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ABSTRACT In wastewater industry, real-time sensing of surface temperature variations on concrete sewer
pipes is paramount in assessing the rate of microbial-induced corrosion. However, the sensing systems are
prone to failures due to the aggressively corrosive environmental conditions inside sewer assets. Therefore,
reliable sensing in such infrastructures is vital for water utilities to enact efficient wastewater management.
In this context, this paper presents a sensor failure detection and faulty data accommodation (SFDFDA)
approach that aids to digitally monitor the health conditions of the sewer monitoring sensors. The SFDFDA
approach embraces seasonal autoregressive integrated moving average model with a statistical hypothesis
testing technique for enabling temporal forecasting of sensor variable. Then, it identifies and isolates
anomalies in a continuous stream of sensor data whilst detecting early sensor failure. Finally, the SFDFDA
approach provides reliable estimates of sensor data in the event of sensor failure or during the scheduled
maintenance period of sewer monitoring systems. The SFDFDA approach was evaluated by using the surface
temperature data sourced from the instrumented wastewater infrastructure and the results have demonstrated
the effectiveness of the SFDFDA approach and its applicability to surface temperature monitoring sensor
suites.

INDEX TERMS Anomalies detection, faulty data accommodation, forecasting, SARIMA model, sensor
failure detection, sensor monitoring, sewer corrosion, time series modeling, wastewater infrastructure.

I. INTRODUCTION
Sensors are essential constituents of any critical infrastructure
monitoring system. They play an important role in maintain-
ing the system safety and reliability [1], [2]. However, in real-
time systems, sensors can provide spurious data owing to
different erratic factors including the exposure of the sensor
to a harsh environment and inherent sensingmalfunctions [3].
Spurious data emanating from the sensors can be momen-
tary or long-lasting. Momentary faulty data are likely to
happen randomly due to changes in sensor characteristics
and electronics [4]. Those temporary data should not be
attributed to sensor failures. Instead, they need to be isolated
as anomalies. However, the continuous spurious data is prob-
ably an indication of a sensor failure and results in down-
grading the performance of an entire monitoring system.
Therefore, early sensor failure detection is significant for

pertinent intervention strategies while monitoring the envi-
ronmental phenomena of critical infrastructure assets.

An urban sewerage system is an ideal example of a critical
underground infrastructure system. Presently, the concrete
pipes in sewer systems are suffering from a higher rate
of structural degradation due to hydrogen sulphide-induced
concrete corrosion [5]. Because of the increasing corrosion
in sewers, the wastewater industry around the globe incurs
economic repercussions that are estimated to be in the order
of billion dollars [6]. In order to manage the sewer infras-
tructure effectively, the water utilities rely on the sensor
monitoring systems that acquire information-rich data about
the corrosion. In this context, the temperature on the concrete
surface was identified as an important observation that can
provide vital data to the models predicting the rate of sewer
corrosion [7], [8].

56562
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-4044-1711
https://orcid.org/0000-0001-5360-886X


K. Thiyagarajan et al.: SFDFDA Approach for Instrumented Wastewater Infrastructures

Currently, there is no reliable sensor system available to
monitor temporal dynamics of surface temperature under
aggressively corrosive environmental conditions of the sewer.
For that reason, this collaborative research between the Uni-
versity of Technology Sydney and four government-owned
water utilities aims to develop an advanced sensor suite for
monitoring surface temperature variations in sewer pipes.
In this regard, a sensor suite was developed and deployed in
sewer systems for over three months between 3rd Novem-
ber 2016 and 07th February 2017 in the municipal sewer
of the Sydney city in Australia. The field testing campaign
has demonstrated that the sensor suite is robust and capable
of monitoring for long-term in sewer conditions. However,
the confined sewer systems are typically hostile environ-
ments to both sensor monitoring and human inspections.
Since the sensor system cannot be physically monitored every
time, automatic sensor failure detection approaches become
a salient need of the sewer monitoring system.

The collaborative research reported in this paper focuses
on a SFDFDA approach for a sewer monitoring application.
The work motivates the development of a SFDFDA approach
that possesses the following three properties:

• Forecasting: Forecasting is a process of predicting the
future trends of data based on the collected historical
data trends by using a mathematical model [9]. The sur-
face temperature data measured by the sensor deployed
inside the sewer pipe is represented as a time-series
data. By using the past temporal dynamics of the surface
temperature variable, the future trends will be foreseen
by using amathematical model. The forecast data will be
acting as a virtual sensor to compare against the actual
upcoming sensor data from the sewer systems for detect-
ing anomalies and sensor failures. Also, in the event of
scheduled sensor maintenance, the forecast data will be
potentially used to replace the actual measurements.

• Anomalies detection and isolation: Anomalies are unex-
pected patterns in the data that do not comply with the
normal behavioral trends [10]. So, the sensor data that
suddenly deviates or rare occurrences from the normal
pattern is flagged as an anomaly [11]. Hence, it is impor-
tant to detect and isolate anomalies.

• Sensor failure detection and accommodation: Sensors
are prone to fail over time. Detecting early sensor failure
will enhance the present sewer monitoring capabilities
for effective management of sewer infrastructure assets.
Also, it prevents the faulty data to train the forecast-
ing model. Once the sensor failure has been detected,
the faulty sensor data needs to be accommodated with
the predicted data [12], [13] and this process will be
continued until operator addresses the issue.

In this paper, SFDFDA approach using Seasonal Autore-
gressive Integrated Moving Average (SARIMA) model is
proposed with sewer monitoring system as the application
domain. The major contributions of our proposed scheme are
enumerated as follows:

1) SARIMA model based forecasting for the surface tem-
perature variable from sewer pipes was implemented to
form a framework for detecting anomalies and sensor
failure.

2) By using the statistical approach, anomalies present in
the sensor data were detected and isolated.

3) Sensor failure detection model was implemented by
using forecasting technique and the faulty data is
accommodated by using the forecast values.

The remainder of this paper is organized as follows:
Section II presents the brief review of related work to
the SFDFDA approach. Section III describes the sen-
sor suite. Section IV presents the SARIMA model for
forecasting the surface temperature variable. Section V
illustrates the methodology for the proposed SFDFDA
approach. Section VI evaluates the SFDFDA approach and
finally, Section VII concludes the paper.

II. BRIEF REVIEW OF RELATED WORK
The state-of-the-art method for implementing the SFDFDA
approach through hardware redundancy has been proposed
in [14] and [15], where the measurement variable is obtained
by using several identical sensors. Then, a voting logic is used
to detect the faulty sensor [16], [17]. In the sensing applica-
tions where the sensors are expensive, analytical redundancy
approaches are popular [16]. In this approach, the signal
between the sensor model and sensor is compared to generate
the residual error. Then, the sensor failure is detected by set-
ting a threshold logic for the generated residual error values.
In the event of detecting the sensor failure, the predicted data
is used for sensor failure accommodation [18].

Computational modeling using artificial neural networks is
widely used for detecting sensor failuresmainly because of its
adaptability to dynamic environments [19], [20]. This method
works by training the neurons and developing a structure
based on the training data for comparing with the sensor
measurements to detect the sensor failure [21]. On the other
hand, time series based forecasting models that represent
sensor data as a linear time series was used for detecting early
sensor failure [22]. There are several time series forecasting
techniques available in the literature like RandomWalk (RW)
method, Simple Exponential Smoothing (SES) method and
Autoregressive Moving Average (ARMA) Model [23]. In the
RW model, the variable value takes the independent ran-
dom step. This method takes an assumption that past data
is not informative and only the present observation is use-
ful [24]. The SES model is used in applications of forecasting
seasonal data. However, it is not an appropriate model in
applications where the data has trends [25]. The ARMA
method is an importantmethod in time series forecasting [26].
This method is a stationary stochastic process that combines
the Autoregressive (AR) model and Moving Average (MA)
model.

G.E.P. Box and G.M. Jenkins extended the ARMA model
to the ARIMA model, which integrates the AR and MA
parts of the model with differencing [27], [28]. Among the
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FIGURE 1. Field deployment of sensor suite displaying the sensing system installed inside the sewer pipe near the head-space and access station
constructed outside the sewer pipe for data monitoring and acquisition.

time series forecasting methods, the ARIMA model has
been widely used over the last two decades for forecast-
ing applications [29]. The difference between the ARMA
and the ARIMA model is that the ARIMA model converts
the non-stationary data into stationary data for predicting
the linear time series [26]. For the data that shows sea-
sonal trends, the ARIMA model is extended to the SARIMA
model [30]–[32]. Although ARIMA and SARIMA models
have been used for forecasting applications in different
sectors [33]–[37], their application in forecasting variables
inside sewer has not been reported. This work utilizes the
SARIMA for forecasting the surface temperature variable.

In order to achieve better forecasting results, the forecast
model needs to be provided with anomaly-free data during
model training. Therefore, anomaly detection is vital for the
application motivated in this work. Methods based on cluster-
ing, support vector machine and kernel functions are used for
anomalies detection [38]–[40]. However, those approaches
are dependent on static routing trees or assigning threshold
values to the data streams [3]. In contrast, our work focuses
on detecting anomalies through statistical techniques for each
sensor measurements. By using the stochastic time series
models like SARIMA, anomalies can be detected in the data
streams [41], [42]. Once the anomaly is detected, the faulty
sensor reading is isolated. Then, the faulty information needs
to be accommodated with the reliable value [43].

III. SENSOR SUITE
For monitoring the diurnal variations of surface tempera-
ture in sewer pipes, a custom-built sensor suite meeting the
requirements specified by the sewer operators was designed
and developed using an infrared radiometer sensor. This
sensor was housed in a tailor-made enclosure and installed
near the head-space of the confined concrete sewer pipe. The
sensor measures the thermal radiations of the exposed sewer
surface and produces an output in the form of an electrical
signal. This signal is transmitted to the access station con-
structed outside the sewer pipe for processing. Fig. 1 shows
the installation of temperature sensor inside the sewer and
access station constructed outside the sewer. To the best of
our knowledge, the sensor suite used in this work is the
first one to demonstrate long-term temporal monitoring of
surface temperature dynamics inside aggressively corrosive
sewer conditions through non-contact measurements. The
SFDFDA approach proposed in this work is applied to the
aforementioned sensor suite.

IV. FORECASTING SURFACE TEMPERATURE DATA
USING SARIMA MODEL
This section elaborates the forecasting technique employed
in this paper by using the surface temperature data sourced
from the instrumented wastewater infrastructure.
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A. SURFACE TEMPERATURE DATA FROM THE SENSOR
SUITE
The surface temperature data coming from the sensor suite
can be observed as a time series St , where the values of
the data are at equally spaced times t, t − 1, t − 2, . . . by
St , St−1, St−2, . . .. The time interval between the two sensor
measurements is one hour.

B. FORMULATION OF THE SARIMA MODEL
The ARIMA model is a combination of two independent
models namely AR model and MA model with finite dif-
ferencing of data points. Mathematically, the AR part of the
ARIMA model can be defined as in (1), which is an autore-
gressive process of order p. It can be succinctly expressed as
AR(p). This AR(p) regresses the evolving variable against its
prior values in the series.

AR(p)t = c+ φ1S̃t−1 + φ2S̃t−2 + . . .+ φpS̃t−p + εt (1)

where AR(p)t is the actual value of AR(p) at time period
t , φ1, φ2, . . . , φp are the finite set of weight parameters of
the AR(p) with c as a constant and p as the order of the
model AR(p) with S̃t−1, S̃t−2, .., S̃t−p as previous deviations
from the mean value. The εt is the random shock and it is
assumed to be a white noise process [44]. The εt is identically
distributed i.e. εt ∼ IN (µ, σ 2), where the mean µ = 0 and
a constant variance σ 2 [45]. The MA part of the ARIMA
model is mathematically defined in (2) and it can be called as
a moving average process of order q. It can be expressed as
MA(q). ThisMA(q) model uses its past errors as the explana-
tory variables.

MA(q)t = c+ εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q (2)

where MA(q)t is the actual value of MA(q) at time period
t , θ1, θ2, . . . , θq are the finite set of weight parameters of
the MA(q) with c as a constant and q as the order of the
modelMA(q). Similar to AR(p), the εt ofMA(q) is assumed to
be a white noise process with identically distributed random
variables with zero mean and constant variance. Both AR(p)
and MA(q) are combined together to form an ARMA model.
The model is mathematically defined in (3) and it can be
expressed as ARMA(p, q).

AR(p)t +MA(q)t = c+ φ1S̃t−1 + φ2S̃t−2
+ . . .+ φpS̃t−p + θ1εt−1
+ θ2εt−2 + . . .+ θqεt−q + εt (3)

where the predictor is AR(p)t + MA(q)t of the ARMA(p, q)
as it includes the prior values of AR(p) and past errors of
MA(q). The AR(p)t + MA(q)t expression can be denoted as
S̃t . In ARMA(p, q), the order value p of AR(p) model and q of
MA(q) model are not greater than 2 [46]. Upon simplification
(3) is reduced to (4). The constant term c is omitted for
simplicity [47] and (4) is rearranged to (5), where the order
of the models p and q denotes the p autoregressive term and

q moving average term.

S̃t = c+ εt +
p∑

n=1

φnS̃t−n +
q∑

m=1

θmεt−m (4)

S̃t −
p∑

n=1

φnS̃t−n = εt +
q∑

m=1

θmεt−m (5)

In time series data, the backshift operator B governs a value
in the series to produce its prior value [48]. Mathematically,
it is defined in (6), where k is the time series backward
observation of the time period.

Bk S̃t = S̃t−k (6)

Generally, the ARMA(p, q) model is manipulated by
using (6). By using the lag operator, the ARMA(p, q) model
equation in (5) can be expressed as in (7).(

1−
p∑

n=1

φnBn
)
S̃t =

(
1+

q∑
m=1

θmBm
)
εt (7)

The ARMA(p, q) model is suitable only for stationary time
series data. However, the sensor data emerging from the
sewer pipes possess non-stationary behavior. In order to pro-
cess the non-stationary nature of sewer data, the ARIMA
model is proposed for the application reported in this work
to forecast surface temperature measurements. This model
obtains homogeneous non-stationary behavior by supposing
a suitable d th difference value of the process to the station-
ary ARMA(p, q). The differencing is mathematically defined
in (8), where the (1−B)d = 1d . Mathematically, the general
form of ARIMA model can be defined as in (9) and it can
expressed as ARIMA(p, d, q).

S̃t = 1d S̃t (8)(
1−

p∑
n=1

φnBn
)
1d S̃t =

(
1+

q∑
m=1

θmBm
)
εt (9)

where the p, d and q are the integers referring to the order
of autoregressive, integrated and moving average parts of the
ARIMA(p, d, q) model. The integer d governs the level of
differencing. SARIMA is employed in applications where
the time series data presents seasonal changes [48]. The
SARIMA is denoted as SARIMA(p, d, q)(P,D,Q)Sp , where
P is the seasonal autoregressive parameter, D is the degree
of seasonal differencing parameter, Q is the seasonal moving
average parameter and the subscript Sp denotes the seasonal
period this stochastic model. The forecasts of sewer surface
temperature variable by using SARIMA(p, d, q)(P,D,Q)Sp is
given by (10), where the 8 and 2 are the weight parameters
of seasonal autoregressive term and seasonal moving average
term respectively.(
1−

p∑
n=1

φnBn
)(

1−
P∑
n=1

8nBSp
)
(1)d (1Sp )DS̃t

=

(
1+

q∑
m=1

θmBm
)(

1+
Q∑

m=1

2mBSp
)
εt (10)
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C. AUTOMATIC SELECTION OF ARIMA MODEL
PARAMETERS
For the SARIMA(p, d, q)(P,D,Q)Sp model, the order param-
eters p, d, q,P,D and Q are automatically determined by
using Hyndman and Khandakar algorithm [49] [50]. The
differencing terms d and D are computed by performing the
unit root test such as the Kwiatkowski Phillips Schmidt Shin
(KPSS) test. If the values of differencing parameters d and
D are known, then the algorithm [49] selects the values for
p, q,P andQ through minimization of an Akaike information
criterion (AIC) given in (11).

AIC = −2 log(L)+ 2(p+ q+ P+ Q+ Kn) (11)

where L is the maximized likelihood of the forecasting model
SARIMA(p, d, q)(P,D,Q)Sp , fitted to the differenced data
(1)d (1Sp )DS̃t and Kn is the number of parameters estimated
to compute one-step ahead forecasts.

D. COMPUTING PREDICTION INTERVALS OF THE
FORECASTS AT ANY LEAD TIME
A prediction interval is an estimate of an upper and lower
bound of an interval in which the observable variable of the
future is expected to lie with a specified probability based
on the past observed values [50], [51]. Considering that g′s
are Gaussian distribution with standard deviation σg, then the
probability distribution (St+f |St , St−1, St−2, . . .) of a future
observable value St+f of the process will be normal with
mean Ŝ(f ) and standard distribution is given in (12) [46].

σ (f ) =
(
1+

f−1∑
j=1

ψ2
j

)1/2

σg (12)

The variate
[[
St+f − Ŝt (f )

]
/
[
σ (f )

]]
will posses a unit

normal distribution. Therefore, for St+f , Ŝf ± µλ/2σ (f ) will
provide the bounds of the prediction interval with probability
(1−λ).µλ/2 is the deviate transcended by a proportion of λ/2
of the unit normal distribution.Mathematically, the prediction
interval for the SARIMA(p, d, q)(P,D,Q)Sp model can be
computed by using (13) [46].

Ŝ t+f (±) = Ŝ t (f )± µλ/2

(
1+

f−1∑
j=1

ψ2
j

)1/2

σg (13)

where µλ/2 are the percentiles of the standard normal dis-
tribution. In this paper µλ/2 = 95%. The forecast value
Ŝt+f coming from the SARIMA(p, d, q)(P,D,Q)Sp model
with the probability of 1 − λ will lie between the upper
interval Ŝt+f (+) and lower interval Ŝt+f (−), i.e. Probability{
Ŝt+f (−) < Ŝt+f < Ŝt+f (+)

}
.

V. SFDFDA APPROACH
The SFDFDA approach proposed in this work presents
advanced data analytics solution by combining predictive
analytics and diagnostic analytics methods. The predic-
tive analytics component of the SFDFDA approach fea-
tures SARIMA(p, d, q)(P,D,Q)Sp model for forecasting the

Algorithm 1 Pseudocode for the SARIMA Forecast
for all i ∈ 1 : length[R(t)i] do
Computing p, d, q,P,D and Q
Forecasting [Ŝt+f ]i
Computing [Ŝt+f (−)]i and [Ŝt+f (+)]i
i = i+ 24

end for

surface temperature variable. The forecast data Ŝt+f will
function as a virtual sensor. The forecasting process of the
SARIMA(p, d, q)(P,D,Q)Sp model involves threemain steps.
The first step of the forecasting model uses the time-series
data to provide the surface temperature sensor data from
4th November 2016 to 10th November 2016 for training the
forecast model. The presence of anomalies will downgrade
the prediction performance of the forecast model. There-
fore, it is important to detect the anomalies and isolate them
before supplying the data for training the forecast model.
In this work, we compared the trends of sensor data with
the benchmark sensor measurements before supplying the
data for training. The initial training data contains 168 data
points. Then, the SARIMA(p, d, q)(P,D,Q)Sp model param-
eters are determined in the second step by invoking the Hyn-
dman and Khandakar algorithm for automatic selection of
p, d, q,P,D and Q, and then building a forecast model using
the determined parameters. Finally in the third step, themodel
forecasts the surface temperature data Ŝt+f for the next day
containing 24 data points with Ŝt+f (−) and Ŝt+f (+) values.
The pseudocode for SARIMA forecast process is presented
in Algorithm 1.

The diagnostic analytics component of the SFDFDA
approach presents statistical techniques for detecting sensor
failure and anomalies using the data from the surface tem-
perature sensor and SARIMA(p, d, q)(P,D,Q)Sp model fore-
casts. This component employs statistical hypothesis testing
for computing probability value (p-value) to detect anoma-
lies and sensor failure. A p-value is obtained by perform-
ing Pearson’s chi-squared test, denoted as χ2. It determines
the divergence of the observed sensor data from the values
that would be forecasted using SARIMA(p, d, q)(P,D,Q)Sp
model under the null hypothesis of no association. The chi-
squared distribution χ2

df is used in the χ2 for goodness of fit
of the observed sensor data distribution to a distribution of
SARIMA(p, d, q)(P,D,Q)Sp model data. The χ2

df is charac-
terized by degrees of freedom df , whose value is one less than
the number of total data points in the data set used to compute
one χ2 measure. A sliding window mechanism [16], [21] is
incorporated within the SFDFDA framework to provide a
set of data for computing p-value. This mechanism is illus-
trated in Fig. 2, where the sliding window of size WL data
points keeps moving as the time t progresses. In the proposed
SFDFDA approach, WL = n. So, the χ2

df of observed sensor
data and the SARIMA(p, d, q)(P,D,Q)Sp model data takes n
data points for computing χ2. Therefore, the df of that χ2
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FIGURE 2. Illustration of the sliding window mechanism at time period t .

Algorithm 2 Pseudocode - Function CHI CALCULATOR
/* FUNCTION PARAMETERS */
[R(t)]i, [Ŝt+f ]i, WL
/* INITIALIZATION OF VARIABLES */
Total = 0

for all i ∈ 1 : (1+WL) do

Total = Total +
(
[R(t)]i − [Ŝt+f ]i

)2
/[Ŝt+f ]i

end for
return(Total)

will be WL − 1 for all sliding windows. The χ2 measure for
the testing dataset

∑
of sizeWL is measured using (14):

χ2
=

i=WL∑
i=1

[
(Rt )i − (Ŝt+f )i

]2
(Ŝt+f )i

(14)

where i is the instantaneous time, χ2 is the cumulative
statistic of Pearson’s chi-squared test, Rt is the observed
surface temperature sensor data, Ŝt+f is the expected data
resulting from the SARIMA(p, d, q)(P,D,Q)Sp model. The
pseudocode for determining χ2 of each sliding window is
presented in Algorithm 2.

Since the value ofWL is static for all the computations, df
will be same for all the computations as well with the value
of df = n − 1. After computing χ2 and df , it is therefore
important to set a critical significance level to determine the
p-value for each sliding window. The critical significance
level is denoted as α. Typically, in the proposed SFDFDA
approach α is 5% i.e., α = 0.05. Given the α and df , the con-
tingency table that shows multivariate frequency distribution
of the variables will be referred. This table provides values
with respect to df and α. Then, by comparing the measures
of χ2 with χ2

df p-value is given by (15).

P− value = P(χ2
df ,α ≥ χ

2) (15)

For the critical level of α, the statistical hypothesis testing
provides significant value only if the is χ2

df ,α greater than
the χ2. In case of χ2 being greater than the χ2

df ,α , the statis-
tical hypothesis testing provides a non-significant value. The
determination of significant and non-significant value plays
a paramount role in the SFDFDA approach for detecting the
anomalies and sensor failure.

Algorithm 3 Psuedocode - Function P-Value CALCULA-
TOR
/* FUNCTION PARAMETERS */
[R(t)]i, [Ŝt+f ]i, WL
/* INITIALIZATION OF VARIABLES */
df = WL − 1

χ2
= chiCalculator(R(t)]i, [Ŝt+f ]i, WL)

P− value = 1− chi2Cdf (χ2, df )
return(P− value)

In a sliding window, if the p-value is a significant value
i.e., p-value > 0.95, then the sensor data measurements of
that particular sliding window will be pushed to the training
dataset of the SARIMA(p, d, q)(P,D,Q)Sp model for fore-
casting future values. Consequently, the sliding window pro-
gresses to the next window for performing statistical testing.
This process iterates as long as the surface temperature pro-
vides measurements.

In the case of sliding window producing a non-significant
p-value i.e., p-value < 0.95, then the sensor data measure-
ments of that particular window is examined to check the
presence of anomalies or any indications of early sensor
failure. Each surface temperature measurement within that
sliding window is evaluated with the prediction intervals.
Precisely, the condition defined in (16) is examined.[(

Ŝt+f (−)
)
i

]
<

[(
Rt

)
i

]
<

[(
Ŝt+f (+)

)
i

]
(16)

where i is the instantaneous time. If the condition in (16) is not
satisfied, then there arise three scenarios. In all the scenarios,
the SFDFDA approach will look for continuity of individual
data of sensor measurements present outside of Ŝt+f (−) or
Ŝt+f (+). The three scenarios are as follows:
• In the first scenario where one or two (Rt )i present
outside of Ŝt+f (−) or Ŝt+f (+), then that respective
sensor data is regarded as an anomaly. Subsequently,
the SFDFDA approach performs data accommodation
process, where the value of (Rt )i is accommodated by(
Ŝt+f

)
i.

• In the second scenario where there are three or more
(Rt )i present outside of Ŝt+f (−) or Ŝt+f (+) and their
continuity is less than three successive times, (Rt )i is
still flagged as an anomaly. However, a sensor failure
warning will be issued for inspection. In addition to the
warning signal, the SFDFDA approach undergoes data
accommodation process to replace the faulty (Rt )i with
respective

(
Ŝt+f

)
i.

• Finally, in the third scenario where there are more than
one (Rt )i present outside of Ŝt+f (−) or Ŝt+f (+) and
their continuity is three or more successive times in one
sliding window, then a signal of early sensor failure is
issued. In this scenario, the SFDFDA approach will also
invoke data accommodation process to replace the faulty
(Rt )i with respective

(
Ŝt+f

)
i. The SFDFDA approach
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Algorithm 4 Psuedocode - Detecting Sensor Failure and
Anomalies, Data Accommodation Process

/* FUNCTION PARAMETERS */
P− value, [R(t)]i, [Ŝt+f (−)]i, [Ŝt+f ]i, [Ŝt+f (+)]i,WL
Timestamp
/* INITIALIZATION OF VARIABLES */
COUNTERS : Total = 0;Warning_Count = 0;
Failure_Count = 0;Previous_ID = 0;
FLAG : Failed = FALSE

if (!(P− value > α)) then
for all i ∈ 1 : (1+WL) do
if (![R(t)]i ≥ [Ŝt+f (−)]i&&[R(t)]i ≤ [Ŝt+f (+)]i)
then
/* Evaluating Sensor Failure Condition*/
if (i == Previous_ID+ 1) then
(Failure_Count = Failure_Count + 1)
if (Failure_Count >= 3) then

Message: Sensor_Failure_(Timestamp)
(Failed = TRUE)

end if
end if
Previous_ID = i
/* Evaluating Sensor Warning Condition */
if (!Failed) then
(Warning_Count = Warning_Count + 1)
if (Warning_Count >= 3) then

Message: Sensor_Warning_(Timestamp)
end if

end if
/* Anomaly Detection & Data Accommodation */
Message: Anomaly_Detected_(Timestamp)
Data Accommodation: [R(t)]i = [Ŝt+f ]i

end if
end for

end if
return([R(t)]i)

iterates the data accommodation process until (Rt )i is
present within the Ŝt+f (−) and Ŝt+f (+).

VI. EXPERIMENTAL EVALUATION
This section evaluates the proposed SFDFDA approach by
using the surface temperature sensor data sourced from the
instrumented wastewater infrastructure. During the course of
the sewer monitoring campaign, the surface temperature sen-
sor demonstrated robust behavior and did not generate pro-
longed spurious data. However, the sensor has produced some
spurious data in the interim of laboratory evaluation. So, for
evaluating the SFDFDA approach, we have injected anoma-
lies based on the lab data to the time series data observed
during the field testing. In addition, we have implanted con-
tinuous spurious data on 22nd to 23rd December 2016 and 5th

to 6th February 2017 to simulate sensor failure. The size of

the sliding window was heuristically chosen as 6 based on
the knowledge of sensor characteristics and therefore, each
window takes 6 sensor measurements.

Figure 3 and Fig. 4 illustrates the results of the exper-
iments of SFDFDA approach to demonstrate sensor fail-
ure detection, anomaly detection and isolation, and data
accommodation process from 11th November 2016 to 23rd

December 2016 and from 24th December 2016 to 6th Febru-
ary 2017 respectively. The first plot displays the model fore-
cast within the prediction interval and the second plot shows
the sensor data with some random and continuous spurious
measurements. By using the forecast and sensor data, the
p-value is determined and presented in the third plot along
with the critical value of 0.95. For the random and continuous
spurious data, the p-value was observed to be lower than the
critical value and finally in the last plot, the data accommo-
dation process illustrating the replacement of faulty data is
shown.

To measure the detection performance of random and
continuous spurious data, we use successful detection
rate (SDR) [3] as our metric of accuracy. The SDR for
the injected and observed anomalies of the periods from
11th November 2016 to 23rd December 2016 and from 24th

December 2016 to 6th February 2017 were 100% and 93.34%
respectively. The reason for the slightly lower value of SDR
in the latter period is due to the closeness of anomaly to
the forecast value. In this case, the p-value remains to be
higher than the critical value. The SFDFDA approach suc-
cessfully detected anomalies including the two successive
ones and thereby reported the anomalies with time-stamp
and accommodated the corresponding forecast data. In the
case of more frequent anomalies present in a single window
frame, the SFDFDA approach issues sensor failure warning
for early intervention. In this case, the p-value remains lower
than the critical value. Long-term monitoring of sensor data
for detecting sensor failure is displayed in Fig. 5. Overall for
the entire time period, the SDR is 97.06%. For the continuous
spurious data on 22nd to 23rd December 2016 and 5th to 6th

February 2017, SDR were 100% for each period, indicating
the efficacy of sensor failure detection.

The forecasting performance of ARIMAmodel was evalu-
ated and comparedwith the other models, where ARIMAout-
performs the other stochastic models [52]. In order to evaluate
the forecasting performance of the SARIMAmodel, we com-
pared the forecasting data of two different periods with the
anomalies-free sensor measurements. The first period is from
25th to 30th November 2016 and the second period is from
11th to 16th January 2017. Fig. 6 presents the temporal pro-
file of forecasted and sensor measurements data, where it
can be observed that the profiles tend to follow a similar
pattern to each other. Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE) and Root Mean Square
Error (RMSE) were used as statistical metrics to evaluate the
forecasting performance of the SARIMA model. The MAE,
MAPE and RMSE for the period from 25th to 30th Novem-
ber 2016 and from 11th to 16th January 2017 were 0.18◦C,
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FIGURE 3. Experiment-1: Evaluation of SFDFDA approach.

0.0086%, 0.24◦C and 0.15◦C, 0.0062%, 0.17◦C respectively.
These statistical metrics demonstrate the higher accuracy of
the forecast model employed in this work.

As in Fig. 7, the data accommodation occurs once the
sensor failure is detected and the corresponding forecast
data is utilized to replace the continuous spurious data.
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FIGURE 4. Experiment-2: Evaluation of SFDFDA approach.

Performance analysis on data accommodation process was
carried out to determine MAE, MAPE and RMSE on the fail-
ure period from 22nd to 23rd December 2016 and from 5th to
6th February 2017, and were determined to be 0.28◦C, 0.01%,

0.31◦C and 0.46◦C, 0.02%, 0.53◦C respectively. These results
show that the data accommodation process provides sat-
isfactory prediction when the sensor generates spurious
data.
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FIGURE 5. Long-term evaluation of SFDFDA approach.

VII. DISCUSSION
In this paper, we proposed a SFDFDA approach, and
its effectiveness was evaluated by utilizing the surface
temperature sensor measurements. The proposed approach
has the potential to be used for detecting failures of different

sensors, which are monitoring other essential infrastructure
parameters in distribution networks such as pH, resistivity,
conductivity etc. Besides detecting the sensor failures and
anomalies, the proposed approach can be used for forecasting
the sensor parameters.
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FIGURE 6. Illustration of SFDFDA approach forecasting performance.

FIGURE 7. Illustration of the data accommodation during sensor failure.

The SFDFDA approach simultaneously check for anoma-
lies and sensor failures. In the broader context, surface tem-
perature data has the potential to be used in sewer corrosion
predicting models. Presence of anomalies in the observed
data can affect the prediction accuracy of those models.
Hence, in the proposed approach anomaly detection and
isolation are carried out simultaneously to the process of
detecting sensor failure. The sensor failure detection of the
SFDA algorithm is set to a heuristic criterion, which is based
on the repeated observation of faulty data. The criterion was
based on the sensor characteristics, where three or more
consecutive faulty data means a sensor failure. The size of
the sliding window was heuristically chosen as 6, based on
the knowledge of sensor characteristics.

The data collection was organised during the summer sea-
son of the Sydney city in Australia. Although the ambient
temperature of the field location was high, the sewer air
temperature was between 20◦C and 26◦C. This can be due
to the thickness of the concrete layer and the soil layer
above the sewer pipe providing a thermal barrier.More details
about the design and development of the surface temperature

sensing suite, and field experimentation will be published
subsequently in a journal.

VIII. CONCLUSION
This paper presented an approach called SFDFDA, for detect-
ing early sensor failure based upon the real-time operational
data sourced from an urban sewer. The SFDFDA approach
utilizes SARIMA model for forecasting the sensor data to
comprehend the temporal dynamics of the variable. This
forecasting mechanism is used as a framework to provide
an alternate measure to physical sensor measurements. The
forecast data from the SARIMA model was used as a refer-
ence measure in the SFDFDA approach to perform anomaly
detection, early sensor failure detection and data accommo-
dation. The SFDFDA approach integrates the forecasting
mechanism with statistical diagnostic method. In the event of
detecting anomalies, the algorithm isolates the spurious data
and accommodates the data with the corresponding forecast
value. Further, in case of a continuity of faulty data, the early
sensor failure is detected and data accommodation process is
invoked to provide predicted measures. Experimental eval-
uation demonstrates that SFDFDA approach can be used
for surface temperature monitoring in-sewer application with
high detection accuracy and efficiency.
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