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ABSTRACT In modern society, the demand for radio spectrum resources is increasing. As the information
carriers of wireless transmission data, radio signals exhibit the characteristics of big data in terms of volume,
variety, value, and velocity. How to uniformly handle these radio signals and obtain value from them is a
problem that needs to be studied. In this paper, a big data processing architecture for radio signals is presented
and a new approach of end-to-end signal processing based on deep learning is discussed in detail. The radio
signal intelligent search engine is used as an example to verify the architecture, and the system components
and experimental results are introduced. In addition, the applications of the architecture in cognitive radio,
spectrum monitoring, and cyberspace security are introduced. Finally, challenges are discussed, such as
unified representation of radio signal features, distortionless compression of wideband sampled data, and
deep neural networks for radio signals.

INDEX TERMS Radio signals, big data, deep learning, neural networks, search engine, cognitive radio,
cyberspace.

I. INTRODUCTION
The Big Bang created the world we live in, and the Big
Data explosion is creating a whole new digital universe.
In 2006, individual users were just entering the TB era and
about 180 EBs of data were globally generated. In 2011,
this number reached 1800 EB. It is expected that this num-
ber will increase to 35 by 2020, which is 40 times that
of 2009 [1]. From B, KB, MB, GB, TB, to PB, EB, ZB, and
YB, the boundaries of data are constantly expanding. With
such rapid data growth, we have stepped into the ‘‘big data’’
era [1]–[4].

In the field of wireless spectrum, the rapid growth of
mobile devices [5] and the emergence of the Internet of
things [6], [7] have led to a surge in wireless application
data. The demand for wireless spectrum in modern society
is increasing, and the rapid growth of various radio appli-
cations such as wireless communication, navigation, radar,
and broadcasting has led to wider radio frequency (RF) bands
being used day by day. As information carriers of these data,
radio signals are also characterized by big data in terms of
large volume, variety, low value density and high velocity.
How to uniformly and efficiently process the radio signals is

a complex task because it involves efficiently extracting radio
signals from a large number of high-speed sampled data and
performing efficient analysis on these signals. Nonetheless,
big radio signal data processing is important for lots of
applications.

One of the most important applications is cognitive radio.
Traditional radio signal processing only needs to be designed
for specific applications. For example, the broadcast receiver
only needs to receive the frequency modulation (FM) signal
at the corresponding frequency band to demodulate the
sound/music for the user to listen to; the mobile phone
receiver only needs to receive the signal of the specific system
on the specific channel and recover the information for the
user to use. However, in recent years, new intelligent com-
munication methods such as cognitive radios (CRs) [8]–[10]
require radio receivers to have wideband spectrum sensing
[11], [12] capabilities. Unlike conventional radio receivers,
in addition to processing the radio signals transmitted by
its communication counterpart, the cognitive radio also
needs to analyze various radio signals in a wide frequency
band in order to achieve detection and identification of
primary users, and to better understand the spectrum
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environment for use in spectrum decision making [13].
Therefore, CRs need to have a certain degree of big data
processing capabilities in order to better understand the out-
side environment, optimize the communication system and
network resources and improve communication performance.

In addition, wireless systems are rapidly evolving toward
next-generation mobile communications (5G) [14] driven
by wireless data and diverse applications [15]. In order to
accommodate more user data, cell base stations are expected
to be deployed densely. The application of massive MIMO
and full-duplex technology makes the unintentional inter-
ference between radio signals generated by the terminal
equipment and the base stations more serious, resulting in
a more complex radio environment. Radio signal analysis in
this context is also more challenging. For mobile network
operators, through real-time monitoring and analysis of radio
signals, signal distribution in multiple dimensions such as
time, frequency and location can be obtained, which can be
used to guide cell optimization and frequency allocation to
adapt to dynamic change of mobile data change and optimize
mobile network performance.

Based on the above-mentioned requirements for radio sig-
nal analysis applications, this paper makes a new interpre-
tation of radio signals from the perspective of big data.
We present a big data processing architecture to efficiently
process, identify, search and analyze radio signals. In the
signal processing method, we take deep learning as the
core driving force of big data processing for radio signals.
Deep learning [16], [17] has made remarkable progress in
recent years, and its application covers almost all industries
and research fields [18], including speech recognition [19],
computer vision [20] and natural language processing [21].
In the field of radio signal processing, the application of
deep learning is still in its infancy, and recent applications
include radio signal classification (e.g., modulation classi-
fication [22]–[24], RF fingerprinting [25], and radio burst
classification [26]) and channel estimation [27]–[29]. In these
applications, deep learning has shown excellent performance.
In this paper, we use deep learning as an enabling technology
for big data processing of radio signals. We discuss the new
paradigm of end-to-end processing of radio signals based
on deep learning, making signal processing from careful
feature and algorithm design to unified deep neural network
processing.

The rest of this paper is organized as follows. In Section II
we discuss the big data characteristics of radio signals. Then
we present the architecture of big data processing for radio
signals in Section III, where we also discuss in detail the sig-
nal processing paradigm based on deep learning. Experimen-
tal system and results are given in Section IV. Applications
and challenges are presented in Section V and Section VI,
respectively. Finally, we summarize the paper in Section VII.

II. BIG DATA CHARACTERISTICS OF RADIO SIGNALS
There are various definitions of big data. One of the most
widely used definitions is the one given by IDC in a report

in 2011 [30]: ‘‘Big data technologies describe a new genera-
tion of technologies and architectures, designed to economi-
cally extract value from very large volumes of a wide variety
of data, by enabling high-velocity capture, discovery, and/or
analysis.’’ This definition leads to the four characteristics of
big data, namely volume, variety, velocity, and value [31].
As a result, the ‘‘4Vs’’ terminology has been used widely to
characterize big data. Radio signals also exhibit such ‘‘4Vs’’
characteristics of big data.

A. VOLUME
With the growing demand for full-spectrum sensing, the fre-
quency band to be sensed and processed is becoming wider,
from tens of hertz to several hundred of megahertz, or to
several gigahertz or even terahertz. As a result, the signal sam-
pling rate is increasing and thus the amount of data acquired
for radio signal processing.

For example, in order to deal with a bandwidth of 1 GHz,
we assume the sampling rate to be 2.5 Gsps. To store each
sample in double bytes, the amount of data per second is
about 4.66 GB. The amount of data generated in one day is
about 392.9 TB. If we want to cover spectral range of 3 kHz -
300 GHz with a total sampling rate of 750 Gsps, then the
amount of data collected will increase by hundreds of times.
The amount of data collected in one day will be close to
115 PB. Moreover, if the number of sensor nodes increases,
the data volume will further increase linearly. Fig. 1 shows
the amount of data collected in one day. It can be seen that
as the bandwidth and the number of sensing nodes increase,
the amount of data collected increases linearly and is quite
astonishing.

FIGURE 1. The amount of data collected in one day. Sampling
rate = 2.5*bandwidth.

B. VARIETY
There are many kinds of radio signals and waveforms.
These radio signals can be classified into communication
signals, radar signals, navigation signals, etc. according to
the services. Taking communications signals for example,
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according to multiple access method, there are TDMA,
CDMA, and OFDMA signal; according to the modulation
type, there are AM, FM, PSK, FSK, ASK, QAM, etc.
Table 1 shows the categories/ranges of different attributes of
radio signals. Such variant signal types increase the difficulty
of radio signal analysis.

TABLE 1. Variety of radio signals.

C. VALUE
The purpose of radio signal analysis is to extract useful
information from the massive data collected. However, in the
massive data collected, in addition to the signals of interest,
it also contains a large amount of noise or interference, as well
as various signals we are not interested in, so it is necessary
to extract useful information in the dense signals, which is
of great value but with low density. Fig. 2 shows the real-
time spectrum of a certain frequency band. Strong sparsity
can be observed in the time-frequency dimension. If the user

FIGURE 2. Instantaneous spectral graph (the upper graph) and
time-frequency waterfall graph (the lower graph) of frequency band
114MHz-140MHz. We can see that there is only noise on a large amount
of time and frequency. High energy radio signals are very sparse.

is concerned with only one type of signal, then the proportion
of the data of potential value is further reduced.

D. VELOCITY
Radio signals are developing towards broadband and high
speed. For example, mobile communications signals have
evolved from 1G to 4G and 5G. The bandwidth is becoming
wider (from 30kHz in 1G to 60GHz in 5G) [14], and the
information rate is getting higher (from 2.4kbps in 1G to
expected 10-50Gbps in 5G) [14]. The data of radio signals
is obtained by sampling the real-time analog input. In order
to sense the complete bandwidth, the sampling rate is also
increasing, and the subsequent preprocessing and signal anal-
ysis tasksmust meet the real-time requirements to obtain real-
time signal content. Thus, the system is required to have a
high processing speed.

III. BIG DATA PROCESSING ARCHITECTURE FOR
RADIO SIGNALS
A. BASIC CONCEPT
Big data processing for radio signals not only needs to process
the current signal, but also has to manage and make full
use of the historical data in order to extract the value of
big data. Fig. 3 shows the core conceptual framework of big
data processing for radio signals. The framework focuses on
the unified representation, management, and rapid search of
radio signals. The signal ‘‘crawler’’ extracts each signal (the
extracted signal is represented in in-phase (I) and quadrature
phase (Q) data format, i.e., IQ format) in the original sampled
data and acquires the external features of the signal. These
external features along with the internal features of the sig-
nal learned by deep learning are then stored in the feature
database. The user input is designed to search information.
There are two ways for user input, one is ‘‘text input’’ similar
to the Internet search engine, and the other is ‘‘waveform
input’’ based on the real-time spectrogram. Regardless of the
input, the user input needs to be converted into a signal feature
vector that can be used to search formatches. After the feature
vector is obtained, it is matched with the stored signal feature
vectors in the signal feature database, and the matching result
is returned and displayed to the user in a specific manner.

FIGURE 3. Conceptual diagram of big data processing for radio signals.

The signal feature representation is the core of the
architecture. The features of radio signals can be referred
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to two parts: external features and internal features. The
external features are obtained from the signal ‘‘crawlers’’,
and used to characterize the radio signals in four dimen-
sions: time, frequency, space, and energy. For example,
the start time and duration time of the signal are to rep-
resent time occupation of the signal; the center frequency
and bandwidth of the signal are to represent frequency occu-
pation of the signal; the direction and position of emitter
are for characterizing the spatial properties of the signal;
the signal energy level and signal-to-noise ratio (SNR) are
defined as the energy of the signal. Internal features reflect the
essential characteristics of the signal that distinguish it from
other signals. We call these internal features signal DNA in
this paper. Signal DNAs are learned by the learning algorithm
based on the signal data and are not artificially designed.
All historical signals and current signal features are stored in
the signal feature database. In addition, the feature database
also contains indexes of signals to support rapid acquisition
of the corresponding signal IQ data according to the feature
matching results. The acquired signal IQ data are processed
and displayed to users using visualization technology.

We should note that big data processing for radio signals
is not just limited to above signal search function, but the
conceptual block diagram shown in Fig. 3 provides the most
basic and most essential components that the big data pro-
cessing tasks for radio signals depend on. Signal correlation,
prediction, and other functions can all be performed based
on the signal IQ data acquired by the signal ‘‘crawler’’ and
the signal feature representation. The physical architecture
we’ll present in the following section focuses on the unified
implementation architecture of big data processing for radio
signals in all aspects.

B. PHYSICAL ARCHITECTURE
The physical architecture of big data processing for radio
signals presented in this paper is shown in Fig. 4, which

FIGURE 4. Physical architecture of big data processing for radio signals,
which include signal acquisition end, signal processing end, signal
application end, and high speed data exchange network.

includes a signal acquisition end, a signal processing end, and
a signal application end. The data exchange between each end
is implemented through a high-speed data exchange network.
The signal acquisition end collects radio signals in a specific
frequency band as required, and submits the sampling data to
a high-speed data exchange network. The signal processing
end is the core of the architecture. It analyzes, stores, and
learns the data obtained by the collector. The analysis results
of different tasks are stored in the result data storage center
according to the user’s requirements. The learned models are
also stored and can be provided to the application node for
inference based on user needs. The signal application end
is oriented to the user application. It acquires and displays
signal data analysis results to the user. The high-speed data
exchange network completes the data exchange between each
end. The following sections describe each end in detail.

1) ACQUISITION END
The signal acquisition end consists of a series of acquisition
nodes. Each acquisition node acquires radio signal sam-
pling data within a specific bandwidth according to the task
requirements. Analog-to-digital converter (ADC) digitizes
analog signals of a specific bandwidth to complete the conver-
sion from RF signals to digital sampling streams. Sampling
can be achieved by low-pass sampling or band-pass sampling.
According to Nyquist-Shannon’s sampling theorem, the sam-
pling rate is at least twice the bandwidth. Fig. 5 shows two
common analog signal sampling structures. Regardless of
the sampling structure employed, the final obtained data
are digital sampling streams sampled within a specific
bandwidth.

FIGURE 5. Analog signal sampling structure. (a) Direct RF sampling
structure. The desired frequency band is selected by a tuning filter, and
then sampled by the ADC. (b) Superheterodyne reception sampling
structure. Through multi-stage tuning, the frequency band to be sampled
is moved to a fixed intermediate frequency, and then sampled by
the ADC.
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2) PROCESSING END
The signal processing end is the core of the big data
architecture. It focuses on the core functions of radio signal
‘‘crawler’’, data storage, learning, and inference.

As pointed out in Section II, radio signals in a wide fre-
quency band exhibit strong sparseness in the time-frequency
space. Therefore, it is possible to extract the contents of
each signal contained therein and discard other noise com-
ponents, thereby reducing data transmission stress. One of
the tasks of the signal ‘‘crawler’’ is to complete this function,
which completes the transformation from the digital sampling
sequence to the individual complex envelope radio signals.
From the point of view of time, a single radio signal can
be categorized into two types: continuous signals and burst
signals, in which continuous signals exist for a long time,
while burst signals occupy a limited time period. Continuous
signals can be regarded as a special form of burst signals with
an infinite duration. The IQ representation of a single radio
signal contains its complete information content. In addition
to obtaining signal IQ data, the signal ‘‘crawler’’ also extracts
external features corresponding to the signal: start time, time
duration, center frequency, bandwidth, direction, position,
power level, and signal-to-noise ratio. The deep learning
center uses signal IQ data to learn internal features of the
signal. Because the dimension of the external features and
internal features of the signal can be fixed, they can be stored
in a structured database.

In addition to the feature database, the stored data includes
signal IQ data, signal processing result data, and trained deep
learning model. The signal IQ data has variant length and
can be stored in various files of different sizes. The signal
result data includes signal feature parameters related to a
specific task (such as modulation type and channel coding
method) other than external features corresponding to the
signal described above and analysis result data of indefinite
length (such as demodulated bit stream and recovered original
speech). The application end can directly output the analysis
result for the user to use. The learning model data is a learnt
model corresponding to each task (for example, neural net-
work model parameters), and the signal application end can
acquire these models for inference.

Learning and inference are the core functions of the
processing end. Based on the historical data and the current
data, a learning model (such as a trained neural network
model) is obtained. Then the model is used to analyze and
infer the newly emerged signal, and the inference result
is obtained. Although many learning methods in the field
of machine learning can be used to solve some problems
in the field of radio signal processing, in view of the
superiority of end-to-end processing, this paper focuses
on deep learning to complete big data processing tasks
for radio signals, which will be discussed in Section C.
In order to adapt to the characteristics of radio big data,
learning methods need to be able to adapt to massive data,
various types of signals, multiple tasks, and incremental
learning.

3) APPLICATION END
The signal application end is directly oriented to user appli-
cations and includes two application types. The first type
of application is instruction-oriented application. After the
processing end receives the instruction (and data), it analyzes
the data and return the processing results to the user for use.
The second type of application is inference-oriented appli-
cation. This type of application is mainly targeted at users
who are sensitive to data privacy and requires the application
node to have inference capabilities. The inference-oriented
node acquires a trained model (e.g., deep neural network
model) from the processing end and then uses the model
to analyze and process the data to obtain the desired result.
The inference-oriented application node can also have certain
transfer learning ability according to needs. It can utilize
a widely-trained general learning model acquired from the
processing end, performs tailoring and fine tuning for specific
tasks, and thus solves the specific task the user needs to solve.

4) HIGH-SPEED DATA EXCHANGE NETWORK
The high-speed data exchange network completes the data
exchange between the acquisition end, the processing end,
and the application end. The most important task is to transfer
the sampling data acquired by the acquisition end to the
signal processing end for storage, learning, and analysis.
High-speed data exchange networks can use 10GbE,
IB or other fiber switching networks.

C. DEEP LEARNING: THE CORE DRIVER OF BIG DATA
PROCESSING FOR RADIO SIGNALS
1) DEEP LEARNING BASICS
Machine learning methods can be divided into supervised
learning, unsupervised learning and reinforcement learn-
ing [33]. Deep learning has achieved good performance in all
three aspects. Considering the potential application in radio
signal processing problems, this section introduces deep feed-
forward networks, convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and auto-encoders (AEs).

a: DEEP FEEDFORWARD NETWORKS
Deep feedforward network is a basic neural network struc-
ture. The basic unit is a neuron, the operation of which is
shown in Fig. 6. The mathematical expression is

y = ϕ

 m∑
j=1

wjxj + b

 , (1)

where x1, x2, . . . , xm are input signal, w1,w2, . . . ,wm are
weights, b is the bias, ϕ (·) is the activation function, and
y is the output. The activation function increases the nonlin-
ear expression ability of the entire network. The commonly
used activation functions are Sigmoid function, hyperbolic
tangent function, rectified linear unit (ReLU) [34], and vari-
ous improvements of ReLU (e.g, Leaky ReLU [35], parame-
terized ReLU [36], randomized ReLU, and exponential linear
unit (ELU) [37]).
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FIGURE 6. Basic model of a neuron.

Deep feedforward networks have many hidden layers.
Each hidden layer consists of multiple neurons. the output
unit can be divided into two categories: softmax units for
classification tasks and linear units for regression tasks. The
purpose of learning is to optimize an objective function. For
the classification task, the commonly used objective function
is the cross-entropy loss function. For the regression task,
the objective function commonly used is the mean square
error function. The network can be trained with the popular
Back-Propagation (BP) algorithm [38] with stochastic gradi-
ent descent (SGD) [39].

b: CONVOLUTIONAL NEURAL NETWORKS
CNNs are a special type of neural network originally designed
for computer vision applications [40]. Unlike deep feed-
forward networks, CNN has introduced new layers such as
convolution layer and pooling layer.

In the convolution layer, the feature map of the previous
layer is convolutionally processed with the current convolu-
tion kernel to obtain the convolution output. After the nonlin-
ear activation, the output feature map of the convolution layer
is obtained. Denote the input tensor of the convolution layer l
as x l ∈ H l

×W l
×Dl , the convolution kernel as f l ∈ H×W×Dl ,

if there are D convolution kernels (the number of channels
output by the l + 1 layer Dl+1 is equal to D), the convolution
output is

yil+1,jl+1,d =
H∑
i=0

W∑
j=0

Dl∑
d l=0

fi,j,d l ,d × x
l
il+1+i,jl+1+j,d l , (2)

where (il+1, jl+1) is the index of the convolution result,
satisfying

0 ≤ il+1 < H l
− H + 1 = H l+1, (3)

0 ≤ jl+1 < W l
−W + 1 = W l+1. (4)

The coefficients of the convolution kernel can be regarded
as the learned weights. These weights are the same for all
inputs in different positions. This is the ‘‘weight sharing’’
characteristic of the convolution layer.

The pooling layer mainly completes the task of downsam-
pling, and the number of input channels and output channels
are equal, but the size of the output feature map is often
smaller than the input feature map, depending on the size

of the pooling kernel and the step size. The commonly used
pooling operations are average pooling and max-pooling, and
the average (maximum) value of all values covered by the
pooling kernel is used as the pooling result. Because the pool-
ing layer is concerned with the existence of certain features
rather than the specific location of the features, it provides
a certain degree of translation invariance. In addition, due
to the reduced size of output feature map, the computational
complexity of subsequent networks is reduced.

In addition to the convolution layer and the pooling
layer, CNNs can also include a fully connected layer.
The output layer can be either a classification layer or a
regression layer, depending on the specific task. The com-
monly used CNNs include LeNet (1998) [40], AlexNet
(2012) [41], VGGNET [42], ResNet [43], DenseNet [44],
GoogLeNet (i.e., Inception-v1) [45], Inception-v2 [46],
Inception-v3 [47], Inception-v4 [48], Inception-ResNet [48].

c: RECURRENT NEURAL NETWORKS
An RNN is a neural network with memory that is suitable
for processing sequence as input [49]. In order to solve the
vanishing gradient problem of RNN, several solutions have
been proposed, and the long short term memory (LSTM)
network [50], [51] is one of them. The key idea of LSTM
is the cell state. As shown in Fig. 7, LSTM adds and removes
information to the cell state called input gate, forget gate, and
output gate [33]:

ft = σ
(
Wf [ht−1, xt ]+ bf

)
, (5)

it = σ (Wi[ht−1, xt ]+ bi) , (6)

C̃t = tanh (WC [hC−1, xt ]+ bC ) , (7)

Ct = ft � Ct−1 + it � C̃t , (8)

Ot = σ (W0[ht−1, xt ]+ b0) , (9)

ht = Ot � tanh(Ct ), (10)

where � denotes element-wise product.

FIGURE 7. Diagram for LSTM.

The gated recurrent unit (GRU) [52] has made some
improvements to the LSTM. It merges the forget gate and
the input gate into a single ‘‘update gate’’ and merges the
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cell state with the hidden state. Its main advantages are lower
computational complexity and simpler models. In addition
to GRU, there are other improvements to LSTM, such as
convolutional LSTM [53].

d: AUTO-ENCODER
AE is a deep neural network method for unsupervised feature
learning [54], [55]. AE contains two parts: the encoding part
and the decoding part, as shown in Fig. 8. The input data of
the coding part is mapped to a low-dimensional feature space,
and the decoding part reconstructs low-dimensional features
back to the original input. The AE training goal is to make
the reconstruction error as small as possible, i.e.,

`
(
x, x̂

)
=
∥∥x − x̂∥∥2, (11)

where x is input, x̂ is the output of the decoder. Deep AEs are
obtained by extending the encoder and decoder into multiple
hidden layers. It should be noted that the layers in the AE
are not necessarily limited to the fully connected layer, but
may also be convolutional layers or LSTM layers. In general,
the dimension of the features is lower than the dimension of
the input signal, so the learned features can be used for signal
compression.

FIGURE 8. Diagram for AE.

2) NEW PROCESSING PARADIGM: FROM SIGNAL
TO RESULT
An important idea of deep learning is the end-to-end learning
paradigm, which is the most important aspect that distin-
guishes it from other machine learning algorithms. For the
deep model, the input data is in the form of original samples,
and the features used to solve specific tasks are automatically
learned through training the network. In the traditional radio
signal processing field, due to the specificity of each task,
the traditional signal processing algorithms are specifically
designed. The features of radio signals used to solve tasks
such as signal recognition also need to be extracted through
feature engineering. In the face of big radio signal data sce-
narios, these over-designed methods lack flexibilities and are
difficult to deal with the demands of variant signal inputs and
multi-task outputs that big data analysis faces. This paper uses
deep learning approaches for radio signal processing to obtain

a new ‘‘signal to result’’ processing paradigm, as shown
in Fig. 9.

FIGURE 9. Radio signal processing based on deep learning.

Traditional radio signal processing includes tasks such
as signal detection, parameter estimation, and information
recovery. These tasks all can be accomplished with deep
learning methods. In addition, for big data analysis of radio
signals, tasks such as signal prediction, signal correlation, and
signal representation also need to be completed. Table 2 lists
some signal processing tasks based on deep learning. Among
them, the network input used for signal prediction can be
simplified as the input of signal parameter sequence (such as
the time sequence of the signal to predict its future appear-
ance time) without inputting the complete signal IQ data.
In addition, unlike other tasks, the signal correlation task
needs to analyze whether there is association among multiple
signals. Therefore, the input is not a simple single signal but
multiple signal bursts. The length of the input signal depends
on the specific task and the specific signal. There are two
circumstances: fixed length and variable length. The CNNs
can be used to process fixed-length input, while the RNNs
can handle variable-length input. In Table 2, except that the
signal interpretation tasks may output a sequence of varying
length, the network output of other tasks is mostly of fixed
length.

TABLE 2. Signal processing tasks based on deep learning.

Using deep learning techniques will bring a series of
advantages to radio signal processing, including:
• Massive data learning. First, deep learning can benefit
from large amounts of data [56], [57]. The performance
of traditional machine learning methods is no longer
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significantly enhanced as the amount of data reaches
a certain amount. However, the performance of deep
neural networks can be further enhanced as the amount
of data increases, and massive amounts of data can help
avoid over-fitting of deep network models. In terms of
computation, the forward and backward propagations
can be implemented effectively in parallel [58]. The
use of processing units such as GPU, TPU [59] and
FPGA [60] greatly improves the efficiency of deep
learning training and inference, making it possible to
learn large amounts of data.

• High-speed data learning. Radio signal data is generated
at high speed in real time, and deep learning can adapt
to continuous learning of high-speed data streams. Deep
learning mostly uses the SGD for optimization, in which
at each iteration one sample or one mini-batch of sam-
ples are used to update the model parameters. This train-
ing mechanism can be easily adapted to online training
of newly generated data [56]. In addition, as the real-
time data stream of radio signals is continuously gener-
ated, the environment may also change. Therefore, it is
necessary to adopt a lifelong learning mechanism [61]
to absorb the features of new data without forgetting
the features that have been learned before. Deep lifelong
learning [62]–[64] provides an effective mechanism for
high-speed data stream learning.

• Automatic feature extraction. Amajor advantage of deep
learning is the ability to automatically learn features
from the data. Traditional signal processing methods
(including methods using traditional machine learning)
require careful research of radio signal features. Feature
engineering is time consuming and it is not always
possible to extract signal features that are most useful
to a particular task. In addition, radio signals propagate
through the wireless channel, and various factors such as
multipath, noise, and interference cause distortion of the
received radio signals. The distortions are dynamically
changing in time and space. Artificially designed fea-
tures can not adapt to the impact of various non-ideal
factors. Rather, deep learning methods learn features
from the received radio signal data itself, which not
only simplifies the process of feature extraction, but also
improves the robustness.

• Multi-task adaptability. The features learned via deep
neural networks have certain adaptability to multiple
tasks. Therefore, a single model can be used to solve
multiple tasks. For big data processing for radio signals,
we often face with multiple tasks. Although a dedicated
learning model can be used for each task, this will
inevitably lead to too many models and complicate the
implementation. Using the same model to deal with
multiple tasks is a simpler and more economical imple-
mentation. Furthermore, the deep neural network model
learned for a certain task can also solve new tasks via
transfer learning [65], which helps rapid learning and
processing of new tasks.

D. BIG DATA BRINGS NEW FEATURES TO RADIO
SIGNAL PROCESSING
Compared to traditional radio signal processing methods,
the big data processing architecture brings some new features
to signal processing.

• Memorize the history. Since the architecture stores all
historical radio signal data, the system has a history
memory function. According to the historical data,
the processing system can learn the inherent features of
the data, and then based on the learned model, the new
received data can be inferred and analyzed, so as to be
able to deal with various new environments. In addition
to this, it is also possible to trace back the history of
signals of current interest, and to obtain the evolution
of the signals from the history to the current events, and
to provide possibilities for future state prediction.

• Predict the future. Based on the learning of historical
data, combined with the current data, the future trend
of the signal can be predicted. Future state predictions
are of great value for many applications. For example,
for cognitive radios, prediction of the spectrum occu-
pancy of the primary user may provide support for the
decision of spectrum access strategy. Another example is
for wireless network security. Through the prediction of
interference signals, corresponding anti-jamming mea-
sures can be activated in advance to ensure the security
of the wireless network to the greatest extent.

• Associate one another. Big data processing can ana-
lyze the correlation between signals. Traditional sig-
nal processing methods mostly deal with the signals
they are concerned with, and very limited attention is
paid to whether there is a certain degree of correlation
between signals. The ‘‘beer-diapers’’ association pro-
vides good value for commercial applications and the
‘‘signal A-signal B’’ association can provide potential
value for radio applications. For example, for inter-
ference classification, the interference signal which is
highly correlated with the communications signal in
time is likely to be tracking interference, and the interfer-
ence signal highly correlated with the communications
waveform is likely to be forward-type interference. For
another example, through online correlation analysis of
radio signals transmitted by wireless ad hoc networks,
real-time network node connectivity and network topol-
ogy can be obtained, thereby weak links of the network
in operation can be analyzed, and corresponding mea-
sures to improve its robustness can be taken in advance.

IV. EXPERIMENTAL SYSTEM AND RESULTS
A. EXPERIMENTAL SYSTEM
The experimental system adopts a simplified structure of a
single station and is used for demonstration of one of big data
application of radio signals, i.e., radio signal search engine.
The physical architecture is shown in Fig. 10. The acquisition
end contains one sensor node with maximum instantaneous
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FIGURE 10. Experimental system.

acquisition bandwidth of 300 MHz which works in the very
high frequency (VHF) band. The high-speed switching net-
work is 10GbE. The processing end includes a 3PB dis-
tributedmemory system (data read/write rate of 6.4GB/s) and
a 10-node CPU/GPU distributed computing platform. The
application end is a user terminal (computer) for input of user
search and display of results.

There are two ways to search for signals, as shown
in Fig. 11. The first way is text input: the user inputs
the signal parameters to be searched in the text box pro-
vided by the interface. The input may be a single param-
eter (such as ‘‘frequency 30MHz-200MHz’’, ‘‘modulation
type BPSK’’), or may be multi-parameters (e.g., ‘‘frequency
30MHz-200MHz, modulation type BPSK’’, or ‘‘frequency
about 88MHz, modulation type is not BPSK’’). The system
interprets the user input, converts the content to be a feature

FIGURE 11. Two ways for signal search input. (a) Text input; (b) Signal
input. We can select a signal on the instantaneous spectrogram (the
upper graph) or on time-frequency waterfall graph (the lower graph).

vector, computes correlation with the stored feature vectors
and then returns the search results. The matching degree is
displayed one by one from the highest to the lowest. The
second way is signal input: the user can select the signal
he wants to search in the spectrum graph, or load the signal
sampling data file to be searched, and the system extracts the
signal feature vector and matches it with the stored feature
vectors and returns the matching result.

B. EXPERIMENTAL RESULTS
1) SIGNAL CLASSIFICATION EXAMPLE: CNN-BASED
ACARS IDENTIFICATION
Radio signal search involves the recognition of received
signals. This section uses Aircraft Communication
Addressing and Reporting System (ACARS) [66] emitter
identification as an example to introduce a deep learning-
based recognition method implemented in the experimental
system. ACARS is a digital data link system that transmits
short messages (messages) between an aircraft and a ground
station via radio or satellite. ACARS has been widely used
in the current civil aviation system. In order to verify the
powerful end-to-end processing function of deep-learning,
we do not perform classical processing operations such
as demodulation, decoding, and information recovery, but
directly use CNN to obtain the classification result based
on the input IQ. The structure of the used CNN is shown
in Fig. 12. The network input is a two-dimensional matrix
composed of IQ components of the signal.

FIGURE 12. Residual CNN network structure. ‘‘S’’ in the figure indicates
that the convolution contains padding to make the input and output the
same size; ‘‘/2’’ indicates that the downsampling factor is 2, making the
output size reduce to half of the input size; ‘‘maxpool’’ means maximum
pooling; ‘‘Global avgpool’’ means global average pooling; ‘‘conv’’ stands
for the convolutional layer; the number before "conv’’ indicates the size
of the convolution kernel; the number following ‘‘conv’’ indicates the
number of convolution kernels; ‘‘SoftMax’’ indicates the SoftMax layer;
the output is the category; the class label uses One-Hot encoding; the
dotted arrow indicates there is pooling in the process. All activation
functions are ReLU. There is also a batch normalization layer between
each convolutional layer and activation layer, which is not shown in the
figure for the sake of simplicity.
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We acquired samples of ACARS signals transmitted over
the air as the training samples. We conducted experiments on
the identification performance. ACARS signals of 2016 air-
crafts were used. Each aircraft had 20 signal samples for
training and 10 signal samples for verification. Fig. 13 shows
the network training and validation curves. The training
method is SGD with momentum. The learning rate is grad-
ually reduced, the mini-batch size is 64, and a validation
is performed every 2000 iterations. With the progress of
training, the recognition rate is getting higher and higher.
After the training stops, the total test accuracy rate is 99.67%,
which validates the effectiveness of the method.

FIGURE 13. Classification rate of the network.

2) SIGNAL SEARCH RESULTS
For ease of analysis, the experiment was conducted on a
1.6 MHz bandwidth. The antenna was mounted in a place in
Jiaxing, Zhejiang, China. Following gives the experimental
results obtained by different search inputs.

(a) Text input ‘‘2016-12-30 to 2017-01-02 all signals.’’
The search returned 1,265,184 signal bursts. The time-

frequency occupancy of all these signals is shown in Fig. 14.
It can be seen that at some frequencies, the signal is very
dense, but overall it shows sparseness.

FIGURE 14. Signal heat map. The horizontal coordinate is time and the
vertical coordinate is frequency.

(b) Text input ‘‘2016-12-30 to 2017-01-02, ACARS
signals.’’

The search returned all ACARS signals from 2016-12-30
to 2017-01-02 with a total of 83,812 records. The time and
frequency distributions are shown in Fig. 15. It can be seen
that the signals are concentrated in three frequency points and
show strong regularity in time. The number of signals in the
daytime is large and the number of signals in the evening is
small. This is closely related to the aircraft flight planning.

FIGURE 15. ACARS search result. (a) Time-frequency distribution. The
horizontal coordinate is time and the vertical coordinate is frequency.
(b) Time distribution of the signal. The horizontal coordinate is time and
the vertical coordinate is number of signals.

(c) Text input ‘‘2016-12-30 to 2017-01-02, Aircraft
.B-6341.’’

Signals corresponding to the Aircraft .B-6341 were
searched. Note that .B-6341 is the aircraft registration number
of this aircraft. Fig. 16 shows the time distribution of these
signals. It can be seen that the Aircraft flew over the place
where the system antenna was located four times a day. Based
on the time interval between any consecutive two flights,
we can argue that the Aircraft took off and landed at one of
the airports located near the antenna (for instance, Xiaoshan
Airport of Hangzhou, or Pudong Airport of Shanghai) with
high probability.

FIGURE 16. Time distribution of signals from Aircraft .B-6341. The
horizontal coordinate is time and the vertical coordinate is aircraft
registration number.
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(d) Waveform input.
In the experiment, a signal near 131.45 MHz was selected

based on the real-time spectrum graph, as shown in Fig. 11(b).
The system first converts the selected signal into a feature
vector, and then correlates the feature vector with the feature
vectors of other signals in the feature database, and returns
results of other signals that match the signal. Fig. 17 shows
the matching degree between the returned signals and
the selected signal (in time period from 2016-12-30 to
2017-01-02). It can be seen that the returned signals and the
selected signal (further analysis shows that it comes from
Aircraft .B-7196) mostly belonged to the same aircraft, which
illustrates the effectiveness of the matching method.

FIGURE 17. Matching degree. The horizontal coordinate is time and the
vertical coordinate is the matching degree.

V. APPLICATIONS
The big data processing architecture for radio signals pro-
posed in this paper can be applied in the fields of cognitive
radio, spectrum monitoring, cyberspace security and so on.

A. COGNITIVE RADIO
Wireless spectrum is a valuable natural resource. The fixed
spectrum allocation mechanism designated by the govern-
ment regulatory agency leads to an unbalanced utilization of
spectrum. At the same time, the overall average utilization
rate of the spectrum is also low. In order to improve the spec-
trum utilization, CR technology has been proposed to dynam-
ically utilize the spectrum [8]. The secondary user (SU)
can access the corresponding frequency band only when
the primary user (PU) is idle, and once the PU reuses the
frequency band, the SU needs to vacant the frequency band
and look for other idle channels to continue communication.

Dynamic spectrum access is an autonomous, dynamic,
and efficient method of spectrum use, which is of great
significance for alleviating spectrum resource shortage and
improving spectrum utilization. However, the realization of
dynamic spectrum access needs to solve a series of problems,
including spectrum sensing, frequency rendezvous, spectrum
handoff and so on [9]. The big data processing for radio
signals proposed in this paper can be used to sense the
primary user signals. It can not only acquire the frequency
and time occupancy of the spectrum, but also can obtain the
signal parameters (such as center frequency, bandwidth and

symbol rate) as well as the signal types and activity patterns of
primary user. Based on the spectrum information obtained by
radio signal processing, cognitive radio can make spectrum
decisions and optimize resources to achieve the purpose of
efficient use of wireless spectrum resources.

B. SPECTRUM MONITORING
At present, with the continuous increase in the number of
radio emitters used, the continuous increase in spectrum cov-
erage density, and the further deterioration of the electromag-
netic environment, spectrum regulation is becomingmore and
more important. In order to be able to accurately find and
enforce interference sources to ensure the communication,
spectrum regulation department needs to find and identify
interference sources, illegal stations, and malicious base sta-
tions through spectrum monitoring, that is, detect various
abnormal radio behaviors. There are mainly three types of
these abnormal behaviors.
• Users with equipment failure or selfish users who in
order to maximize their own communication perfor-
mance, utilizing the spectrum in a way beyond regula-
tory constraints, such as transmitting at a power higher
than the permitted levels of operation. This abnormal
behavior can be detected by estimating the parameters
of the received signal (such as estimating the transmit
power).

• Illegal users using waveforms different from those used
by authorized systems, such as jammers that maliciously
disrupt communications. This illegal behavior can be
detected by estimating the parameters or identifying the
protocols of the received signals.

• Illegal users imitating the authorized user system, such
as illegal broadcast stations, fake base stations, and pri-
mary user emulation attackers [67], [68] in cognitive
radio. For such illegal users, simply identifying the sig-
nal parameters/protocols cannot distinguish them from
the authorized user signals. By learning and extracting
RF or/and wireless channel fingerprinting features, it is
helpful to identify such illegal users.

C. CYBERSPACE SECURITY
With the increasing dependence of human social life on
cyberspace, cyberspace security [69], [70] has become a
highly-regarded concept. Wireless communication networks
based on radio signals are an important part of cyberspace and
their security is equally important. The electromagnetic spec-
trum is a completely open space. Therefore, the wireless net-
work cannot form an island of information exchange through
physical isolation, and there is a risk of being attacked on the
transmission medium itself.

For designing high-security wireless networks, in addition
to using encryption and other mechanisms to ensure informa-
tion security at the information level, it is also necessary to
detect, identify, and respond to abnormal attacks at the signal
level. Due to the openness of the radio frequency spectrum
environment, the jamming environment faced by the wireless
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network is also a complicated environment composed of
various radio signals. The detection and identification of
wireless network jamming itself is a problem of big data
analysis of radio signals. There are multiple types of jam-
ming, such as single-tone jamming for interfering a single
channel, wideband noise jamming for attacking the entire
operating frequency band, tracking jamming which tracks
and interferes the frequency of frequency hopping system,
and fraudulent jamming that attempts to access and deceive
a communications network.

By identifying the type of interference, the wireless
system/network can take appropriate measures to deal with it.
For example, for broadband noise jamming, the communica-
tion performance can be enhanced by switching the operating
frequency band, or increasing the transmission power. For
fraudulent jamming, the spoofing signal is identified and its
information is not responded, thereby minimizing the pos-
sibility that the spoofing source accesses the network and
disturbs the normal operation of the network. For tracking
jamming, the difficulty of being tracked can be reduced
by reducing the transmission power, increasing the hopping
speed, or increasing the hopping bandwidth. For forward-
type jamming, since the interference signal is a past com-
munication signal, the interference signal can be utilized to
enhance communication performance, such as anti-fragile
communication technology.

VI. CHALLENGES
A. UNIFORM REPRESENTATION OF RADIO
SIGNAL FEATURES
In order to facilitate search for and correlation analysis of
radio signals, it is necessary to uniformly represent radio
signals, such as signal feature vectors given in Section III
of this paper. The difficulty in the unified representation of
radio signals lies in the uniform description of various radio
signals with feature vectors of the smallest dimension without
loss of information contained in the signals. The represen-
tation needs to be unique, universal, robust, concise, and
time-sensitive.

• Uniqueness: The representation vector of a signal
can uniquely represent this signal, and there will be
no case where two different signals have the same
representation.

• Universality: The representation can be applied to radio
signals in a general sense, not just to some specific types
of radio signals.

• Robustness: The noise disturbance of the input signal
should not cause a significant change in its representa-
tion. The representation should be robust to noise.

• Conciseness: the representation dimension should be as
low as possible and the dimensions are required to be
fixed. Principal component analysis (PCA), indepen-
dent component analysis (ICA), or nonnegative matrix
factorization (NMF) [71] may be used to reduce the
dimensionality of the feature vector.

• Timeliness: the computational complexity of extraction
for each feature element should also be as low as
possible to meet the real-time requirements of the
application.

In this paper, the feature representation of radio signals is
divided into two parts: external features and internal features.
The features obtained from deep learning are used as internal
features of signals (we call it ‘‘signal DNA’’ in this paper).
This idea provides a preliminary approach for the unified
representation of radio signals. However, at present, we can-
not theoretically analyze the performance of this ‘‘signal
DNA’’ representation. Therefore, signal DNA is still an open
issue.

B. DISTORTIONLESS COMPRESSION OF WIDEBAND
SAMPLED DATA
Big data processing for radio signals is faced with a wide
frequency band processing environment. With Nyquist-
Shannon’s sampling theorem, the sampling rate is at least
twice the sampling bandwidth. Therefore, the amount of data
after wideband sampling is very large. In order to reduce the
pressure of high-speed data exchange, it is necessary to study
the distortionless compression method for wideband sampled
data.

In the previous of this paper, it has been pointed out
that radio signals exhibit sparseness in the time-frequency
domain. Therefore, there is information redundancy in sam-
pled data acquired under Nyquist sampling framework, which
provides a prerequisite for its compression. Compressed sens-
ing is a signal sampling method that uses signal sparsity
(sampling and compression are combined into one), which
mainly includes sub-Nyquist sampling and sparse recovery.
A variety of compression sampling methods for radio sig-
nals have been proposed, such as random demodulator sam-
pling (RD) [72], modulated wideband converter sampling
(MWC) [73], and multi-rate Nyquist sampling (MRSS) [74].
These methods have carried out a series of theoretical explo-
rations and experimental analyses on sub-Nyquist sampling.
Sparse recovery methods such as matching pursuit, convex
relaxation, Bayesian methods and even CNNs can be used
to reconstruct the original sparse signal [75]–[77]. However,
these sub-Nyquist methods all make certain assumptions on
the input signal model. In a general sense, compressive sam-
pling methods applicable to arbitrary radio signals are still a
problem. In addition, it is also possible to consider the use
of AEs [78] to compress radio signals. How to design and
train AEs adapted to the actual spectrum environment is also
a problem that requires subsequent research.

C. DEEP NEURAL NETWORKS FOR RADIO SIGNALS
At present, the research on deep neural networks mainly
focuses on the fields of image, speech, and language pro-
cessing. The neural network structures adopted also focus on
these areas. For example, CNNs are used for image recog-
nition and video analysis, and RNNs are used for speech
recognition and machine translation. Although CNNs and
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RNNs can be used for certain tasks to handle radio signals
and obtain good performance. However, radio signals have
their own particularities. The deep neural network structure
that can adapt to general radio signal processing is still an
open problem to be solved.

Firstly, radio signals are usually represented by the
complex baseband envelopes, and the samples are complex
numbers. Currently, deep learning-based radio signal classi-
fication often extracts IQ components of the signal and the
IQ components are used as the input of the neural network.
The computations are performed in the real-number domain.
However, whether the direct use of a complex neural net-
work [79] to solve radio signal identification problems has
advantages in performance still requires future research.

Secondly, in the field of image processing, CNN’s hierar-
chical feature extraction process has a certain physical corre-
spondence with human visual cognition system. However, for
radio signal processing, the physical meaning of the activated
features will affect the design of network structure. Taking
the communication signal as an example, pulse shaping on
the physical layer and transmission distortions in the channel
transmission process can be described by filtering (convolu-
tion). In order to learn these convolution processes, CNNs
are regarded as a good candidate. In addition, processes such
as differential encoding in the modulation process will lead
to correlation of consecutive symbols. In order to learn these
correlations, RNNs may be a better choice. The generation
process of communication signals contains a large number of
convolution processes and also introduces temporal correla-
tion. Therefore, the hybrid structure of CNN and RNN may
be more suitable.

Finally, big data processing for radio signals is faced with
a multi-task scenario, such as signal parameter estimation,
signal type identification, anomaly detection and so on.
A simple approach is to design a specialized neural net-
work for each task, which will inevitably lead to too many
network models, increasing the storage complexity. Another
approach is to design a common network structure to solve
various tasks. At present, there have been many advances in
deep learning for multi-task learning. In particular, [80] has
designed a unified structure to solve multi-domain tasks such
as image recognition and machine translation, but for radio
signal big data processing, universal deep neural network
structure is still a problem to be solved.

D. DEEP OPEN SET LEARNING METHOD FOR
RADIO SIGNALS
Radio signal recognition is a main task in big radio data
processing. Existing radio signal recognition tasks mainly
considered the closed set recognition scenario, but in reality,
we often face with the open set scenario, that is, the signal to
be identified may not belong to any class in the trained clas-
sifier. It is necessary to determine whether the signal belongs
to an unknown class. A natural approach is to thresholding on
probability/confidence to reject unknown classes because one
might hope that for an unknown input all classes would have

low probability. However, the existence of ‘‘fooling’’ samples
[81], [82] shows that thresholding confidence alone is not
sufficient to determine what is unknown. In image recogni-
tion, Bendale and Boult [83] and Ge et al. [84] introduced
OpenMax layer to estimate the probability of an input being
from an unknown class and obtained better performance than
the existing methods. This idea needs to be tested in the field
of radio signal open set recognition. Non-Gaussian feature
modeling [85] may need to be combined in the distribution
estimation of the activated features to improve the perfor-
mance. Other open set recognition methods based on deep
learning still need to be studied.

VII. CONCLUSION
In this paper, we have presented a big data processing
architecture for radio signals and discussed in detail the
new signal-to-result (end-to-end) signal processing method
based on deep learning. As a verification of the architecture,
we used the radio signal intelligent search engine as an exam-
ple to introduce the system composition and experimental
results, which validates the effectiveness of the signal big
data processing method based on deep learning. In addition to
radio signal search engine, we have introduced the potential
application of this architecture in cognitive radio, spectrum
monitoring, and cyberspace security. In the future work, chal-
lenges such as unified representation of radio signal features,
distortionless compression of wideband sampled data, deep
neural networks for radio signals, and deep open set recogni-
tion of radio signals need to be studied and solved. In addition,
signal processing tasks such as demodulation and decoding
need to be tested on the experimental system to show the
generation and robustness of deep learning-based signal-to-
result processing paradigm.
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