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ABSTRACT Conventional space–time adaptive processing (STAP) technique can achieve perfect perfor-
mancewhen applied to side-looking airborne radar (SLAR), where the clutter is relatively stationary, whereas
it suffers significant degradation for non-SLAR due to severe range dependence, especially when range
ambiguity is present. In theory, the range-dependent clutter is mainly located at the near range and can
be eliminated via elevation non-adaptive or adaptive beamforming. However, the pure near-range clutter
portion utilized for calculating elevation adaptive weights cannot be obtained due to range ambiguity in
practice. In this paper, a novel method to adaptive extract the near-range clutter via sparsity-based technique
is presented and the non-stationary clutter potion can be effectively eliminated by elevation adaptive
beamforming.With this technique, the residual clutter becomes stationary, and thus, the corresponding STAP
performance will be significantly improved.

INDEX TERMS Space-time adaptive processing (STAP), non-stationary clutter, sparse recovery (SR),
clutter suppression, elevation adaptive beamforming.

I. INTRODUCTION
As is well known, clutter Doppler does not vary with range
for side-looking airborne radar (SLAR) and therefore con-
ventional space-time adaptive processing (STAP) technique
can work well [1], [2]. However, the frequently encoun-
tered case in practice is non-SLAR, which can scan all the
interesting directions. For non-SLAR, the Doppler of clutter
echoes vary with range [3], and the independent and identical
distributed (IID) condition of training samples cannot be
satisfied. As a result, conventional STAP suffers dramatic per-
formance degradation. Strictly speaking, the range-dependent
clutter, i.e., non-stationary clutter, mainly locates at the near
range, and hence the clutter at other ranges is approximately
range-independent or stationary [3]. For low pulse-repetition
frequency (LPRF) radar, the radar returns from near range can
be directly rejected because the near-range targets are usually
not interested ones. However, the airborne radar often works
at mediumPRF (MPRF) of high PRF (HPRF), so echoes from
far range (nearly equivalent to the ambiguous range) fold
over the near-range, i.e., unambiguous-range, returns, that is
to say, range ambiguity often occurs. This effect may cause

low Doppler targets to compete with near-range strong non-
stationary clutter.

To solve the problem of clutter range dependence, many
compensation algorithms have been proposed. Parametric
methods such as the Doppler warping [4], angle Doppler
compensation [5], and adaptive angle Doppler compensa-
tion [6] are only effective for range unambiguous case [2].
When there is range ambiguity, they cannot make the clut-
ter across ambiguous ranges coincide simultaneously. Non-
parametric methods such as the derivative-based updating [7],
prediction of the inverse clutter covariance matrix (CCM) [8],
and Taylor series expansion-based eigen-canceller [9] are
applicable to range ambiguous cases. But their clutter sup-
pression performance is sensitive to the accuracy of non-
parametric models, which are unknown in practice.

In fact, the near-range clutter returns are mainly from
the elevation sidelobe of array antenna [10]. Thus several
elevation beamforming methods are proposed to mitigate
the effect of non-stationary clutter. In principle, the three-
dimensional (3D) STAP can effectively cancel the near-
range clutter [10], [11]. Unfortunately, it is difficult to obtain
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enough IID training samples and requires huge computation
load because of its large system degree of freedom (DOF).
Subarray synthesis algorithm with non-adaptive pre-filtering
in elevation also help to mitigate the effect of near-range clut-
ter [12]. However, its performance depends on the accuracy
of prior knowledge, such as elevation angle of the range cell
under test (RCUT). Once the prior information is not given
accurately, especially for non-flat terrain, it will lead to severe
performance loss [12]. To overcome this problem, an adap-
tive pre-filtering in elevation for non-stationary clutter sup-
pression is proposed in [13]. Nevertheless, its performance
improvement is limited since only two systemDOFs, i.e., sum
and difference beams in elevation, are available for adaptive
beamforming. Obviously, the non-stationary clutter exhibits
a dependence on elevation angle-of-arrival, especially at near
range, and the elevation elements on a planar array can be
used to distinguish the echoes from different ranges.

As pointed out above, the near-range clutter mixed with
the ambiguous far-range clutter at MPRF or HPRF mode
for airborne radar. For adaptive pre-filter approaches, signal
cancellation will be occurred if the training samples used
for CCM estimation in elevation consists of the far-range
clutter. Thus the key of elevation adaptive beamforming for
non-stationary clutter suppression is to extract the pure near-
clutter portion from the superposition of different ambiguous
clutter. Furthermore, high convergence speed is also needed
to avoid wider adaptive notch and potentially insufficient
clutter suppression in elevation.

Fortunately, we found that the near-range clutter and other
ambiguous clutter are from different and finite elevation
angles, which means that the clutter spectrum in elevation
spatial domain is sparse. Consequently, we can distinguish
and abstract the near-clutter potion form clutter returns via
classical sparse recovery (SR) technique [14]–[16]. On this
basis, we further put forward a novel sparsity-based adaptive
beamforming approach to mitigate the near-range clutter.
After that, the residual clutter should be stationary and thus
suboptimal performance of STAP can be obtained. Further-
more, to improve the convergence speed of above adaptive
beamforming, pulses in a coherent processing interval (CPI)
are all utilized as multiple measurement data to recover the
location and power of near clutter sources and thus no train-
ing samples of adjacent range cells are needed. Compared
with existing pre-filter algorithms [12], [13], the advantages
of the proposed approach include: (i) independent on any
prior knowledge and thus robust in practical clutter envi-
ronment. (ii) sufficient elevation spatial DOFs are utilized
and much deeper and narrower near-range clutter notch
can be obtained. (iii) higher convergence speed for adap-
tive beamforming is achieved and wider adaptive notch is
avoided.

The paper is organized as follows. In Section II, the charac-
teristics of non-stationary clutter of non-SLAR are analyzed.
Section III introduces the principle the proposed method
in detail. Simulation results are shown in Section IV, and
Section V summarizes the conclusion.

II. CHARACTERISTICS OF NON-STATIONARY CLUTTER
In this section, the range dependence of clutter for non-SLAR
is discussed in detail. Consider a pulse Doppler airborne radar
with a uniform planar array consisting of M and N elements
in elevation and azimuth respectively, as shown in Fig. 1. The
interval between two elements is equal to half wavelength.
The x-axis is aligned with the normal of the array antenna,
and the z-axis points vertically up. The counterclockwise
angle between the flight direction and y-axis is θa; when
θa = −90◦, the array antenna is a forward-looking array. The
angles θ , ϕ and ψ denote the azimuth angle, elevation angle
and cone angle, respectively. The platform is at altitudeH and
moving with constant velocity v. Rc denotes the slant range
from the clutter patch to array antenna. Assume that a CPI
contains K pulses.

FIGURE 1. Airborne radar geometry with a uniform planar array.

According to Fig. 1, the relationship between the spatial
frequency (i.e., cosine of cone angles) and clutter Doppler
frequency can be described as the following well-known
formula [3]

fd =
2v
λ

cos (θ + θa) cosϕ

=
2v
λ

cosψ cos θa − sin θa

√
1−

(
H
Rc

)2

− cos2ψ


(1)

where λ denotes radar wavelength. When θa 6= 0, i.e., the
array is mounted as a non-SLAR, the clutter Doppler varies
with the slant range, and thus clutter is non-stationary. Obvi-
ously, it appears most severe especially for the forward-
looking airborne radar (FLAR). Thus the FLAR is taken in
this paper as a typical non-SLAR to discuss non-stationary
clutter characteristics and evaluate the performance of
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TABLE 1. Radar system parameters.

FIGURE 2. Range-Doppler trace for mainlobe clutter.

the proposed method. The system parameters are shown
in Table 1.

The relationship between fd of the mainlobe clutter and Rc,
which is obtained by (1), is depicted in Fig. 2. For simplicity,
only the first three ambiguous range are shown. The pink line
in Fig. 2 describes the range-Doppler trace ofmainlobe clutter
corresponding to the unambiguous range which is dependent
on PRF. The other lines denote the range-Doppler trace of
mainlobe clutter related to each ambiguous range, respec-
tively. Two points can be obtained from Fig. 2: (i) the range
dependence of clutter mainly occurs at unambiguous range
(i.e., the near-range region), and it decreases with range;
(ii) the range dependence becomes very slight at ambiguous
range, whichmeans the clutter at other ranges (except for near
range) is approximately stationary.

Since clutter returns of a certain range cell include clutter
contribution, from near range and far range (due to range
ambiguity), the clutter spectrum corresponding to the range
cell should be a superposition of different clutter traces.
On one hand, the IID training samples are not enough so that
significant performance degradation will occurs. On the other
hand, two clutter notch will be formed when conventional
STAP is adopted; the first notch is the one due to primary
clutter at near range; the second notch is due to multiple

returns which come from farther distances. The extra clutter
notch will bring up a lot of range blind zones [2], [3].

III. DESCRIPTION OF THE PROPOSED METHOD
A. REVIEW OF ELEVATION ADAPTIVE BEAMFORMING
Multiple clutter returns occur if there is range ambiguity.
In this case the clutter echo of a certain range cell includes
clutter contributions from other ranges. Thus, the clutter echo
xse ∈ CM for one column of array and one pulse correspond-
ing to the RCUT can be denoted by [2]

xse =
P∑
p=0

Q∑
q=1

ζp,qsse
(
fse,p

)
=

P∑
p=0

xse,p (2)

where P denotes the maximum number of range ambiguities,
Q denotes the number of clutter patches within an ambiguous
range ring, ζ denotes the complex amplitude of the clutter
patch, fse,0 = sinϕ0 denotes the normalized elevation spatial
frequency of the unambiguous clutter, fse,p = sinϕp (p =
1, · · · ,P) denotes the normalized elevation spatial frequency
of the pth ambiguous clutter, xse,0 denotes the unambiguous
clutter data in xse, xse,p (p = 1, · · · ,P) denotes the pth
ambiguous clutter data in xse, sse denotes the elevation spatial
steering vectors and is defined as follows

sse
(
fse,p

)
=
[
1, exp

(
jπ fse,p

)
, · · · , exp

(
jπ (M − 1) fse,p

)]T
(3)

where [·]T denotes the operation of transposition.
Since the clutter contributions from different range can be

assumed to be independent [2], the corresponding CCM of
xse can be written as

Rse = E
{
xsexHse

}
=

P∑
p=0

E
{
xse,pxHse,p

}

=

P∑
p=0

Rse,p (4)

where E [·] denotes the operation of statistical expectation,
[·]H denotes the operation of conjugate transposition,Rse,0 =

E
{
xse,0xHse,0

}
and Rse,p = E

{
xse,pxHse,p

}
(p = 1, · · · ,P)

denote the elevation CCM of unambiguous clutter and the pth
range ambiguous clutter, respectively.

Obviously, if Rse,0 is accurately known, we can design a
weight vector wse to cancel the near-range clutter

ŵse = argmin
wse

wH
seRse,0wse, s.t. wH

sesse
(
fse,t

)
= 1 (5)

where fse,t = sinϕt denotes the normalized elevation spa-
tial frequency corresponding to the direction of target. The
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weight vector is solved as

ŵse =
R−1se,0sse

(
fse,t

)
sHse
(
fse,t

)
R−1se,0sse

(
fse,t

) (6)

Then the output of adaptive beamforming for each column
of array can be obtained through multiplying each column
data xse by the conjugate transposition of ŵse.

Unfortunately, the near-range clutter is mixed with far-
range clutter because of the range ambiguity, and Rse,0 is
difficult to be estimated by training samples. To solve this
problem, in [13] the first received pulse is utilized, which is
often discarded for coherently processing, to directly obtain
the near-range clutter. However, most airborne radars work at
multiple PRFs to solve the range ambiguity problem, thus the
first received pulse of the current PRF is easily contaminated
by the last received pulse of the front PRF.

B. EXTRACTION OF NEAR-RANGE CLUTTER VIA SR
As pointed out above, the primary and key problem to mit-
igate the non-stationary clutter is to extract the near-range
clutter from the mixed clutter returns. Fortunately, the near-
range clutter and other ambiguous clutter each individually
enter into the received array antenna from a few different
elevation angles, therefore the clutter spectrum in elevation
spatial domain is very sparse. Recently, SR techniques have
been successfully used to estimate the high-resolution spa-
tial spectrum [17] or space-time clutter spectrum [18]–[26]
with a very small number of training samples. In this paper,
we exploit the sparsity of spectral distribution in elevation to
estimate the location and power of the near-clutter. In other
words, the near-clutter portion can be extracted via SR and
then mitigated by adaptive beamforming in elevation spatial
domain. The corresponding SR problem can be formulated as
following optimization problem:

âse = argmin
ase
‖ase‖0, s.t. xse = 8sease (7)

where ‖�‖0 measures the number of nonzero elements in
a vector, ase =

[
ase,1, ase,2, · · · , ase,Ms

]T
∈ RMs×1 are

the sparse coefficients with non-zero elements represent-
ing the unambiguous clutter. Ms = ρsM (ρs > 1) is the
number for discretizing the elevation spatial frequency fse.
ρs is the resolution scale along the elevation angle, and
usually set to be 4, 5 or 6 as a rule-of-thumb [18]–[26].
8se ∈ CM×Ms is the overcomplete dictionary composed
of elevation spatial steering vectors, given by 8se =[
sse
(
fse,1

)
, sse

(
fse,2

)
, · · · , sse

(
fse,Ms

)]
.

Equation (7) is just the canonical signal form of the SR
problem, which can be interpreted as estimating a sparse
vector ase (i.e., as few non-zero elements as possible) from
the single measurement data xse. Theoretically, once the ele-
vation spatial frequency, fse, is limited to the scope from -
1 to sinϕu, the near-range clutter portion can be recovered
accurately by solving (7) [14]–[16]. sinϕu is the sine of
elevation angle corresponding to the max unambiguous range

Ru and can be calculated in advance by

sinϕu = −
H
Ru
= −

2frH
c

(8)

where c denotes the speed of light. Consider only a few
elevation elements are available in practice, we further reduce
the scope of fse to guarantee the accuracy of SR. In this
paper, the scope of that is set to be 2α (0 < α < 0.5) which
is dependent on the number of elevation elements. The set of
α will be further discussed in Section IV. For the RCUT with
the elevation angle ϕ0, we set the scope of fse in the following
manner:[
fse,min, fse,max

]
=


[−1,−1+ 2α] , sinϕ0 < −1+ α

[sinϕ0 − α, sinϕ0 + α] , −1+α≤sinϕ0≤sinϕu−α

[sinϕu − 2α, sinϕu] , sinϕ0 > sinϕu − α
(9)

If the noise is also considered, (7) can be formulated as the
following optimization problem:

âse = argmin
ase
‖ase‖0, s.t. ‖xse −8sease‖22 ≤ ε (10)

where ‖�‖2 denotes the l2 norm and ε is the noise error
allowance.

From (2), we know that the different pulses in one CPI
share the same clutter distribution characteristics. Thus all K
coherent pulses for a certain range cell can be used asmultiple
measurements to improve the accuracy of SR in the presence
of noise. Then (10) can be further formulated as a SR problem
with multiple measurements data

Âse = argmin
Ase
‖Ase‖2,0, s.t. ‖Xse −8seAse‖

2
F ≤ ε (11)

where ‖·‖2,0 denotes a mixed norm defined as the number
of non-zero elements of the vector formed by the l2-norm of
each row-vector, ‖·‖F denotes the Frobenius norm, Ase =[
a(1)se , a

(2)
se · · · , a

(K )
se

]
∈ RMs×K denotes an unknown clutter

source matrix with each row representing a possible near-
clutter clutter potion, Xse =

[
x(1)se , x

(2)
se , · · · , x

(K )
se

]
∈ CM×K

denotes the measurements data of K pulses.
It is well known that the multiple sparse Bayesian learning

(MSBL) algorithm is robust, sparse enough, parameter-blind
and with no local minima in the presence of noise [16].
Furthermore, not only the location of clutter sources but
also accurate clutter power can be recovered via the MSBL.
Therefore, it is applied to solve the problem in (11). Here,
we take the 100th range cell (sinϕ0 = −0.93) as an example;
the results of SRwithM elevation elements is shown in Fig. 3.
Moreover, the parameter α is set to be 0.1 here. As can be
seen in Fig. 3, the location and power of near-range clutter
sources are both effectively recovered evenwith two elevation
elements and the accuracy increases with M .

Then Rse,0 in (6) can be obtained as

Rse,0 =

Ms∑
i=1

∣∣ase,i∣∣2sse (fse,i) sse(fse,i)H + δI (12)
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FIGURE 3. Clutter power versus normalized elevation spatial frequency.

FIGURE 4. Frequency response with M elevation elements.

where δ is the energy of the artificial white noise, and I is
an M × M identity matrix. Fig. 4 depicts the corresponding
frequency response with M elevation elements. As can be
seen in Fig. 4, the notches located at are all both formed and
the depth of them also increases with M .

By the aforementioned processing, clutter non-stationarity
mainly induced by the near-range echoes is greatly allevi-
ated. Thus the residual clutter is approximately stationary
and can be suppressed via existing azimuth-Doppler STAP
methods. In brief, the novel method includes the sparsity-
based elevation beamforming and the conventional STAP
filter, and is denoted as SBEBF for simplicity. Notice that
the interested targets cannot be eliminated by the proposed
method, in which the echoes of targets are always received
from the elevation mainlobe of array antenna.

IV. SIMULATION RESULTS
In this section, we evaluate the performance of the proposed
SBEBF scheme with simulated data. The simulation param-
eters are in accordance with Table 1 and the 100th range cell

is still taken as the RCUT. The parameter ρs is set to be 4.
Here, all pre-filtering in elevation is cascaded by the diagonal
loading sample matrix inversion (LSMI) method [27]. All
presented results are averages over 100 independent Monte
Carlo runs.

In the first experiment, the impact of both the value of
parameter α and the number of elevation elements M to the
performance of the SBEBF is investigated. The signal-to-
clutter-noise ratio (SCNR) loss, which is defined by the ratio
of the output SCNR to output signal-noise ratio (SNR) is used
as a measure. The average SCNR loss is further defined as
the mean of the SCNR loss for fd ∈ [(−1, 0.68) ∪ (0.88, 1)].
Fig. 5 shows the average SCNR loss of the SBEBF, whereM
is set to be 2, 3, 4 and 5, respectively and α varies from 0.05 to
0.4 with step size 0.05. The result in Fig. 5 indicates that: (i)
the parameter αmust be set to be relatively small to guarantee
the SR performance whenM is small; (ii) steady performance
can be achieved with different α whenM is bigger. In a word,
the set of the scope of fse for discretization is related with the
number of elevation elements. With this fact in mind, we will
use M = 4 and α = 0.1 in the rest experiments.

FIGURE 5. Average SCNR loss of SBEBF versus α.

In the second experiment, the performance of non-
stationary clutter suppression at all range cells is exam-
ined. The residual clutter power in range-Doppler domain is
compared between the conventional elevation beamforming
(CEBF), in which the weight is equal to the space steer-
ing vector in elevation, and SBEBF in Fig. 6. As depicted
in Fig. 6a, the range-dependent clutter is still severe after
the CEBF and mainly located at the near range, which is in
accordance with the theoretical analysis in Section 2. Obvi-
ously, the range-dependent clutter portion has been effec-
tively eliminated via the SBEBF and the residual clutter is
approximately stationary, as shown in Fig. 6b.

In the last experiment, we compare the SCNR loss of the
SBEBF with the CEBF and existing elevation pre-filtering
algorithms, such as the elevation spatial filtering (ESF) [12]
and elevation adaptive digital beamforming (EADBF) in [13].
Since the earth surface is not truly spherical in real world
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FIGURE 6. Comparison of residual clutter power in range-Doppler
domain. (a) CEBF. (b) SBEBF.

applications due to terrain variations such as mountains,
hills or basins, two simulated scenario includes flat and non-
flat terrain are considered. The height of non-flat terrain is
set to be 500m responding to hills compared with 0m for flat
case, and thus ϕ0 of the RCUT turns to be −61.59◦ from
−67.82◦ and corresponding fse increases about 0.05. The
comparison of the SCNR loss of above mentioned algorithms
is presented in Fig. 7. The results for flat terrain case is shown
in Fig. 7a, the SCNR loss of the CEBF, which does not elim-
inate the non-stationary clutter via elevation beamforming,
is most severe than other algorithms. Similarly, the SCNR
loss of the SBEBF and ESF is approximately equal and both
superior to the EADBF, in which only two elevation DOFs
are available for adaptive beamforming. The comparison of
performance for non-flat terrain case is depicted in Fig. 7b,
where severely degradation occurs for the ESF. The reason
is that the elevation beamforming of the ESF is non-adaptive
with clutter data and thus is sensitive to the accuracy of ϕ0.

FIGURE 7. SCNR loss comparison. (a) flat. (b) non-flat.

Obviously, the performance of proposed algorithm has not
been affected by this error, in which the scope of fse for SR
is large enough and thus the bigger error for ϕ0 is allowed.
Similarly, the performance of the EADBF is still inferior to
the SBEBF, and also not affected by the error of ϕ0 because
its adaptive beamforming is based on near-range clutter data.

V. CONCLUSIONS
In this paper, we have studied the problem of non-stationary
clutter suppression in range ambiguous mode. Since the prob-
lem of range dependence is mostly related to near-range
clutter induced from elevation sidelobe, the elevation adap-
tive beamforming technique can be utilized to eliminate the
range-dependent clutter. However, the key of above technique
is to obtain the near-clutter portion from the superposition
of different ambiguous clutter. The main contribution of this
paper is the presentation of a method for extracting the near
clutter via SR technique, which is effective for non-stationary
clutter suppression cascaded by existing azimuth-Doppler
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STAP. Notice that the clutter data within different pulses are
all utilized as multiple measurement vector to recover the
near-range clutter sources, thus no training samples along
range cells are needed. Furthermore, the novel method is not
sensitive to the prior knowledge such as elevation angle of
the RCUT because the near-clutter sources are adaptively
recovered within a larger scope of elevation spatial frequency.
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