacency
matrix A for graph G if the last row of A contains at least two
edge entries (two entries containing 1). Otherwise, if the last
row of A contains only one edge entry, then A is an ‘‘outer’’
matrix. For two adjacency matricesm×mmatrix A and n×n
matrix B, let am,f denote the last edge of A and bn,k denote
the last edge of B. Join(A,B) can be obtained by executing
the following two algorithms.

Algorithm 1 CAM_TREE_JOIN_CASE_1
Input: Two outer matrixes m× m matrix A and n× n

matrix B, where the last edge of A is am,f and the
last edge of B is bn,k .

Output: A CAM C .
1 if (m = n) ∧ (f 6= k) ∧ (am,m = bn,n) then
2 /* Case 1a */
3 C is an m× m matrix, in which
4 ci,j = ai,j ∨ bi,j
5 Join(A,B) = {C}

6 if (m = n) ∧ (am,m 6= bn,n) then
7 /* Case 1b */
8 D is an (n+ 1)× (n+ 1) matrix, in which
9

di,j =


ai,j, 0 < i, j ≤ m,
bn,j, i = n+ 1, 0 < j < n,
0, i = n+ 1, j = n,
bn,n, i = n+ 1, j = n+ 1.

(1)

Join(A,B) = {D}

According to Algorithm 1, two outer matricesm×mmatrix
A and n×nmatrix B can be joined to obtain a matrix with the
same size n×n ( by Case 1a). Similarly, an (m+1)× (m+1)
matrix can also be obtained (case 1b). Algorithm 1 compares
all the diagonal entries of the two matrices n times and
fills the elements of new matrix runs n2+n

2 times. Joining
an ‘‘inner’’ matrix and an ‘‘outer’’ matrix can generate the
resulting matrix by executing Algorithm 2. It compares all
the diagonal entries of the two matrices n + 1 times and

fills the elements of the new matrix runs
n2 + 3n+ 1

2
times;

thus, the time complexity of the Join Operation is 2(n2).
Figs. 6 and 7 illustrate Algorithms 1 and 2.

VOLUME 6, 2018 55831



S.-Y. Hsieh et al.: Classifying Protein Specific Residue Structures Based on Graph Mining

FIGURE 6. Example of Algorithm 1 CAM_TREE_JOIN_CASE_1 operation:
(a) Case 1a, and (b) Case 1b.

FIGURE 7. Example of Algorithm 2 CAM_TREE_JOIN_CASE_2 operation:
(a) Case 2a, and (b) Case 2b.

2) CAM-TREE-EXTENSION
An additional technique for enumeration is the extension
operation executed by Algorithm 3. From a graph Gk with
k edges, it generates a candidate graph Gk+1 with (k + 1)
edges.

This algorithm extends the graph Gorigin by adding the
node u, which is adjacent to v, where v ∈ Gorigin. Therefore,

the algorithm fills the elements
n2 + 3n+ 1

2
times; thus,

the extension operation has complexity 2(n2). Fig. 8 indi-
cates how Algorithm 3 operates. If b3 is adjacent to a, b1, and
b2, all of them can use the EXTENSION operation to generate
a new candidate graph.

Algorithm 2 CAM_TREE_JOIN_CASE_2
Input: Inner matrix m× m matrix A, and a outer matrix

n× n matrix B, where the last edge of A is am,f
and the last edge of B is bn,k .

Output: A CAM C .
1 if (m < n) then
2 /* Case 2a */
3 C is an n× n matrix, where
4

ci,j =

{
ai,j ∨ bi,j, 0 < i, j ≤ m,
bi,j, otherwise.

(2)

Join(A,B) = {C}
5 if (m = n) ∧ (f 6= k) then
6 /* Case 2b */
7 D is an n× n matrix, where
8 ci,j = ai,j ∨ bi,j
9 Join(A,B) = {D}

Algorithm 3 CAM_TREE_EXTENSION
Input: An outer matrix A(n× n) and a protein test graph

G = (V ,E),
Output: A set of (n+ 1)× (n+ 1) adjacency matrices B.

1 S ← ∅
2 for each edge (u, v) ∈ E with (u ∈ (V \ A)) ∧ (v ∈ A) do
3

bi,j =


ai,j, 0 < i, j ≤ m, i 6= n or j 6= k,
bi,j, i = n+ 1, 0 < j < n,
1, i = n+ 1, j = n,
u, i = n+ 1, j = n+ 1.

(3)

S ← S
⋃
{B}

FIGURE 8. Example of Algorithm 3 CAM_TREE_EXTENSION operation.

D. CLASSIFICATION OF A PROTEIN FAMILY
Fig. 9 illustrates the classification procedure using
Algorithm 4. If the candidate graph is isomorphic to the
subgraph of the test protein graph, then the procedure
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FIGURE 9. CAM tree for the test protein graph G. (a) Example of a CAM
tree where the candidate subgraph can be identified in graph G.
(b) Example of a CAM Tree where the candidate subgraph cannot be
identified in graph G.

Algorithm 4 CLASSIFICATION_OF_PROTEIN
Input: G is the test protein graph; P is the conserved

sequence represented by a graph.
Output: Whether a candidate subgraph belongs to

subgraphs of the test protein graph.
1 X ← ∅ /* X is mining test protein

subgraph so far */
2 while X is a subgraph of G do
3 X ← CAM_TREE_JOIN_CASE
4 X ← CAM_TREE_EXTENSION
5 if X is isomorphic to P then
6 X belongs to the characteristic substructural

family
7 break

8 else
9 X does not belong to the characteristic

substructural family

is terminated; otherwise, it enumerates all of the subgraphs of
the protein graph. In other words, the structure of candidate
graph will affect the execution time for classification.

TABLE 2. Tested data sets.

TABLE 3. Different proximity edge lengths for Bcl-xl protein.

FIGURE 10. Experimental design flow chart.

V. EXPERIMENTAL RESULT
A. IMPLEMENTATION AND TEST PLATFORM
The proposed algorithm is compared with the fol-
lowing methods, BLAST [2],1 BLAST-like alignment

1BLAST is used to find regions of local similarity between sequences.
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FIGURE 11. Average execution time of four algorithms for each protein family when B-factor = 50 and threshold = 10.

FIGURE 12. Average accuracy of four algorithms for each protein family when B-factor=50 and threshold = 10.

tool (BLAT) [18],2 distance alignment (DALI) [12], and
ProtNN [7].3

The data sets used for this experiment are transformed
into a format that is accepted by these computer pro-
grams. In the experiment, we selected ten data sets from
the PDB (Table 2), and we tested compressive BLAST,
BLAT, DALI, and ProtNN on a real-world identical pro-
tein data set from the protein data bank. Experimental
environment was a 2.67 GHz PC with 8 GB of memory.
We used the C++ programming language to implement
the proposed algorithm. The source codes of the BLAST,
BLAT, DALI, and ProtNN were downloaded at http://
www.ncbi.nlm.nih.gov/, http://genome.ucsc.edu/, http://
ekhidna.biocenter.helsinki.fi/dali_lite/downloads/v3/index_
html, and https://sites.google.com/site/wajdidhifli/softwares/
protnn, respectively.

Table 3 shows the execution time and classification
accuracy for various proximity lengths. For the distances
10 Å and 15 Å, each vertex and edge could be displayed on
the graph. When the distance threshold grows, the execution

2This tool is a pairwise sequence alignment algorithm that was developed
by Jim Kent at the University of California Santa Cruz (UCSC) in the early
2000s to help in the assembly and annotation of the human genome.

3ProtNN is a classification approach for protein 3D-structures that was
developed by Wajdi Dhifli and Abdoulayé Diallo in 2016.

time rapidly increases because the extra vertices and edges
of each graph added. Moreover, due to the fact that the
distinct B-factor also affects the executing time and accuracy
of classification, we selected 40 and 50 [6] as the B-factors,
as shown in Table 4.

TABLE 4. Different B-factors for Bcl-xl protein.

B. ACCURACY OF CLASSIFICATION OF EACH
PROTEIN FAMILY
A flowchart of the experimental design is shown in Fig. 10.
The proposed classification was compared with BLAST,
BLAT, DALI, and ProtNN. The alignment results generated
an e-value. On the basis of the e-value=1− e−10 (e=2.718),
we evaluated the classification results. In the first experiment,
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FIGURE 13. Accuracy and execution time of four algorithms for each protein family when B-factor = 60 and threshold = 15.

FIGURE 14. Accuracy and execution time of four algorithms for each protein family when B-factor = 60 and threshold = 15.

TABLE 5. Average execution time for classifying protein when B-factor =
50 and threshold = 10.

TABLE 6. Average accuracy for classifying protein when B-factor =
50 and threshold = 10.

we set the value of the B-factor and threshold at 50 and 10,
respectively. Table 5 and Fig. 11 present the execution time
on the mining graph. Table 6 and Fig. 12 present the accuracy
of classification of each protein family. Because BLAST and

BLAT use sequence searching to identify specific patterns,
the proposed algorithm uses graph mining to solve this prob-
lem. Although the execution time is higher, the accuracy of
the proposed algorithm is higher than those of BLAST and
BLAT.

Compared with ProtNN, the accuracy of some protein fam-
ilies is higher than proposed algorithm. However, if ProtNN
cannot classify the protein family correctly, ProtNN requires
extensive execution time. In the proposed algorithm, the exe-
cution time does not increase even if the proposed algorithm
classified the protein family error.

The results are illustrated in Fig. 11 and Fig. 12.
However, the performance was dissatisfactory for some data
sets. Consequently, we increased the value of the B-factor and
threshold to 60 and 15, respectively, for an additional exper-
iment, as shown in Tables 7 and 8, and in Figs. 13 and 14.

In the additional experiment, we created artificial data sets
to test various numbers of nodes. Fig. 15 demonstrates that
the proposed algorithm can be applied to protein graphs with
large numbers of nodes.4 The experimental results also imply
that the proposedmethod can be applied to efficiently classify
protein structures.

4In general, the number of nodes of the candidate subgraph is between
10 and 15.

VOLUME 6, 2018 55835



S.-Y. Hsieh et al.: Classifying Protein Specific Residue Structures Based on Graph Mining

TABLE 7. Average execution time for classifying protein when B-factor =
60 and threshold = 15.

TABLE 8. Average accuracy for classifying protein when B-factor =
60 and threshold = 15.

FIGURE 15. Number of nodes versus execution time.

VI. CONCLUSION
In this paper, a graph mining algorithm for classifying protein
families was proposed. The proposed algorithm retains high
accuracy and efficient execution time. Moreover, with the
aids of using proximity edge length and adopting the thresh-
old of B-factors, the proposed algorithm can substantially
reduce the searching space. The experimental results demon-
strate that our method can be efficiently applied to classify
protein structures.
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