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ABSTRACT Conventional image resizing problems demand hard conditions on size and aspect ratio, which
must be met with no tolerance. In this paper, a generalized optimization framework is presented, which can
handle soft conditions as well as the hard ones. The soft condition can be given by an allowable range
of the image parameter, which is incorporated as an inequality condition in the constrained optimization
framework. Given the soft constraints, the proposed framework seeks to find the set of image parameters that
minimize the cost function. A constrained optimization via a linear programming framework is employed to
manage a diverse combination of soft and hard conditions for the target image. The optimization is based on
the image line, which optimally selects a set of image lines (columns and rows) to be deleted for size reduction
in accordance with the cost function and the constraints. As a case study, the line-based optimal image
resizing method based on the linear programming framework is applied for the pre-processing of VGG-19
convolutional neural network (CNN). Although the target input size is a hard condition of 224× 224 for the
VGG-19 CNN, the proposed optimization framework with a soft condition on the image size firstly finds
an optimal near-square image with a tradeoff against the saliency level of image features. Then, the optimal
near-square image is linearly scaled to the final image size to meet the hard condition.

INDEX TERMS Constrained optimization, convolutional neural network (CNN), image processing, linear
programming.

I. INTRODUCTION
Image resizing methods may be categorized into two
groups, namely the content-aware image resizing [1]–[5]
and the feature-aware (or recognition-oriented) image
resizing [6], [7]. In the content-aware image resizing meth-
ods, the main target for the size reduction (or expansion) is
the pixels in the non-salient regions, preserving the salient
visual information in the image. Since the content-aware
image resizing is mainly for human vision, the resized image
should be visually pleasing without noticeable distortions.
The content-aware image resizing method has been evolved
to further achieve the aesthetically pleasing display by learn-
ing the human gaze activities [8], [9]. On the other hand,
the purpose of feature-aware (or recognition-oriented) image
resizing approaches [6], [7] is to preserve local features for
machine vision rather than to display for human vision. It has
been shown that the feature-aware image resizing method
can reduce the amount of image data efficiently, while pre-
serving the image features sufficiently for visual search and
retrieval [6], [7].

In the content-aware image resizing problem the size of the
target image is a hard requirement for adapting the original
image to the given display device. However, as the image
resizing technique extends its scope to the feature-aware
image resizing for machine vision, new requirements are
added for the target images. That is, for the feature-aware
image resizing approach, since the end-user of the resized
image is a computer (machine) rather than a human being,
the requirement to a fixed size can be relaxed. For example,
if the purpose of image resizing is to reduce the amount
of data for the wireless transmission to the server and is
to be used for visual search, then the requirements such as
fixed target size and fixed aspect ratio may not be neces-
sary. Instead, a certain level of feature saliency needs to be
imposed as a constraint to guarantee a minimal level of the
feature matching and recognition performance. In this case,
depending on the spatial distribution of local image features
(e.g., the locations of key-points), the size and the aspect ratio
of the resized images are allowed to vary and, thus, are given
as soft requirements.
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There are applications for the feature-aware image resiz-
ing that require the size of the target image to be fixed
as a hard condition. For example, the CNN (Convolu-
tional Neural Network) machines such as AlexNet [10]
and VGGNet [11], which are being adopted for various
applications [12]–[20] via the transfer learning, accept only a
predetermined fixed-size input image. Specifically, the orig-
inal images should be resized to 227 × 227 and 224 × 224
for AlexNet and VGGNet, respectively. Note that the original
image size can be much bigger than the fixed-size CNN
input, then the size reduction of the large image to relatively
small one of 227 × 227 or 224 × 224 may cause substantial
information loss and object distortion. In particular, since
most CNN inputs are to be square, the object distortion due
to the image resizing can be severe when the original image
is thin or long with the aspect ratio much less or greater
than 1. In fact, as reported in [21], the average side lengths
of the popular 10 image datasets vary from 319.7×227.0 for
Caltech-101 [22] to 1024.0×768.0 for Holiday datasets [23].
So, the image sizes are diverse and the aspect ratios can be far
from 1 (i.e., not square). In such cases a substantial part of the
object-of-interest (OOI) in the original image can be easily
excluded in the resized image. To alleviate this problem an
optimal balance between the linear scaling and the cropping
may be useful, which forces to include the OOI as much as
possible by the cropping but to avoid the shape distortion of
the OOI by the linear scaling.

Various requirements can be imposed to the feature-aware
image resizing problems, which makes it complex to find an
optimal solution. This leads us to formulate the image resiz-
ing as an optimization problem with some constraints, where
the constraints may include the aspect ratio, the saliency
level, the amount of data, and the target image size, etc.
In this paper, a generalized optimization solver for the
image resizing with hard and soft constraints is proposed
in the linear programming framework. The proposed image
resizing framework uses straight horizontal and vertical
lines [24], [25] instead of the pixel-wise curved seam as
a basic unit for image resizing. Then, basically, the opti-
mal image resizing is executed by pruning non-salient
rows and columns in the image in accordance with the
cost function and the constraints. Based on the line-based
image resizing, it becomes a binary optimization problem,
where a binary decision of line-deleting (binary 0) or line-
keeping (binary 1) is made for each image line. Another merit
besides the simplicity of the line-based image resizing is the
size-recoverability to the original image from the resized one.
That is, by sending the position information of the deleted
lines to the receiver, they can be reconstructed from the
undeleted neighboring image lines by interpolations [25].

The rest of the paper is organized as follows. In Section II,
related works are reviewed from the perspective of various
requirements in resizing images. Section III introduces the
constrained optimization of image resizing under the linear
programming framework. In Section IV, the image resizing is
formulated in the quadratic programming framework. A case

study for a fixed-size and near-square image resizing for
the application of CNN input with experimental results is
presented in section V. Finally, section VI draws a conclusion.

II. RELATED WORK
In [26], a mesh-based image resizingmethodwas proposed to
alleviate the distortions caused by the pixel-wise seam carv-
ing methods [1], [2], where the quads in the salient regions
are resized uniformly to preserve the shape information,
while those in the non-salient regions are the main target for
deformations. So, instead of pixel-wise seam path, the quad
in themesh grid is the basic unit for the resizing and the defor-
mations required for the image resizing aremainly imposed to
the quads in the non-salient regions. However, as an extreme
case, a quad can be contracted into a line or even a point.
To solve this problem an axis-alignment condition is imposed
to the non-uniform quad resizing as a constraint to the mesh
grid optimization framework. Specifically, Panozzo et al. [4]
have proposed a quadratic optimization framework with a
constraint of a minimum size for each quad of the mesh grid.
This quadratic optimization is adopted for the grid-warping
based image resizing problems [6], [7], [27] for the sake of
preserving local image features.

In [24] and [25] a straight horizontal or vertical line is used
for the basic unit for image resizing rather than a pixel-wise
curved seam or an axis-aligned quad. The straight image line
can be viewed as a special case of the curved seam path
in [1] and [2]. In fact, as observed in [25], the forward energy
in [2] adopted for alleviating the distortion problem of the
seam carving tends to make the seams straight and sparse.
Also, it is computationally more attractive to choose a line
(i.e., a column or a row) for the candidate of removal or
duplication rather than finding a pixel-wise curved path as
in the seam carving method. Another merit of the line-based
image resizing is that, since the row or column numbers
of the removed image lines can be efficiently stored and
transmitted, the original image can be easily reconstructed
by interpolating the removed rows and columns using the
neighboring undeleted ones. This line-based image resizing
is an optimization problem of choosing lines to be deleted and
those to be remained in accordance with the saliency energy
of the image [25].

As the image resizing technique evolves from the content-
aware [1], [2], [26] for human vision into the feature-
aware [6], [7] for machine vision, some requirements such as
the aspect ratio to the target image can be relaxed because the
resized image for the machine vision is not to be displayed.
For some applications, however, the image reshaping for
the machine vision also requires a fixed size and a fixed
aspect ratio for the target image. For example, some CNN
machines require a fixed-size input image (e.g., 224 × 224
or 227 × 227) [10], [11]. In this case the target image size
and the aspect ratio should be imposed as hard constraints
for the image retargeting. The state-of-the-art image resiz-
ing for CNN training employs a scale-jittering method [11],
which first executes a linear scaling with a random scale
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and then a random cropping to obtain the final fixed-size
image. Thanks to the random execution of scaling and crop-
ping, the resized images can take different parts with dif-
ferent scales in the original image and are used for the
CNN training as a data augmentation technique. It has been
shown in [11] that the scaling factor S chosen randomly from
the range of [256, 512] yields better results than the image
resizing with a single scaling factor for training. However,
this random scale jittering and the random cropping may
cause substantial information loss and object distortion for
images with much larger sizes than 224 × 224. This prob-
lem can be alleviated by adopting a multi-resolution CNN
architecture [28], which consists of coarse resolution CNNs
and fine resolution CNNs. Object information obtained from
a large scale is described by the coarse resolution CNNs,
while the fine resolution CNNs capture the detailed object
information. Also, in [29], multiple subregions of the input
image are selected as region proposals for CNN inputs.
Note that each CNN with different resolution in [28] and
the proposed regions in [29] still needs to be resized to a
fixed one for CNN inputs. There are also CNN architec-
tures that relax the fixed-size input requirements [30], [31].
In [30] a spatial pyramid pooling (SPP) layer was added on
top of the last convolutional layer, where the front convolu-
tional layers accept arbitrary size input images to generate
the image feature map and the subsequent SPP layer pools
the features and generates fixed-length outputs. However,
without the pre-processing of the size reduction, the con-
volutional layers demand a lot of computationally expen-
sive convolution operations for large images. Also, in order
to fit the GPU memory, it will be computationally more
attractive to reduce the image size [32]. Increasing popularity
of CNN applications relying on the pre-trained CNNs with
fixed-size images [12]–[19], including depth images [19]
and key-frame in videos [20], also supports the necessity
of the image resizing. The pre-trained CNN architectures
with a fixed-size input image are also being adopted as a
pre-processing or an initialization-processing network for the
subsequent, more sophisticated, network architectures [33].

The requirements of the image reshaping for machine
vision become diverse and any combination of the salience
energy, the aspect ratio, and the target image size can be
imposed as constraints for the optimization. Under this cir-
cumstance, it will be necessary to formulate the image reshap-
ing as a constrained optimization problem. As mentioned
already, the constrained optimizations in [4], [6], and [7]max-
imally preserve the local image features with the constraints
of the fixed image size and the axis-alignment of the grids.
In this paper a general framework of the line-based image
resizing based on the linear programming is proposed, which
facilitates different sets of constraints to the optimization
framework. Note that the optimization frameworks for image
resizing in [4], [6], and [26] are limited to a couple of hard
constraints such as the target image size and the horizontal
and vertical alignments of the quads in the grid. On the other
hand, in this paper, conflicting requirements such as the level

of image saliency, the aspect ratio, and the target image size
can be considered simultaneously in the optimization frame-
work as soft constraints with inequality bounds. This, for
instance, allows us to have the size-reduced image such that
the energy saliency is maintained at least 90% of the original
one with a fixed target aspect ratio. Also, one can balance the
level of energy saliency and the image size requirements by
imposing a soft constraint such as a near-square size.

III. IMAGE RESIZING IN LINEAR
PROGRAMMING FRAMEWORK
Image resizing can be done by selecting image lines (columns
and rows) to be deleted (or to be duplicated), where the line
selection criterion is based on the energy saliency (or a cost
function) calculated for each image line. That is, given a
saliency map E = {e(i, j) : 1 ≤ i ≤ M , 1 ≤ j ≤ N } for
theM ×N original image I , the saliency for each image line
can be obtained by simply accumulating the pixel energies
along the image line

Er (i) =
N∑
j=1

e(i, j), i = 1, · · · ,M (1)

Ec(j) =
M∑
i=1

e(i, j), j = 1, · · · ,N (2)

where Er (i) and Ec(j) represent the saliency energies for the
image-lines at row i and column j, respectively.
The line-based image resizing can be viewed as a binary

classification problem such that each image line is to-be-
remained or to-be-deleted. In [25] aMAP (maximum a poste-
riori) criterion with a Gibbs energy function [34] is employed
for the optimization. In this paper, the binary decision is made
by minimizing a cost function under some constraints. In par-
ticular, a binary linear programming approach is adopted to
solve the optimization problem. That is, given the original
image I ofM×N withM+N image lines, the goal is to make
an optimal binary decision on each image line as either to-be-
deleted or to-be-remained by using the integer (binary) linear
programming optimization framework. Specifically, let us
denote 1×(M+N ) row vectors of f and s as the cost function
to be minimized and the indicator of the binary decisions,
respectively. Now, the cost function is given by the inner
product between f and s. Here, f = [f (1) · · · f (M ) f (M +
1) · · · f (M + N )], where the element f (k) represents the cost
for deleting the image-line at k . And the element of the binary
indicator vector s = [s(1) · · · s(M ) s(M + 1) · · · s(M + N )]
takes s(k) ∈ {0, 1}, representing the binary decision of the
line-keeping with s(k) = 1 or the line-deleting with s(k) = 0
at line k . Then, the optimal line selection can be made by
following the linear programming framework with the cost
function given by the inner product of f and s, and with some
constraints

s∗ = argmin
s

fsT (3)
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such that

As ≤ b, (4)

Aeqs = beq, (5)

lb ≤ s ≤ ub, (6)

where (4) and (5) are the soft and the hard constraints, respec-
tively, and the associated matrices (or scalar) A, b, Aeq, and
beq will be determined by the specific requirements for the
optimization of (3). In the following subsections, some inter-
esting combinations of specific hard and soft requirements
expressed by A, b, Aeq, and beq will be presented. Note that,
to yield binary values 0 and 1 for the element of s, the lower
bound lb and the upper bound ub in (6) are set to zero vector
and one vector with M + N elements,1 respectively.

A. CONSTRAINT ON IMAGE SIZE
The binary linear programming formulated in (3) – (6) is a
general framework for the line-based image resizing prob-
lem and there is a freedom of setting the cost vector f in
the objective function and the constraints in (4) – (6). For
example, either the number of image lines to be deleted or
the saliency energy of the image lines can be incorporated
into the objective function.

In this subsection, the saliency energy is adopted as the cost
function with the target image size as the constraint. That is,
the size of M × N original image with M + N image lines
is to be changed to a target image-size of M ′ × N ′, where
M ′ ≤ M and N ′ ≤ N . If the aspect ratio of the target image
is not fixed but the ratio of the number of target image lines
to that of the original one is given by α (α < 1) such that
M ′+N ′ = α×(M+N ), then this constraint can be expressed
by 1 × (M + N ) vector of Aeq with Aeg = [1 1 · · · 1] and
beq = α× (M +N ) in the hard equality condition of (5). The
objective function f = [f (1) · · · f (M ) f (M+1) · · · f (M+N )]
is a 1× (M+N ) row vector and, to be used as a cost function,
its element takes a negative value of the sum of the saliency
energy for each image line as follows

f (k) =

{
−Er (k), if 1 ≤ k ≤ M
−Ec(k −M ), if M + 1 ≤ k ≤ M + N

(7)

where Er (k) and Ec(k) are the saliency energies for image
lines as defined in (1) and (2). Then, the cost function, which
is the inner product of f and s, is to be minimized under the
hard constraint of the number of target image-lines to beM ′+
N ′ = α × (M + N ) as follows:

f = [−Er (1) · · · − Er (M ) − Ec(1) · · · − Ec(N )] (8)

s = [s(1) · · · s(M ) s(M + 1) · · · s(M + N )] (9)

Aeq = [1 · · · 1] (10)

beq = dα × (M + N )e (11)

lb = [0 · · · 0]T (12)

ub = [1 · · · 1]T (13)

1The linear programming parameters in (3)–(6) matchMATLAB function
intlinprog.

where each element of s takes a binary value such that s(k) =
1 for the line-keeping and s(k) = 0 for the line-deleting.
In accordance with the above optimization framework the
image lines with the large saliency energy now have small
negative values as a cost due to the negative sign in f of (7)
and are most likely to be remained with s(k) = 1. For
example, if the parameter α, representing the ratio of the
resized image to the original one, is set to α = 0.9, then the
optimal binary decision is to set s(k) = 1 for the smallest
90% of the elements in f with no consideration on the aspect
ratio of the original image. Finally, the inequality constraint
by (M + N ) × 1 column vectors of lb in (12) and ub in (13)
is required for s to have binary values. Since the constraints
of (12) and (13) are commonly required throughout the paper
for the binary decision, except for the quad-based quadratic
programming method in Section IV, it will be omitted in the
rest of the linear programming frameworks.

B. CONSTRAINT ON ENERGY SALIENCY
We can set the number of image-lines as the cost function to
be minimized so that the target image size is not fixed but
varies from image to image. Instead, we can set the level of
energy saliency as a soft constraint of (4) which is expressed
as the lower bound of the total saliency energy for the image
lines to be remained. Specifically, we set A = [−Er (1) · · · −
Er (M ) − Ec(1) · · · − Ec(N )] and b = −β × (

∑M
i=1 Er (i) +∑N

j=1 Ec(j)) for (4), where β is the ratio of the total saliency
energy of the resized image to that of the original one. Again,
s(k) = 1 is for line-keeping and s(k) = 0 for line-deleting.
Then, by setting f = [1 · · · 1], the optimal solution of (3)
selects the minimum number of image lines with the largest
saliency energies for the line-keeping (i.e., s(k) = 1) such
that the saliency-level constraint is satisfied. So, the linear
programming optimization can be formulated by

f = [1 · · · 1] (14)

s = [s(1) · · · s(M ) s(M + 1) · · · s(M + N )] (15)

A = [−Er (1) · · · − Er (M ) − Ec(1) · · · − Ec(N )] (16)

b = −β × (
M∑
i=1

Er (i)+
N∑
j=1

Ec(j)). (17)

Fig. 1 shows the examples of the above two optimization
frameworks with α = β = 0.9, which corresponds
to the optimization with 90% saliency-level constraint
with (14)–(17) and the 90% line-keeping constraint
for (8)–(13). Here, the saliency map is obtained by simply
calculating the edge magnitude for each pixel and, certainly,
can be replaced by any other saliency map dedicated to a
specific application. Comparing with the original image in
Fig. 1-(a) the main target of the line deletion is the monotonic
region of the background. Note that the reduced image by the
90% saliency-level constraint in Fig. 1-(c) is smaller than that
of the 90% line-keeping constraint in Fig. 1-(e), which can be
reversed for other images with lots of complex and textured
regions.
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FIGURE 1. Size-reduction example with different cost functions and
constraints: (a) Original image of 505× 634, (b) Deleted lines in white by
the 90% saliency-level constraint, (c) Reduced image of 329× 560
without the white lines in (b), (d) Deleted lines in white by the
90% line-keeping constraint, (e) Reduced image of 395× 630
without the white lines in (d). Original image from
(http://live.ece.utexas.edu/research/quality/subjective.htm).

C. CONSTRAINT ON ASPECT RATIO
The optimal solutions in Fig. 1 can be also obtained by
simply deleting the image-line with the lowest saliency
energy repeatedly until the constraint is no loner satisfied.
Therefore, in this case, we may not need an optimiza-
tion solver. However, there is a soft requirement, such as
the tolerable degree of a target aspect ratio, that makes
the optimization more complex and needs the optimization
solver.

To realize the linear programming optimization with the
combined constraints of the target aspect ratio γ (i.e., γ =
width
height ) and the saliency-level we can set the linear program-
ming framework as follows

f = [−Er (1) · · · − Er (M ) − Ec(1) · · · − Ec(N )] (18)

s = [s(1) · · · s(M ) s(M + 1) · · · s(M + N )] (19)

A =
[
γ · · · γ −1 · · · −1
−γ · · · −γ 1 · · · 1

]
(20)

b =
[
1L
1L

]
(21)

where 1L is the number of tolerable image lines for the
given aspect ratio γ . Again, the binary indicator s(k) takes
s(k) = 1 for line-keeping and s(k) = 0 for line-deleting.
The constraint with the above A and b matrices includes the
upper and lower bounds for the aspect-ratio constraint, which
limits the number of lines to be deviated from the exact aspect
ratio γ . That is, −1L ≤ γ × M ′ − N ′ ≤ 1L, where
M ′ andN ′ represent the sizes of the target image. The optimal
solution should delete the image lines as much as possible,
while keeping the ratio N ′/M ′ as close to the given aspect
ratio γ with the allowed margin 1L. Fig.2 shows the resized
images with γ = 3/4 and γ = 4/3 with 1L = 1.

FIGURE 2. Image resizing under the aspect ratio constraints with 1L = 1:
(a) Original image, (b) Deleted lines in white with the aspect ratio
constraint γ = 3/4 = 0.75, (c) Reduced image with no white lines and
M′ = 505, N ′ = 379 (379/505 ≈ 0.75), (d) Deleted lines in white with the
aspect ratio constraint γ = 4/3 ≈ 1.33, (e) Reduced image with no white
lines and M′ = 476, N ′ = 634 (634/476 ≈ 1.33).

D. CONSTRAINT ON ADJUSTING LINE SPACING
As shown in Fig. 1 and 2 the lines to be deleted (i.e., the white
lines in Fig. 1 and 2) tend to stick together, which may
create a big discontinuity at the object boundary. This in turn
generates new edges, resulting in artificially created salience
regions in the resized image. To alleviate this problem we
can add a constraint to split the consecutive would-be-deleted
lines. This constraint can be added to (8) – (11) of the linear
programming framework as follows

f = [−Er (1) · · · − Er (M )− Ec(1) · · · − Ec(N )] (22)

s = [s(1) · · · s(M ) s(M + 1) · · · s(M + N )] (23)

A = [1 − 1 1 − 1 · · · 1 − 1] (24)

b = −ζ × (1− α)× (M + N ) (25)

Aeq = [1 · · · 1] (26)

beq = dα × (M + N )e (27)

Note thatM+N elements of A in (24) take alternating values
of +1 and −1, which discourages the deleting image lines
to be flocked together. Specifically, to meet the constraint
of (24) and (25) and to minimize the saliency cost of (22)
as well, some of the would-be-deleted lines with s(k) = 0
should be replaced by s(k) = 1 at the locations of−1 in (24).
As a result, with the inequality constraint of (24) and (25),
the optimization forces some of the consecutive lines with
s(k) = 0 to have alternating labels of line-keeping (s(k) = 1)
and line-deleting (s(k) = 0). In (25), ζ (0 ≤ ζ ≤ 1) controls
the total number of lines to split among all would-be-deleted
lines of (1 − α) × (M + N ), representing the amount of
the forced splitting. As shown in Fig. 3, the number of split
lines increases as ζ gets larger, where the dense white regions
are split up into small white regions (notice the differences
between Fig. 1-(b)(d) and Fig. 3-(a)(c)).
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FIGURE 3. Image resizing by (22)–(27) with the dual constraints of the
hard constraint of the number of line-keeping and the soft constraint of
the line-spacing (white lines are to be deleted): (a) and (b) α = 0.9 and
ζ = 0.3, (c) and (d) α = 0.9 and ζ = 0.7.

E. REQUIREMENTS ON COST FUNCTION
As in Section III-B the number of image lines can be used
as a cost function, which is considered as a soft require-
ment. Similarly, image reshaping parameters can be incor-
porated into the cost function rather than the constraints.
For example, the cost function in the linear programming
framework of (8) – (11) can be modified as follows

f = [−Er (1)/M · · · − Er (M )/M

− Ec(1)/N · · · − Ec(N )/N ] (28)

s = [s(1) · · · s(M ) s(M + 1) · · · s(M + N )] (29)

Aeq = [1 · · · 1] (30)

beq = dα × (M + N )e (31)

In (28) the saliency energies Er (k) and Ec(k) are scaled by the
number of rows, M , and the number of columns, N , of the
original image, respectively. Then, if M = N , there is no
difference between (8) and (28). However, if M > N , then
we have −Er (k)/M > −Ec(k)/N for Er (k) = Ec(k). This
increases the chance of deleting image lines at the longer side
(i.e., the rows withM lines) and the resized image tends to be
square. So, if the original image is not square (i.e., the aspect
ratio is greater or less than 1), the cost function in (28)
encourages to choose more image lines from the longer side
of the image for the line deletion. In Fig. 1-(e), the resized
image has 395 × 630 with γ = 0.63, whereas the resized
image in Fig. 4-(b) by the cost function of (28) has 387×524
with γ = 0.74.

The prior knowledge on the location of the region-of-
interest (RoI) can be also incorporated into the cost function.
Suppose that images to be resized have the RoI mostly around
the center of the image, (ic, jc). Then, we can include the

FIGURE 4. Comparisons for near-square image resizing with α = 0.8,
(a) and (b): Resized by (28) (size: 387× 524 and γ = 0.74),
(c) and (d): Resized by (32) (size: 436× 475 and γ = 0.92), (e): Grid cells
by the quadratic programming of (41) and (f): the resized image according
to (e) (resized image has 430× 481 and γ = 0.89).

RoI requirement into the cost function in (28) by multiplying
the saliency energy Er (i) at the ith row and the Gaussian
weight of Gr (i) = exp(−(i − ic)2/2σ 2). Also, the saliency
energy Ec(j) at the jth column is multiplied by its correspond-
ing Gaussian weight Gc(j) = exp(−(j − jc)2/2σ 2) in f as
follows

f = [−Er (1)Gr (1) · · · − Er (M )Gr (M )

− Ec(1)Gc(1) · · · − Ec(N )Gc(N )] (32)

s = [s(1) · · · s(M ) s(M + 1) · · · s(M + N )] (33)

Aeq = [1 · · · 1] (34)

beq = dα × (M + N )e (35)

The Gaussian weighting factors Gr ( ) and Gc( ) in (32)
push the to-be-deleted lines away from (ic, jc), giving a
cropping-like effect. As you can see in Fig. 4-(c), by setting
ic = M/2 and jc = N/2, the lines to be deleted are pushed
to the image border and more image lines at the central
area of the original image are preserved. Another effect of
the Gaussian weighting factors with M 6= N is that the
Gaussian weights decrease as the distance to (ic, jc) increases,
forcingmore image lines at the image border, especially at the
longer side of the image, to be removed. Specifically, we can
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set σ = min(M ,N )/5 for both the Gaussian weights of
Gr andGc, encouraging more image lines at the longer side to
be removed. This also reduces the gap between the horizontal
and vertical sizes of the original image, yielding a near-square
image.

IV. IMAGE RESIZING BY QUADRATIC
PROGRAMMING FRAMEWORK
The quadratic programming optimization can be also
employed for the image resizing along with most of the con-
straints used in the linear programming frameworkmentioned
in the above sections. In [4], [6], [7], and [27], the uniform
grid overlaid on the original image space is non-uniformly
deformed for the axis-aligned image retargeting problem by
the quadratic programming optimization. It can be reformu-
lated as to determine the optimal number of image lines to be
deleted for each horizontal (and vertical) stripe. That is, start-
ing from equally spaced horizontal and vertical stripeswith an
identical width, the target widths of all stripes are optimally
determined by the quadratic programming framework with
constraints.

Overlaying aU×V grid over the original image ofM×N ,
each cell in the grid has the dimension of 1U ×1V , where
1U = bM/Uc and 1V = bN/V c. Then, the original
image I of M × N is trimmed to Ig of Mg

× N g, where
Mg
= U × 1U and N g

= V × 1V . Given the saliency
map E = {e(i, j) : 1 ≤ i ≤ Mg, 1 ≤ j ≤ N g

} for the image Ig

the saliency energy for each grid-row (horizontal stripe) and
grid-column (vertical stripe) is given by

Egr (u) =
1
1U

u1U∑
i=(u−1)1U+1

N g∑
j=1

e(i, j), (36)

Egc (v) =
1
1V

Mg∑
i=1

v1V∑
j=(v−1)1V+1

e(i, j), (37)

where Egr (u) and Egc (v) represent the saliency energies for
the grid at row u = 1, · · · ,U and column v = 1, · · · ,V ,
respectively. Now, the quadratic optimization framework
in [4] can be reformulated with the following quadratic cost
function to optimally determine the cell sizes (i.e., the widths
of stripes) in the grid in accordance with the saliency
energies Egr and Egc

argmin
sru,scv

(
U∑
u=1

(Ēgr (u)s
r
u)

2
+

V∑
v=1

(Ēgc (v)s
c
v)
2) (38)

= argmin
s
sTQTQs (39)

where sru and scv represent the row and the column sizes of
the cell at the grid-row u and the grid-column v, respec-
tively. Since the objective function is to be minimized
in (38) and (39), the saliency energies Eru and Ecv should be
converted into the non-saliency energies by inversing them
as Ēru = 1/(1 + Eru ) and Ē

c
v = 1/(1 + Ecv ). In (39), s is a

(U+V )×1 column vector formed by s = [sr1 · · · s
r
U s

c
1 · · · s

c
V ]

T

and Q is a (U + V )× (U + V ) matrix such that

Q =



Ēr1 0 · · · · · · 0
0 Ēr2 · · · · · · 0

...

0 0 · · · ĒrU 0 · · · 0
0 0 · · · 0 Ēc1 · · · 0

...

0 0 · · · ĒcV


(40)

The constraints of (4)–(6) in the linear programming
framework can be also used as the constraints for the
quadratic cost function of (39). Only difference is that the
elements of s in (39) now take integer values, not the binary
ones as in (3), so that the lower bound lb and the upper
bound ub represent the range of horizontal and vertical sizes
of the grid cells (i.e., the widths of the stripes).

The linear programming framework in (32) – (35) can
be reformulated as the constrained optimization with the
quadratic cost function

s∗ = argmin
s
sTQTQs (41)

Aeq = [1 · · · 1] (42)

beq = dα × (M + N )e (43)

lb = [gl · · · gl]T (44)

ub = [gu1 · · · gu1 gu2 · · · gu2]T (45)

where the firstM elements of (45) take a value gu1 and the rest
N elements have gu2. Note that, in the linear programming
framework of (12) and (13), we set gl = 0 and gu1 = gu2 = 1
for the binary optimization. However, in the above quadratic
optimization framework, since s takes a positive integer value
to represent the size of the cell in the grid, gl in (44) and
gu1, gu2 in (45) are positive integer values such that gl < gu1,
gl < gu2, gl ≥ 0, gu1 ≤ 1U , and gu2 ≤ 1V . Also,
theGaussianweighting factors in (32) can be adopted for each
grid-row Gr (u) and grid-column Gr (v) as

Q =



Ēr1Gr (1) · · · 0
...

0 · · · 0 · · · 0
0 · · · Ēc1Gc(1) · · · 0

...

0 · · · ĒcVGc(V )


(46)

The quadratic optimization framework in (41) – (46) is
formulated to reduce the original image size M + N to α ×
(M +N ) without the requirement of any specific aspect ratio
for the target image, which is similar to the linear program-
ming framework in (32) – (35). Fig. 4 shows the comparative
results between the linear and the quadratic optimization
frameworks. As you can see in Fig. 4-(e), the resizing effect
spreads throughout the entire cells in the same row or column
for the alignment, which gives a linear-scaling flavor to the
retargeted image. On the other hand, each image-line is inde-
pendently dropped in the linear programming optimization
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in Fig. 4-(c), having a cropping flavor. Also, the linear pro-
gramming optimization usually converges much faster than
the quadratic optimization.

V. FIXED-SIZE AND NEAR-SQUARE IMAGE RESIZING
In this section a case study of the optimal image resizing by
the linear programming framework is presented. The problem
is originated from the pre-processing task of fitting training
and testing images to a fixed-size CNN input. The pre-trained
CNN machines that accept only a fixed-size image for both
training and testing require the images to be resized as a
pre-processing before being fed into the CNN. This resizing
process affects the performance of the CNN and it has been
shown in [11] that the image classification performance can
be improved substantially by the resizing step alone.

FIGURE 5. Two-stage Image resizing for the fixed-size and square CNN
input, (i) First stage: resizing to a near-square image by the line-based
linear programming, (ii) Second stage: resizing to the final (square)
fixed-size image by linear scaling technique.

The image cropping and linear scaling techniques can be
used for the pre-processing task. However, when there exists
a big size-difference between the original image and the CNN
input, the chance to keep the whole OOI in the resized image
by the cropping will be low. Also, for an image with a big
difference in aspect ratio between the original image and
the CNN input, the linear scaling method may distort the
geometric information of the objects in the original image.
These problems can be alleviated by properly combining the
linear scaling and the cropping. For example, the original
image is linearly scaled such that the shorter side is scaled
to a fixed one Sc (e.g., Sc = 256) and, then, the longer side of
the image is scaled accordingly to preserve the aspect ratio.
Subsequently, the scaled image is cropped to the dimension
of 256×256 and is linearly scaled to the final image size, say
224×224 [10]. The size Sc can be determined by calculating
the average size of training images [21]. Also, it can be
chosen randomly from a given range, say Sc ∈ [256, 512].
However, these methods of choosing Sc have no considera-
tion on the content as well as the dimension (i.e., size and
aspect ratio) of the individual image to be resized. A more
desirable approachwould take a two-stage approach as shown
in Fig. 5, where the first stage is to resize the original image
to fit the aspect ratio of the CNN input as much as possible.
Here, a constrained optimization can be applied to optimally
balance the saliency of the image content and the target

aspect ratio of the CNN input as a soft constraint, where
the non-salient regions in the original image are the main
target for the adjustment of the aspect ratio. As a result of
the first-stage, the intermediate image has almost a similar
aspect ratio to the CNN input and the subsequent stage of the
linear scaling to the final image size will barely distort the
shape information of the objects due to the subsequent linear
scaling process.

Let us fix the size of the CNN input to 224× 224 as VGG
Net, then the first stage in Fig. 5 is to resize the original
image to be near-square. The line-based linear programming
approach introduced in the previous sections is especially
useful for resizing a non-square image to a squared one. Note
that the line-based optimization can be readily formulated to
prune more image lines in the longer side of the image than
the shorter one. Therefore, after the original image is resized
to a near-square image as a soft requirement by the linear
programming optimization, then a simple linear-scaling tech-
nique can be applied to the near-square image to have the
final square image with the hard (fixed) size requirement for
the CNN input (see Fig. 5). Adopting this two-stage strategy,
the resizing of the original image with M × N to the inter-
mediate image with Mt × Nt , where Mt ≈ Nt , Mt ≤ M , and
Nt ≤ N , can be done by the linear programming framework.
Specifically, an optimal near-square image resizing can be
accomplished by using the cost function of (32) with the
aspect ratio constraints in (20) and (21) and with the soft
constraint of the lower bound for the number of lines to be
deleted as follows

f = [−Er (1)Gr (1) · · · − Er (M )Gr (M )

− Ec(1)Gc(1) · · · − Ec(N )Gc(N )] (47)

s = [s(1) · · · s(M ) s(M + 1) · · · s(M + N )] (48)

A =

 γ · · · γ − 1 · · · − 1
−γ · · · − γ 1 · · · 1
1 · · · 1 1 · · · 1

 (49)

b =

β × |M − N |β × |M − N |
α × (M + N )

 (50)

lb = [0 · · · 0]T (51)

ub = [1 · · · 1]T (52)

Top two rows in (49) and (50) correspond to (20) and (21) and
are responsible to meet the requirement of the aspect ratio γ
as much as possible, where the tolerable margin toward the
exact aspect ratio γ is given by β×|M−N |. The parameter β,
which is less than 1, controls the amount of tolerable image
lines as a margin to the exact γ . The third row in (49) and (50)
is to set the lower bound for the number of image lines to be
deleted. That is, the total number of remaining lines should be
less than α×(M+N ). In other words, α controls the minimal
number of image lines to be deleted. Therefore, the above
linear programming process optimally selects at least (1 −
α)× (M+N ) image lines to be deleted and further selects the
lines until the reduced image satisfies the aspect ratio γ with

54830 VOLUME 6, 2018



C. S. Won: Constrained Optimization for Image Reshaping With Soft Conditions

a margin of ±β × |M − N |. Again, the Gaussian weighting
factors Gr and Gc in (47) force the optimization to choose
the image lines to be deleted far away from the center of the
image (ic, jc).

FIGURE 6. 10 consecutive random trials for image resizing to 224× 224,
(a) Original images from Caltech-256 dataset [35], (b) Scale Jittering and
Random Cropping (SJRC) method of [11] with Sc ∈ [256,512], (c) Near
square Line pruning and Linear scaling (NsLpLs) of (47) – (52) for the
first stage of Fig. 5 with α ∈ [0.7,1] and β ∈ [0.01,1].

The above linear programming framework can be used for
CNN training and testing. When it is used as a pre-processing
for CNN training, the parameters α and β in (50) can be
chosen randomly to provide the jittering effect. For example,
if the parameters are randomly chosen from α ∈ [0.7, 1]
and β ∈ [0.01, 1] for every epoch of CNN training, then
the constraints in (50) for the number of image lines to be
deleted (i.e., 1−α) and the tolerable image lines for the given
aspect ratio γ vary from 0 to 30% of (M + N ) and from
1% to 100% of |M − N |, respectively. The randomly chosen
pairs of α and β make the relative influence of scaling and
the cropping effects to the final images of M ′ × N ′ variable.
Note that, for some parameter pairs of α and β, no optimal
solution of the above linear programming formulationmay be
found. In this case, we just set Mt = M and Nt = N for the
next linear scaling process. In Fig. 6, 10 consecutive random
trials of the two-stage image resizing to 224 × 224 by the
linear programming optimization are compared with the scale
jittering method of [11] with Sc ∈ [256, 512]. As one can see

in the figures the two-stage method with the linear program-
ming framework includes the OOI more reliably in the target
224 × 224 images than the scale jittering method. For CNN
testing, three fixed scales such as Sc ∈ {256, 384, 512} are
recommended in [11]. Similarly, the parameters for the linear
programming optimization can be fixed for CNN testing as
α = 0.8 and β = 0.2.
The two image resizing methods in Fig. 6 are applied

to the existing CNN architecture for further comparisons.
The pre-trained VGG-19 [11] is adopted for the fine-tuning
with image dataset of the Caltech-256 [35] and PASCAL
VOC 2007 [36]. VGG-19 has 19 layers, where last 3 fully
connected layers are used for fine-tuning. Caltech-256 has
30607 images in 257 classes and three random splits of which
contains 60 training images per class and the rest for testing
are used for experiments. Pascal VOC 2007 [36] involves
9963 images in 20 categories, where 5011 images are for
training, and the rest are for testing. No annotations including
the object bounding boxes provided by the VOC 2007 have
been used for training and testing. No other pre-processing
for image augmentation such as random horizontal flipping
and RGB jittering have been used so that the training and
the testing are solely affected by the image resizing method.
In this study, the batch size was set to 64, the number of
training epochs was 20, the base learning rate was 0.001, and
was decreased by factor of 0.5 after every 5 epochs.

The fine-tuned nets are used for testing. Three fixed scales
of Q = {256, 384, 512} are applied for the net trained by
the scale-jittering method and the final decision is made
by aggregating the features in the final fully connected
layer [11]. The network trained by the two-stage method of
the linear programming framework of (47)–(52) is tested by
fixing the parameters as α = 0.8 and β = 0.2. Since multiple
objects frommultiple classes may exist in the same image for
the VOC 2007, it is considered as a correct classification if
any one of the objects in the image is classified correctly.

TABLE 1. Classification results of NsLpLs (Near Square Line pruning and
Linear scaling) and SJRC (Scaling Jittering and Random Cropping) /
MSC (Multi Scaling and Corpping for testing) methods.

The performance is evaluated by the mean Average Preci-
sion (mAP). Table 1 summarizes the testing results. As one
can see in Table 1 and Table 2 the Near square Line prun-
ing and Linear scaling (NsLpLs) method of (47)–(52) out-
performs the Scale Jittering and Random Cropping (SJRC)

VOLUME 6, 2018 54831



C. S. Won: Constrained Optimization for Image Reshaping With Soft Conditions

TABLE 2. Comparisons with separated test images of low aspect
ratio (lowAR) and high aspect ratio (highAR). Those images with the
long-side larger than the short-side more than 1.5 time are grouped at
highAR.(∗ denotes the average of the three random splits).

for training and the Multi Scaling and Corpping (MSC) for
testing method [11]. In particular, the meanAP differences
between the NsLpLs and the SJRC/MSC of the images
with large aspect ratios (i.e., Pascal VOC2007-highAR
and Caltech256-highAR) are much greater than those
of low aspect ratios (i.e., Pascal VOC2007-lowAR and
Caltech256-lowAR), which clearly shows the effect of adopt-
ing the soft condition of the near-square optimization in
the NsLpLs.

Note that, since the NsLpLs is based on the iterative linear
programming method, it takes more time to finish the image
resizing than the SJRC method. Also, the comparative exper-
iments reported in this section are not certainly exhaustive.
The experiments should be interpreted as an example of the
generalized optimization framework with a soft constraint.
The complete algorithm based on the optimization framework
for the image resizing as the CNN pre-processing task is left
as the future work.

VI. CONCLUSION
As the image resizing problem extends its scope from the
display for human vision into the feature preservation for the
machine vision, the hard requirements for image parameters
such as the size and the aspect ratio can be treated more
flexibly as soft conditions. This implies that the determi-
nation of the conflicting image parameters becomes more
complex and needs a generalized optimization framework
to accommodate the various combinations of the diverse
requirements. The contributions of this paper can be summa-
rized as follows. First, this paper has formulated the image
resizing as a line-based optimization problem via the linear
and quadratic programming frameworks. Second, under the

optimization framework, some novel combinations of the cost
and the constraints are introduced. Specifically, the number
of image-lines (i.e., the size of image) can be maximally
deleted under a lower bound constraint of the saliency level,
which can guarantee a certain level of image saliency. The
sparseness and the denseness among the would-be-deleted
image lines can be optimally balanced by forcing an alternate
line-deleting as a constraint. Also, the soft requirement such
as the near-square image size can be obtained by the optimal
balance between the image saliency and the squareness of the
target image. Finally, as a case study, the near-square image
resizing based on the optimization framework is applied to
the pre-processing problem for the fixed-size CNN input.
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