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ABSTRACT Prospectively, vehicular networks are envisioned to support vehicular-based, road-based, and
traffic-based data sensing, transmitting and processing for intelligent transportation system applications,
and eventually evolve towards a new paradigm, named vehicular networks (VNs), which bundle the
characteristics of networks into vehicular networks. In VNs, since the conflict between resource utility and
the quality of service (QoS), it remains an ongoing challenge about how to reasonably and effectively allocate
resources that can meet QoS and fairness requirements at the same time which causes security problem
because of the conflicts. To this end, we propose a utility-based dominant resource allocation optimization
strategy in this paper to achieve security in VNs. We first establish a mapping model between user QoS
requirements and resource demands, and then apply the improved dominant resource fairness scheme to
obtain optimal allocation results. The effectiveness of this security strategy is proved theoretically through
the constructed utility function and the mapping model. Experimental results demonstrate that our security
strategy can not onlymaximize the ratio of provision over demand of users and the satisfied degree of services
but also achieve the QoS and fairness requirements of users.

INDEX TERMS Vehicular networks, security, resource allocation, utility function, QoS.

I. INTRODUCTION
In recent years, ITS and vehicles, especially cars, has devel-
oped a lot. More and more sensors and communication tech-
nologies (e.g., cloud computing) are integrated with cars,
which opens up a new design space for vehicular-based
applications [1], [2]. Prospectively, vehicular networks
are envisioned to support vehicular-based, road-based and
traffic-based data sensing, transmitting and processing for
ITS applications, and eventually evolve towards a new
paradigm, named Vehicular Networks (VNs), which bundle
the characteristics of networks into vehicular networks. Thus,
VNs has become an important way for users to obtain infor-
mation and entertainment [3].

Vehicular networks have attracted great interest in the
research community recently. Many potentially useful appli-
cations have been envisioned in vehicular networks [4]. These

range from safety applications, such as vehicle collision
avoidance, to other valuable applications such as realtime
traffic estimation for trip planning, information retrieval, and
media content sharing [5]. Moreover, vehicular networks
also have the prospect of improving sensing and wireless
coverage in the future. For example, by embedding sensors
in vehicles, a mobile sensor network can be established to
monitor road states and other environmental conditions in
large areas. The vehicular networks can also act as ‘‘delivery
networks’’ to transfer data from remote sensor networks to
Internet servers [6].

Current VNs serve the last mile connection to the Internet
for various wireless devices with diverse QoS requirements:
large user numbers [7], high data transmission volume and
multiple types of services. From the perspective of system
operators [8], they want to maximize resource utilization and
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access more vehicles without increasing their investment.
However, the users hope to obtain sufficient resources for
their access anytime, anywhere, and higher quality of ser-
vices. Because of the continuous emergence and rapid update
of multimedia real-time applications, users become more and
more strict with QoS guarantees. Due to the exponential
growth of mobile vehicles, the system cannot meet all QoS
requirements with limited network resources [9]–[11]. When
many vehicles come together to provide services, the resource
allocation/sharing becomes an important issue. The contin-
uous traffic also makes the competition among the shared
links become increasingly fierce. Optimized allocation of
resources for users can not only meet the differentiated QoS
requirements, but also achieve fairness. Therefore, how to
maximize resource utilization has become a problem that
needs to be solved.

In this paper, we focus on analyzing QoS and fairness
requirements of users in resource allocation, and propose
an allocation optimization security strategy that can satisfy
both QoS and requirements. We evaluate the service quality
through a utility metric, which characterizes the perceived
service quality of users with diverse QoS requirements.
We establish a mapping model, which makes QoS metrics
(packet delay and packet loss) the independent variables and
resource quantities (bandwidth and buffer) the dependent
variables. This model can transform QoS requirements into
network resource demands. We model the queuing buffer at
the Access Point(AP) and derive the mapping model based
on it. By modifying the existing dominant existing resources
fairness scheme, we can achieve a fair distribution among
users while maximize the utility.

The rest of this paper is organized as follows. section II,
the related work is reviewed. The construction of Qos utility
function is defined in section III. The Qos requirements and
resource mapping model is described in section IV. section V
is about the utility-based dominant resource allocation opti-
mazation security strategy. The proof of the algorithm fair
property is described in section VI. The experimental results
and analysis is shown in section VII. We provide the conclu-
sion in section VIII.

II. RELATED WORK
When studying the issue of resource allocation, fairness
is a key factor to be considered. Since the unfair distri-
bution of resources between different individuals can lead
to resource starvation, waste or redundancy, and severely
decrease resource utilization and use efficiency. At present,
there are two most widely used fair resource allocation strate-
gies: maximum and minimum fairness and proportional fair-
ness. Max-min Fairness is a simple and effective fairness
rule that can maximize the needs of the user with the least
resources [12]. It was originally used in the window flow
control protocol and later widely used in the bandwidth [13],
channel and power allocation issues [14]–[18]. The weighted
maximum-minimum fairness strategy introduces the concept
of weights on it, enabling users to obtain resource shares

corresponding to the weights [19]. Since this method gives
absolute priority to users with less resource requirements, it is
highly likely to affect other users. Therefore, Proportional
Fairness has been proposed [20]. It focuses more on the
proportionate change in resource allocation. However, this
method is mainly applied to the elastic traffic services and the
utility function constructed by it is only a single logarithmic
function [21], so that cannot adapt to a variety types of
service.

In order to make more efficient use of resources and adapt
to different applications’ quality of service requirements [22],
scholars have made relevant researches on utility theories
in microeconomics and applied them to resource allocation
problems in network systems. The utility function is usually
used to reflect how satisfied users are with services [23].
Shenker detail analyzed the characteristics and requirements
presented by different applications in [24], designed different
utility function curves according to different application clas-
sifications, and pointed out that the non-linear relationship
between application performance and bandwidth should be
considered when allocating network resources and provid-
ing QoS guarantees. The unified utility function of different
traffic flows was studied in [25], and a resource allocation
optimization model was established. The proposed heuristic
algorithm can guarantee the QoS demand of real-time traffic
and provide a trade-off between throughput and fairness for
the best-effort traffic. There are also many literatures that
combine the utility and fairness criteria and propose the
methods of utility max-min fairness and utility proportional
fairness to achieve the purpose of user fairness and optimal
utility [26]–[29].

In current VNs, resources are mostly allocated separately,
and nowadays mobile applications usually require multi-
ple resources; thus single resource allocation design can no
longer meet differentiated QoS requirements. Through in
depth analysis of QoS performance, it can be found that
different QoS requirements are closely related to different
network resource requirements in the VNs. For example, for
a certain user, the packet delay in the radio access network
is mainly affected by the wireless bandwidth it obtains, that
is, the maximum rate that the user can use to transmit the
packet on the shared radio channel; the packet loss is mainly
due to the fact that the cache capacity of network devices
is limited. In order to satisfy the user’s service experience,
it is critical to allocate these network resources fairly among
wireless devices [30]. Therefore, the joint scheduling and
optimization of multiple resources have attracted people’s
attention.

The most common multi-resource allocation method is
per-resource fairness (PF), which can balance the user’s share
of each type of resource without considering the diverse
needs of users. On the other hand, the non-fair alloca-
tion (NF) only considers user demands and ignores fair-
ness. Specifically, for each user, NF allocates each type
of resource with an amount proportional to his or her
demands in the corresponding resource. Although it strikes
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equivalent QoS utility values for every user, it ignores fairness
because a user with higher resource demands will get more
shares, encouraging users to bluff about their true demands.
Another multi-resource allocation scheme is bottleneck fair-
ness (BF) [31]. It decides which type of resource is the most
bottlenecked (i.e., the resource type with the highest demand
to supply ratio), and then distributes such resources equally
among users. The other types of resources are allocated to
each user in proportion to the resource demand. It is fair
because it equalizes user shares in the bottleneck resource,
while taking into account diverse user demands. However,
it is vulnerable to attack from a malicious user, who may
lie about his true resource demands in order to shift the
bottleneck resource from one to another, thereby gain more
shares of resources.

Dominant Resource Fairness (DRF) is also used to study
the issue of multiple resource allocation [32]. Different from
PF, NF and BF, it can achieve a good balance between
fairness and the diversity of user demands, and prevent the
attacks of malicious users who lie about their true resource
demands. In DRF, the resource share of a certain resource
type is defined as the ratio of the total amount of resources
acquired by the user to the total amount of the resource. The
dominant share of each user is defined as the maximum share
of resources among all types of resources. The purpose of
DRF is to equalize the share of all users’ dominant resources.
It is an extension of themax-min fairness from single resource
allocation to the max-min fairness of multiple resources, and
it has the following desirable properties: pareto-optimality,
envy-freeness and strategy-proofness.

Pareto-optimality means that for any user, his or her own
overall resource share cannot be increased without either
increasing the total resource capacity or decreasing the
resource share of other user. Envy-freeness means that no
users are willing to exchange their own share of resources
with other users. That is, their resource share is already
optimal. This will ensure fairness.

Strategy-proofness means that no user can concurrently
increase his resource shares in all resource types by lying
about his true resource demand, and encourage users to par-
ticipate with honesty. It is worth noting that DRF does not
always allocate the dominant shares fairly. If the resource
requirements of certain users are fully satisfied, the remaining
resources of these users can be used to further meet the the
unsatisfactory demands of other users.

Therefore, resources in the system can be used more effi-
ciently. However, this method is mainly aimed at the cloud
computing environment and pursues a fair distribution of the
dominant resources without considering other resources [33].
If it is applied to a VNs system, the user QoS requirements
also need to be considered.

Our work studies the multiple resource allocation problem
in VNs, and proposes a resource allocation optimization strat-
egy that can meet user QoS requirements and fairness simul-
taneously through using the utility function and improving
the DRF scheme. Based on the literature [34], the definition

of the weight of user priority is introduced to allocate the
remaining resources, so that it can satisfy more users.

III. CONSTRUCTION OF QoS UTILITY FUNCTION
In our VNs system, we consider two performance param-
eters when evaluating user QoS, that is, packet end-to-end
delay and loss rate. Although objective QoS metrics are often
desirable for a certain flow type, it is more challenging when
multiple types of flows exist and need to compare with each
other in the scenario of resource management in this paper.
Furthermore, both subjective and objective factors should be
considered in judging the perceived QoS. So we construct
a utility function with the packet delay and packet loss as
independent variables, as shown in equation (1):

U (d0, r0, d, r) = min
(
d0
d
,
1− r
1− r0

)
(1)

Where d0 and d are requested and perceived packet end-
to-end delay by the user, r0 and r are requested and per-
ceived packet loss rate, respectively. In equation (1), d0

d is
called the delay ratio, which is the ratio of the requested
delay to actual delay. If the system can fully meet the delay
requirement for the user, then we have d0

d = 1; otherwise
we have d0

d < 1. Therefore, the value of the delay ratio
reflects the user’s satisfaction with the delay requirement.
A large delay ratio indicates that the actual end-to-end delay is
short, and user satisfaction is higher, and vice versa. Similarly,
(1− r) / (1− r0) is called the loss ratio, which is the ratio of
the actual transmission rate to the requested transmission rate,
and reflects the extent to which the system meets the packet
loss rate requirements. The QoS utility function U is defined
as the minimum of the delay ratio and the loss ratio, which
indicates that the overall utility is affected by the bottleneck
of one of the two QoS indicators, when one of the two is less
satisfied than another, choosing a smaller onewill truly reflect
the perceived quality of the user.

IV. QoS REQUIREMENTS AND RESOURCE
MAPPING MODEL
Although the DRF scheme can ensure the fairness of resource
quantities, it cannot guarantee that the final allocation results
can meet user QoS requirements. In other words, it is more
concerned with fairness than utility. In order to improve
it, maximizing utility will be the optimization goal in our
security strategy, so as to make resource allocation more
reasonable and efficient. In order to realize our purpose,
a mapping model that transforms different QoS requirements
into multiple resource requirements needs to be established.
To achieve the mapping relationship between the two, it is
necessary to establish a corresponding function. Here, QoS
performance indicators (packet delay and packet loss rate)
are used as independent variables, and resource quantities
(wireless bandwidth and queue buffer) are used as dependent
variables. In the VNs system shown as Figure 1, the AP serves
as a bridge connecting the wired network and the wireless
network and needs to receive a large number of service
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FIGURE 1. The topology of VNs system.

requests from the wireless devices, and packets may suffer
significant queuing delays in their buffer queues. Therefore,
we estimate the packet end-to-end delay as the sum of the
transmission delay of the wireless channel and the queuing
delay in the buffer. For the calculation of the packet loss
rate, the packet loss caused by the wireless channel fading or
the MAC layer random access collision can be compensated
through the retransmission mechanism. Therefore, only the
packet loss caused by the overflow of the queuing buffer
on the AP is considered. Since the uplink device that AP
connects is a network layer device, we do not consider packet
loss at the physical layer or MAC layer.

We use a M/D/1 queuing model for the queuing buffer at
the AP, assuming that all traffic flows have a fixed packet
size P. The service flow requested by each user has a packet
delay and packet loss rate that represent QoS performance,
denoted as < d, r >. The VNs resources assigned to the
corresponding user (wireless bandwidth and queued cache)
are denoted by < BW ,L >, and the transmission delay of
the node’s packets in the wireless link dt is expressed as:

dt =
P
BW

(2)

Suppose the packet arrival follows the Poisson distribution
with an arrival rate λ = BW/P and the service rate of the
queue α,that denotes the number of packets that are served
by the queue in a time unit, we define ρ = λ/α as the traffic
load. In general, ρ < 1, because the service rate is larger
than the flow arrival rate. Otherwise, serious congestion may
occur and the system cannot operate normally. According to
the queuing model, the average queuing delay dq is

dq =
2− ρ

2α(1− ρ)
(3)

Therefore, the end-to-end packet delay d is

d = dt + dq =
1
λ
+

2− ρ
2α(1− ρ)

(4)

Packet loss due to queue buffer overflow can be calculated
according to the model and the average queuing length is

E [Q] =
ρ(2− ρ)
2(1− ρ)

= ρ +
ρ2

2(1− ρ)
(5)

However, the M/D/1 model assumes an infinite buffer size.
There will be packet loss if E [Q] > L

P , which indicates that

the average queuing length is larger than the allocated buffer
size. Here L should be normalized by packet size P when it
compares with E [Q], as L has the unit of bit while E [Q] has
the unit of packets. From this, we can define an approximate
packet loss rate r as follows:

r =
E [Q]− L

P

E [Q]
(6)

We assume the traffic load ρ is a constant value. When the
traffic load is heavy, it can be approximately equated to
C
Cb
, where C is the wireless channel capacity and Cb is the

capacity of the wired link connected to the router. Based on
this assumption we have

λ =
S
d

(7)

where

S = 1+
ρ(2− ρ)
2(1− ρ)

(8)

Similarly,

BW = λP =
SP
d

(9)

Because E [Q] is a function of ρ, it can also be regarded
as a constant for the user. According to formula (6), it can be
deduced that the allocated queuing buffer length is:

L = PE [Q] (1− r) (10)

From Equation (9) and (10), it can be seen that the bandwidth
is inversely proportional to the packet delay, and the buffer
length is also inversely proportional to the packet loss rate.
This is in line with the reality. To have a shorter packet delay,
the system should provide a faster transmission rate; to have
a smaller packet loss rate, the system should provide a larger
buffer length.

V. UTILITY-BASED DOMINANT RESOURCE ALLOCATION
OPTIMIZATION SECURITY STRATEGY
A. FORMULATION OF THE OPTIMIZATION PROBLEM
Assume that in a VNs system shown in Figure 1, the wireless
channel capacity is C , the queuing buffer is LQ, and M
users compete for network resources. For each user i, their
QoS requirements are represented as 〈di0, ri0〉 and the corre-
sponding resource demand vector as 〈BWi0,Li0〉. We define
µi = max

{
BWi0
C ,

Li0
LQ

}
as the dominant share required by

the user i. If µi =
BWi0
C , indicates that user i is bandwidth-

dominant, otherwise user i is buffer-dominant. Without loss
of generality, it is assumed that the first K of the M users
are bandwidth-dominated and the remaining users are buffer-
dominant. We can derive that

µi =


BWi0

C
i = 1, 2, · · · ,K

Li0
LQ

i = K + 1,K + 2, · · ·M
(11)
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We define α = LQ
C as the ratio of total queuing buffer

size over wireless channel capacity and mi =
Li0
BWi0

as the
resource demand ratio of user i. According to the definition
of dominant share, we also have{

mi ≤ a i = 1, 2, · · · ,K
mi ≥ a i = K + 1,K + 2, · · · ,M

(12)

The allocated resource shares and actual perceived QoS per-
formance of user i under the improved DRF scheme are
denoted as 〈BWi,Li〉 and 〈di, ri〉, respectively. We denote
xi =

BWi
BWi0

=
Li
Li0

as the ratio of provision over demand of
user i. Since DRF aims to balance the actual dominant share
of all users, we further defined q = µixi, (i = 1, 2, · · · ,M )
as the actual dominant share of any user. Through the above
definition, we make some modify and improve the DRF
scheme in [19], and formulate the ‘

maximize (x1, x2, · · · , xM )

subject to
∑M

i−1
BWi =

∑M

i−1
xiBWi0 ≤ C∑M

i−1
Li =

∑M

i−1
xLi0 ≤ LQ

µ1x1 = µ1x2 = · · · = µMxM (13)

In the above formulation, we maximize the share of all
users subject to resource constraints in bandwidth and queu-
ing buffer and the DRF constraint which equalizes users’
actual dominant shares. The following results can be obtained
by calculation:

q = min

(
1

K + a
∑M

i−K+1
1
mi

,
a∑K

i−1 mi + a(M − K )

)
(14)

BWi = xiBWi0 =

qC i = 1, 2, · · · ,K
qLQ
mi

i = K + 1,K + 2, · · · ,M

Li = xiLi0 =

{
miqC i = 1, 2, · · · ,K
qLQ i = K + 1,K + 2, · · · ,M

(15)

Since all fairness properties of QoS are related to utility, all
DRF fairness properties are described from the perspective
of resources. Therefore, in order to prove that our security
strategy can satisfy QoS and fairness at the same time, we first
need to derive the utility function with the resource quantities
as an independent variable. According to equation (9) and
(10) and (1), the utility function related to resources can be
obtained,

Ui = min
(
BWi

BWi0
,
Li
Li0

)
(16)

Here again, it can be linked to the ratio of provision over
demand of users,

Ui = xi (17)

That is to say, the user’s satisfaction with the service can
be expressed as the ratio of provision over demand of the
allocated resources, and the more satisfying the user’s QoS
requirements, the higher user utility.

B. ALGORITHM DESCRIPTION
After the user establishes a connection with the AP, if a
service flow request is initiated, the QoS requirement of each
service flow of each user is mapped to the network resource
requirement.

1) ADAPTIVE FLOW DEMAND AGGREGATION
If a node creates multiple service flows, to ensure the fairness
of each node, it is necessary to aggregate the multiple service
flows of the user so that per-node fairness is achieved. This
is because a node can obtain more resources by transmitting
multiple flows.

Suppose the user creates J flows. The QoS requirement of
each service flow j is represented as

〈
dj0, rj0

〉
. According to

the mapping model proposed in this paper, the corresponding
resource requirement for each service flow is

〈
BWj0,Lj0

〉
. The

node’s aggregate resource requirement denotes as 〈BW0,L0〉,
can be expressed as

BW0 =
∑J

j−1
BWj0, L0 =

∑J

j−1
Lj0 (18)

Therefore, the user can use the above total demand to compete
for resources. Because one-time traffic demand aggregation
cannot adapt well to changing user requirements, dynamic
calculations need to be performed based on changes in user
traffic. If the user creates a new service flow or ends an
existing service flow, it needs to update the corresponding
user QoS requirements and adjust the resource allocation
result.

2) DEFINITION OF USER PRIORITY WEIGHTS
After the on-demand allocation is performed, there are still
resources left, and then the final allocation needs to be made
according to the user priority weights, so that users with
large demand and unsatisfied can obtain more resources as
much as possible. This article defines the following weights
to measure the user’s overall priority in all resource types:

ωi =
∑
R

(
µiR

µR
), R ∈ {BW ,L} (19)

where µR = arg max µiR , i ∈ M represents the collection
of the largest dominant resource for all users on resource R.
The algorithm not only allocates the local importance of the
resource requested by the user, but also further considers
the overall priority of the resource requested by the user,
so that after satisfying the user with a small amount of
resource demand, the user with the most resource demand
is satisfied as much as possible in order to maximize the
reasonable allocation of resources. Moreover, DRF does not
always balance the user’s dominant resource share. If the user
gets more resources than he needs, after meeting his needs,
additional resources will be reassigned to other users. Taking
the scenario in Figure 1 as an example, the overall resource
allocation algorithm steps can be described as follows:

(1) Firstly, the QoS requirements of the service flow cre-
ated by the user are acquired, and the QoS requirement is
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converted into a required amount of resources according to
a mapping model. If the user creates multiple service flows,
traffic demand aggregation is required;

(2) At this time, all users have only one service QoS
request, and then they are converted into resource quantities
according to the mapping model, and their respective domi-
nant resource shares and user priority weights are calculated,
according to formulas (13), (14) and (15) Calculate optimal
distribution results;

(3) Calculate the utility of each user according to for-
mula (16). A user whose utility is greater than 1 will acquire
his or her resource amount as needed, and for other users,
it will use the remaining network resources to perform the
operation in (2) again. Repeat this process until no user can
obtain a utility greater than 1 or all users satisfy their resource
requirements, or if one of the resource types is completely
allocated, terminate execution and output the final allocation
result;

(4) If there are still remaining resources and the user’s
requirements have not been met, they are assigned to users
with insufficient resources in descending order of user prior-
ity weights until the remaining resources are consumed, and
the execution stops and the final result is output. Assignment
results;

(5) If there is a change (addition or deletion) of the user’s
service flow after that, the demand is modified according to
the corresponding change, and the above-mentioned distri-
bution process is performed again. According to the above
algorithm steps, the flow chart shown in Figure 2 is drawn.

FIGURE 2. Utility-based dominant resource allocation optimization
algorithm.

VI. PROOF OF THE ALGORITHM FAIR PROPERTY
According to the previous introduction, it is learned that
DRF can provide fairness based on the amount of resources.
Although themappingmodel between user QoS requirements
and the number of resources is established in this paper, after
the mapping is completed, whether the fairness attributes still
valid still need to be verified. According to formula (14), one

of the values is proved here. Taking q = 1
K+a

∑M
i−K+1

1
mi

as an

example, another case can be similarly proved.
Theorem 1: The algorithm satisfies the Pareto-optimality,

that is, in a given amounts of all types of network resources
in VNs, the user can only increase its utility by reducing the
utility of any other user.

Proof: Assume that among the M users, the user i
increases his utility, and the utility of any other node (such as
node j) does not decrease. According to formula (17), it can be
inferred that xi increase and xj remain unchanged. However,
according to the derivation of DRF, at least one resource in
the system is fully utilized by the user. Without losing the
generality, it is assumed that the bandwidth is completely con-
sumed, that is

∑M
i−1 xiBWi0 = C . Because of the xi increase,

the single component xiBWi0 will increase accordingly, while
the other nodes xj will remain unchanged, so the final total
will be greater than C , contradicting the actual situation. The
reason for this is that the wrong assumption was made that the
user can increase Ui(i 6= j) without reducing Uj. From this,
it can be proved that the algorithm satisfies Pareto optimality.
Theorem 2: The algorithm satisfies envy-freeness, that is,

users will not envy QoS performance of any other user. This
property indicates that the utility of a user will not increase
if this user exchanges his QoS performances with another
user’s.
Proof: Because the QoS performance and the amount of

resources are one-to-one mapping, the exchange of QoS per-
formance is equivalent to the exchange of actual resource
shares. Assume that the two users i and j have obtained the
number of resources for 〈BWi,Li〉 and

〈
BWj,Lj

〉
, and the

corresponding utility values for the two users are Ui and
Uj. The user is bandwidth-dominant after mapping his QoS
requirements to resource requirements. According to formula
(15) of DRF distribution results, there are BWi = qC . If the
user j is also bandwidth-dominant, then there is BWj =

BWi = qC . Otherwise, if the user j is cache-dominant, there
is BWj =

qLQ
mj

. By calculating the ratio between the two,

BWj

BWi
=

LQ
mjC
=

a
mj

(20)

Since the user j is cache-dominant, it can be known from
equation (12) that mj ≥ a and so

BWj

BWi
=

a
mj
≤ 1⇒ BWj < BWi (21)

Combining the two cases can prove that when the user i
is dominant in bandwidth, the actual bandwidth share he will
receive will not be less than any other user.

BWi ≥ BWj, ∀j 6= i (22)

If the user i exchanges his own resource share with the
user j, the user i has a new utility value Unew

i , which can be
expressed as

Unew
i = min(

BWj

BWi0
,
Lj
Li0

) (23)
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In the previous derivation BWj < BWi, if Lj < Li,
the number of all resources of the user j is less than the user i,
obviously there is Unew

i < Ui; if Lj > Li, according to
formula (17) available

Unew
i = min(

BWj

BWi0
,
Lj
Li0

) =
BWj

BWi0
≤

BWi

BWi0
= xi = Ui (24)

When the user is buffer-dominant, this case is the
same. Hence, it can be shown that the algorithm satisfies
envy-freeness.
Theorem 3:The algorithm satisfies strategy-proofness, that

is, users can not increase their own utility by falsely reporting
their true QoS requirements.
Proof: Suppose the user’s real QoS requirement is
〈di0, ri0〉. The actual perceived QoS performance after
resource allocation using the DRF scheme can be expressed
as 〈di, ri〉, and its corresponding utility value is Ui. If the
user provides false QoS requirements

〈
d∗i0, r

∗

i0

〉
, his actual

QoS performance and utility values change to
〈
d∗i , r

∗
i

〉
and

U∗i , respectively. Then, the prevention of strategic policing
attributes that satisfy QoS can be expressed as the following
inequality:

Ui(di0, ri0, di, ri) ≥ U∗i (d
∗

i0, r
∗

i0, d
∗
i , r
∗
i ) (25)

Represent the user’s real resource requirements as
〈BWi0,Li0〉. Corresponding to the real and false QoS require-
ments provided by the user, the actual resource shares allo-
cated to them are 〈BWi,Li〉 and

〈
BW ∗i ,L

∗
i

〉
, respectively.

According to the DRF’s prevention of strategic manipulative
attributes based on the amount of resources, the number of
user resources cannot increase at the same time. Without loss
of generality, if BW ∗i > BWi, there are L∗i ≤ Li, similar to
the proof of innocence satisfying QoS, available according to
formula (17)

U∗i = min(
BW ∗i
BWi0

,
L∗i
Li0

) =
L∗i
Li0
≤

Li
Li0
= xi = Ui (26)

It can be seen that the calculationsU∗i in the above formula
are based on the real needs of the user 〈BWi0,Li0〉 and are not
related to the spurious needs of the false reports. Therefore,
they will not have any impact on the final utility, whichmeans
that the algorithm satisfies strategy-proofness.

VII. EXPERIMENTAL RESULTS AND ANALYSIS
In order to verify the validity of the proposed algorithm (here
the improvedDRF is abbreviated as DRF), the results are ana-
lyzed by running simulation experiments and are consistent
with the PF, NF, and BF which compare the fairness and user
utility. The simulation parameters set in the experiment are
shown in Table 1.

In order to differentiate service types, the session and
stream classes are defined as delay sensitive applications.
The packet delay and packet loss rate ranges are [0.1s, 2s]
and [10%, 50%], respectively. The interaction class and back-
ground class are defined as packet loss sensitive applications.
The packet delay and packet loss rate ranges are [2s, 5s] and

TABLE 1. Simulation parameters configuration.

[1%, 10%], respectively. Correspondingly, different applica-
tion types use different performance values.We useMatlab as
the simulation tool and generate QoS requirement randomly.
Three different traffic load scenarios are selected to represent
the situation when the system is under different load.

Figure 3 shows the results of four different allocation
schemes when the traffic load is 0.3. It can be seen from the
figure that the system is in a light load state at this time, and
the red line represents the resource requirement after mapping
the QoS requirements of different service flows. According to
the randomly generated data in the experiment, the bandwidth
requirements of all users are larger than the buffer require-
ments. This is because the total difference between the two
is relatively large. Therefore, after the function mapping cal-
culation is performed, the dominant resources and bottleneck
resources of all users are bandwidth. It can be seen that both
PF and BF divide the total bandwidth capacity equally among
all users, that is, the bandwidth can be divided into 2.5 Mbps.
The NF has a similar shape to the user request resource curve,
because it is allocated to the user in proportion, so the amount
of resources obtained is more because of a large amount of
demand, for example, the user index of 11,13,15,19. The
DRF also has a similar trend with the amount of resources
requested, but compared with the NF, it is obviously more
consistent with the actual resource requirements of the users,
almost coincident, indicating that it will not provide an unlim-
itedly high share for high demand users. Instead, it allocates
on demand, which reduces the distribution gap between users
and also saves system resources.

For the buffer resource, the PF still divides the resources
equally among the users, that is, they all obtain 1Mb; at this
time, the buffer resources do not belong to the bottleneck
resources in the BF allocation scheme, so the proportional
allocation is performed, and thus the allocation result over-
lap with the NF. The DRF allocation scheme still performs
on-demand allocation even if the system has enough remain-
ing resources. This is in line with the marginal utility theory,
it is not always true that the more resources allocated to users,
the greater their satisfaction with the service will continue to
increase. If a certain service only needs to satisfy a certain
QoS requirement, it can provide a good service experience,
then allocating more resources will only result in a waste
of resources and also affect the users behind. Therefore,
following the principle of on-demand allocation can greatly
improve the system’s resource utilization.
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FIGURE 3. The allocation results of different schemes when traffic load is 0.3, a is bandwidth and b is buffer.

FIGURE 4. The allocation results of different schemes when traffic load is 0.6, a is bandwidth and b is buffer.

Figure 4 shows the allocation result when the system traffic
intensity is 0.6. At this time, the system is in a medium
load state, and the amount of resources requested by the user
increases. Similar results can be observed. However, PF and
BF cannot satisfy the bandwidth requirement average value
at this time. NF and DRF curves are very close to the user’s
request, indicating that the higher the system load, the higher
the resource utilization.

Figure 5 shows the distribute result when the traffic load
is 0.9. At this time, the system is in a heavy load state. The
amount of resources requested by the user reaches 600 Kbps
at the highest. All kinds of allocation schemes are close to the
actual user requirements, which means that the system load
is heavier, and less likely the resources are over-allocated.
In this case, the actual resource requirements of some users
exceed the average 2.5 Kbps, such as user 7 and user 17, then
the PF and BF schemes cannot meet the user’s needs, while

NF and DRF can be well satisfied with the different needs of
users, because each user has obtained the amount of resources
he needs, and achieves fairness among users. NF means that
the more user needs, the more it is allocated, hence it does not
achieve fairness very well.

From the experimental results above, we can see that the PF
scheme is absolutely fair, but it does not consider the needs of
different users. NF only considers the different requirements
of users in proportion, and thus ignores the fairness among
users. DRF and BF consider both fairness and user demand,
but the results obtained are different. BF divides the bottle-
neck resources equally and then allocates another bottleneck
resource according to the user’s needs. This results in users
having absolute fairness on one type of resource and a large
share of the gap on another type of resource. The difference
is that DRF allocates two kinds of resources in a consistent
manner, which not only considers the diversity of user needs,

VOLUME 6, 2018 55341



J. Wu et al.: Secure Resource Optimization Strategy Based on Utility Dominant in Vehicular Networks

FIGURE 5. The allocation results of different schemes when traffic load is 0.9, a is bandwidth and b is buffer.

FIGURE 6. CDF of user utilities when traffic load is 0.9.

but also controls the differentiation of allocation shares to
some extent. Therefore, it can be concluded that the DRF
balance the contradiction between fairness and utility well,
which not onlymaximizes the satisfaction of the user, but also
maximizes the utilization of system resources.

Comparing the efficiency of these schemes in using net-
work resources, Figure 6 is a cumulative distribution function
graph of user utility when the traffic load is 0.9, which
describes the probable distribution of utility. From this figure,
it can be seen that under the NF scenario, all users have the
same utility value, and PF performs the worst among the four
scenarios because PF allocates resources equally and does not
consider the diversity of user needs. BF and DRF perform
better than PF and NF, but DRF is more focused on median
utility than BF, which means that the number of users with
too high or too low utility under DRF scheme is less than that
of BF scheme, making DRF scheme not only adaptable to
different user requests, but also possible to maximize network

user utility under limited resources, and reduce the number
of resource gaps between users. The conclusion is consistent
with the above experiment.

VIII. CONCLUSION
This paper presents a resource allocation optimization secu-
rity strategy and algorithm that can meet the QoS and fairness
requirements of users simultaneously by comparing and ana-
lyzing existing resource allocation strategies. The mapping
relationship among bandwidth, buffer resources, packet delay
and packet loss rate was discovered. Through constructing
the utility function and the deduced mapping model, it was
proved that the algorithm can well meet the fairness attributes
required for resource allocation and allocate resources to
achieve security in VNs. The optimization problem was for-
malized. Finally, a simulation experiment was conducted to
make comparisons among PF, NF and BF. The results show
that the proposed security strategy can balance the relation-
ship between user utility and fairness, and can maximize the
ratio of provision over demand of users. While meeting the
QoS requirements of users, the effectiveness of resources is
realized as well.
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