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ABSTRACT In this paper, we investigate a covariance matrix reconstruction approach (CMRA) for
direction-of-arrival (DOA) estimation in correlated/coherent sources scenario. We incorporate a spatial
filtering (SF) model into our recently developed method CMRA in order to enhance its adaptation ability.
In particular, a sliding window scheme is proposed to estimate the number of sources, and an iterative
procedure is provided to estimate the DOAs of the signals. Since the original CMRA provides inaccurate
estimate of the noise power which is undesirable during iterations, a new update rule for the noise power is
proposed. Moreover, we derive a fast implementation of the SF-CMRA to accelerate the DOA estimation
in each iteration. The proposed methods are suitable for both uniform and sparse linear arrays and are able
to provide accurate estimates of DOAs, signal powers, and noise power. We also show that the proposed
algorithmic framework can be easily extended to other gridless DOA estimation methods for accuracy
improvement. Simulation results are provided to illustrate the superiority of our proposed methods.

INDEX TERMS DOA estimation, gridless methods, Toeplitz structure, coherent sources.

I. INTRODUCTION
Direction-of-arrival (DOA) estimation is one of the most
important techniques in array signal processing and is
employed in many applications, e.g., channel estimation [1]
and tracking [2], [3]. Many DOA estimation methods
have been proposed including the well known Capon
method and subspace-based methods like MUSIC [4] and
ESPRIT [5]–[7] (see [8] for a detailed review). However,
these methods may have difficulties when the impinging
signals are coherent or highly correlated. As such, many of
these methods have employed the spatial smoothing (SS)
method [9] to address this issue, which, however, require shift
invariance property in the array and hence is applicable only
for the uniform linear array (ULA) case [10]–[13].

Compressive sensing [14] is a technique of reconstruct-
ing a high dimensional signal from fewer samples and has
been introduced into the DOA estimation area in the past
decade, resulting in a number of sparse methods for DOA
estimation [15]–[17]. Compared to the subspace-based meth-
ods, the sparse methods enjoy several advantages such as
super-resolution, robustness to noise and immune to the

source number. Since the sparse methods do not depend on
the orthogonality between the noise and signal spaces which
is sensitive to the correlation of the sources, they are often
immune to the correlation. However, the sparse methods
require the DOAs of interest to be sparse in the whole angle
space. To this end, We discretize the angle space into a
finite set of grid points and the DOAs of interest are further
assumed to lie exactly on the grids. In fact, the DOAs lie in
the continuous infinite set of angles, hence the assumption
holds only when the size of the set tends to infinity, which
results in an unacceptable computational cost. Moreover, The
discretization may deteriorate the performance of the sparse
methods since there always exists a bias between the DOAs
and the grids, and we interpret it as a basis mismatch issue.
Several modified off-grid methods have been proposed to
address this issue [18]–[20]. However, these methods cannot
eliminate the basis mismatch problem but may increase the
computational cost [21].

Recently, by exploring the particular properties of the
covariance matrix, the covariance matching criteria and the
atomic norm techniques are employed to totally eliminate
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the basis mismatch effect, resulting in two representative
methods: sparse and parametric approcah (SPA) [21] and
atomic norm minimization (ANM) [22]. Although SPA is
proposed by assuming uncorrelated sources, it is shown to
be related to the `1-norm minimzation problem and hence
is robust to the correlation between the source signals [21].
ANM is proposed based on the atomic norm and can be also
related to SPA. The equivalence between SPA and ANM is
discussed in detail in [23]. Nevertheless, as we have shown
in simulations, although SPA (or ANM) is able to identify the
correlated sources, the estimation accuracy of SPA (or ANM)
in highly correlated or even coherent sources scenario is still
not satisfactory, making it unattractive in many applications.
For instance, in channel estimation of massive multiple-
input and multiple-output (MIMO) communications where
the potential gains of massive MIMO systems rely heavily on
the accuracy of channel estimation. The received signals from
different paths may highly correlated, hence the inaccuracy of
the estimates can lead to significant reduction of throughput.

By employing the covariance matching criterion, we have
proposed a super-resolution method called covariance matrix
reconstruction approach (CMRA) [24], [25] which can be
applied for both the ULA and the sparse linear array (SLA).
More importantly, discretizing the whole spatial space can
be avoided. Hence, CMRA is immune to the basis mismatch
effect. Nevertheless, CMRA also faces difficulties in the
highly correlated or even coherent source scenarios. More-
over, unlike in the uncorrelated sources scenario, CMRA fails
to give accurate estimates of the source powers in the case of
coherent sources.

In this paper, we aim to enhance the adaptation ability
of our original CMRA in the scenario where the sources
are coherent. We first present a sliding window scheme to
estimate the number of sources. Then, by incorporating the
spatial filtering (SF) model into original CMRA, we separate
the correlated sources model into several single DOA estima-
tion models and propose an iterative procedure to estimate
the DOAs. In addition, the signal and noise powers can be
also estimated. Furthermore, since solving the optimization
problem in each iteration of SF-CMRA is time-consuming,
we simplify the constraints when the number of snapshots
is medium or high and then propose a fast implementation
of SF-CMRA. Compared to the original CMRA algorithm,
the SF-CMRA and its fast implementation are able to provide
satisfying estimation performance in the correlated/coherent
scenarios, as will be shown in simulations. Finally, we show
that our proposed algorithmic framework is also suitable
for other gridless methods such as SPA for performance
improvement.

The notations are privided below. C is the set of com-
plex numbers. For a matrix A, the notations A, AT , AH

and A† denote the conjugate, transpose, conjugate transpose
and pseudo-inverse of A, respectively. A ⊗ B denotes the
Kronecker product of matrices A and B. A ≥ 0 means
that matrix A is positive semidefinite. Am,n denotes the
(m, n)-th entry of matrix A.

The organization of the paper is as follows. Section II
introduces the signal model and the original CMRA method
as preliminaries. Section III first proposes the SF-CMRA to
improve the estimation performance of CMRA in the cor-
related sources scenario, and then derives a fast algorithm
implementation to speed up the DOA estimation in each
iteration. Simulations results are provided in Section IV to
demonstrate the superiority of our methods. Conclusions are
summarized in Section V.

II. PRELIMINARIES
A. SIGNAL MODEL
In this paper, we consider two array geometries: ULA and
SLA. In the ULA case, we set the inter-element spacing to
half-wavelength and define its sensor index set as {1, · · · ,N },
where N denotes the number of sensors. In the SLA case,
we denote the sensor index set as� = {�1, · · · , �M }, where
� is sorted in ascending order with �1 = 1, �M = N ,
in which N ≥ M . Although the CMRA method is suitable
for both the ULA and SLA, without loss of generality, only
the SLA case is considered in the rest of this paper. But,
wewill take theULA case into consideration in the simulation
section.

Suppose K narrowband sources impinge onto an
M -element SLA from θ = {θ1, · · · , θK } simultaneously. The
array output with L snapshots is,

X� =
K∑
k=1

a�(θk )sk + V = A�S+ V , (1)

where X� ∈ CM×L denotes the array output, S =

[sT1 , · · · , s
T
K ]

T
∈ CK×L is the impinged signal with sk being

the k-th signal, A� = [a�(θ1), · · · , a�(θK )] is the manifold
with a�(θk ) = [ejφk,�1 , · · · , ejφk,�M ]T being the steering
vector, and V ∈ CM×L is the additive white Gaussian noise.
The manifold matrix of the coarray of the SLA can be defined
asA = [a(θ1), · · · , a(θK )] with a(θk ) = [ejφk,1 , · · · , ejφk,N ]T .
The relationship between a(θk ) and a�(θk ) can be formulated
as a�(θk ) = 0�a(θk ) where 0� ∈ {0, 1}M×N denotes
a selection matrix with its entries being 1 only at (m, �m)
position.

B. CMRA
First, it is assumed that both the sources and the noise are
uncorrelated from each other. By denoting the signal and
the noise powers as p = [p1, · · · , pK ]T and σ , respectively,
the covariance matrix can be written as,

R� = E[X�XH
�]

=

K∑
k=1

pka�(θk )aH�(θk )+ σ I

= T�(u)+ σ I

= 0�T (u)0T� + σ I, (2)
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where T�(u) , 0�T (u)0T� = A�diag(p)AH� in which T (u)
is a Toeplitz matrix. Its structure can be given as follows:

T (u) =


u1 u∗2 · · · u∗N
u2 u1 · · · u∗N−1
...

...
. . .

...

uN uN−1 · · · u1

 . (3)

Note that T (u) is uniquely determined by its first column u =
[u1, · · · , uN ]T . It is also clear that rank[T (u)] = K < N and
T (u) ≥ 0.

In reality, R� is usually obtained as follows,

R̂� =
1
L
X�XH

�, (4)

where L denotes the number of snapshots and R̂ is contami-
nated due to the finite snapshot effect. The error component
can be denoted as

E� = R̂� − R�
= R̂� − T�(u)− σ I, (5)

The vectorization form ofE� obeys the following asymptotic
normal distribution [26],

vec(E�) ∼ AsN(0,W�) (6)

where W� =
1
LR

T
� ⊗ R� and can be estimated as Ŵ� =

1
L R̂

T
� ⊗ R̂�. From (6), it can be deduced that [27],∥∥∥∥Ŵ− 1

2
� vec(E�)

∥∥∥∥2
2
∼ Asχ2(M2), (7)

where Asχ2(M2) denotes the asymptotic chi-square distribu-
tion with M2 degrees of freedom. It is easy to see that the
following inequality holds with probability 1− κ ,1∥∥∥∥Ŵ− 1

2
� vec(E�)

∥∥∥∥2
2
≤ η2 (8)

where η can be determined by M and κ .2

CMRA first estimates T (u) which contains the DOA
information by solving the following problem,

min
u

tr [T (u)]

s.t.

∥∥∥∥Ŵ− 1
2

� vec(E�)
∥∥∥∥2
2
≤ η2,

T (u) ≥ 0. (9)

Several toolboxes can be used to solve this problem,
e.g., CVX and SeDuMi [28]. When the estimate T (̂u) is esti-
mated, θ̂ and p̂ can be retrieved according to theVandermonde
decomposition theorem (see [29] for more details).

It can be seen that CMRA requires the sources to be
uncorrelated. Otherwise if the sources are correlated, the sig-
nal space of the covariance R� is rank deficient and then

1In this paper, we set κ = 0.0001.
2According to the property of chi-square distribution, given the explicit

value of M and κ , we can obtain η by using the MATLAB routine
chi2inv(1− κ,M2).

equation (2) is invalid. In turn, solving problem (8) may fail
as well. The preprocessing techniques spatial smoothing has
been proposed to solve the rank deficiency issue by exploiting
the shift invariance property of the ULA [30]. However,
spatial smoothing cannot be used in the SLA case, which
may limit the adaptability of CMRA. Moreover, even though
those techniques can help CMRA to deal with the correlated
scenario, they perform poorlywhen the covariancematrix and
subspace estimates are not accurate typically in cases like low
signal-to-noise ratio (SNR) and spatially adjacent sources.
The spatial filtering model was proposed by Liu et al. for the
sparse DOA estimation model [31]. However, it has not yet
been exploited for the gridless DOA estimationmodel. In next
section, we will extend the SF model for CMRA and propose
a unified algorithmic framework that is suitable for general
gridless DOA estimation approaches.

III. SPATIAL FILTERING CMRA
A. SPATIAL FILTERING MODEL
Here, we first briefly review the SF model and then incorpo-
rate it into CMRA for performance improvement. Denote the
manifold matrix of the subarray which consists of the m-th to
(m + K − 1)-th elements of the original array with sources
impinging from directions of θ by A(m)(θ ), and also define
B(m)(θ ) = [A(m)(θ )]−1, with its k-th row denoted by b(m)k .
Then, we get

B(m)(θ )A(m)(θ )S = 8mS, m = 1, · · · ,M − K + 1,

b(m)k A(m)(θ )S = ejφk,msk , k = 1, · · · ,K , (10)

where 8m = diag([ejφ1,m , · · · , ejφK ,m ]). By defining Fk ∈
C(M−K+1)×M , whose m-th row is

(Fk )m• = [0m−1, b
(m)
k ,0M−K+1−m], (11)

we have,

Y k , FkX�
= a′(θk )sk + FkV , k = 1, · · · ,K , (12)

where a′(θk ) = [ejφk,�1 , · · · , ejφk,�N ′ ] is denoted as ak for
simplicity with N ′ = M − K + 1. We can see that the
k-th signal is extracted from the array output and its DOA can
be retrieved frommodel (12) provided that the spatial filterFk
is accurate. However, this model cannot be directly utilized
for CMRA because of two reasons. First, the number of
sources has to be required, which is usually a priori unknown.
Second, the filter parameters depend on the true DOAs θ ,
which are not available in practice. In what follows, we first
present a sliding window scheme to estimate K , and then
propose an iterative procedure to jointly estimate the DOAs
and the filter parameters.

B. SF-CMRA
Here, we introduce a sliding window scheme to esti-
mate K . In particular, we employ the sparse and parametric
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approach (SPA) to give an initialization of θ and K̂ .3 The
SPA output p̂ = [̂p1, · · · , p̂N−1]T is sorted in deceasing order
where {̂pk , k ≤ K } are the true signal powers and {̂pk , k >
K } are the spurious ones. Let bk =

∑K
m=1 p̂m+k−1(k =

1, · · · ,N −K− 1), where K denotes the window size. Note
that there exists a noticeable gap between p̂K and p̂K+1, hence
bk
bk+1

approaches the maximum value when k = K . Hence,
the signal number can be estimated as

K̂ = argmax
k

bk
bk+1

k = 1, · · · ,N −K − 1. (13)

In this paper, the window size K is set to 1. It is noted that a
similar sliding window scheme in [32] sets K = 2. However,
the choice of K = 1 allows to locate N − 2 sources while
the scheme in [32] and [33] using K = 2 can locate N − 3
sources only. Hence, in this paper, we choose K = 1 for
source enumeration.

For DOA estimation, we propose an iterative procedure to
update θk andFk alternatively, whereFk is estimated by (11).
The remaining task is to estimate θk based on (12). Note
that model (12) can be regarded as an SLA model when the
original array is sparse. Here, we only consider the SLA case
in the following and have,

R(q)
Y k
= T�′

(
u(q)k

)
+ σ (q)F(q)

k

(
F(q)
k

)H
, (14)

where (q) is used to identify the updating variables in the
q-th iteration, RY k is the covariance matrix of Y k and
T�′

(
uk
)
= 0�′T (uk )0

H
�′

in which0�′ is the selectionmatrix
of an array with �′ = {�1, · · · , �N ′}. Before employing
CMRA to reconstruct T�′ (uk ), the noise power σ should be
accurately estimated in advance. To this end, we first use (12)
to obtain,

diag
[
σF(q)

k

(
F(q)
k

)H]
= diag

[ 1
L

(
F(q)
k X� − a

(q)
k a(q)†k F(q)

k X�
)

×
(
F(q)
k X� − a

(q)
k a(q)†k F(q)

k X�
)H]

= diag
[(
I − a(q)k a(q)†k

)
F(q)
k R̂�

(
F(q)
k

)H]
, diag(D(q)

k ). (15)

Then, the update rule for σ can be formulated as,

σ
(q)
k =

tr
[
D(q)
k

]
tr
[
F(q)
k

(
F(q)
k

)H] . (16)

When the estimate of σ (q)
k is obtained, the remaining task is

to estimate u(q)k by using CMRA. To this end, we solve the

3It should be noted that, although SPA is applicable to the correlated
scenario, it cannot provide a satisfying estimation performance because of
the high correlation between the sources. We further show in simulation that,
with the help of our proposed algorithmic framework, the performance of
SPA can be also greatly improved.

following optimization problem,

min
u(q)k

tr
[
T (u(q)k )

]
s.t.

∥∥∥∥(Ŵ (q)
k
)− 1

2 vec(E(q)
k )

∥∥∥∥2
2
≤ β2,

T (u(q)k ) ≥ 0, (17)

where Ŵ (q)
k =

1
L R̂

(q)
Y k

(
R̂(q)
Y k

)H , E(q)
k = R̂(q)

Y k − T�′ (u
(q)
k ) −

σ
(q)
k F(q)

k

(
F(q)
k

)H and β is uniquely determined by N ′ and κ .

When the estimate û(q)k is obtained, the DOAs θ̂
(q)
k and signal

powers p̂(q)k can be easily determined by using the Vander-
monde decomposition lemma [21].

We summarize our method in Algorithm 1 below, whose
advantages can be listed as follows.
• our proposed algorithmic framework can adapt to arbi-
trary linear arrays (e.g., ULAs and SLAs) for coherent
sources localization. In contrast, the spatial smooth-
ing method only adapts to the special geometries such
as ULA.

• the proposed framework is not only suitable for CMRA,
but also can be extended to other gridless methods like
SPA. The only difference is to update uk by SPA instead
of CMRA.

• SF-CMRA can provide accurate estimates of multiple
parameters, including θ , p and σ , while most of the DOA
estimation methods provide the DOA estimates only.

• the estimation performance of our method is superior to
the spatial smoothing method.

All of these aforementioned advantages will be verified in
simulations.

Algorithm 1 SF-CMRA
Input: measurement data X�.

Initialization: the SPA output θ̂
(0)
, p̂(0).

obtain the estimate K̂ by using (13);
repeat
calculate Fk , k = 1, · · · , K̂ in model (12);
for: k = 1, · · · , K̂
Update σk by using equation (16);
Update uk by using model (17);
Update θk and pk by using the Vandermonde

decomposition lemma;
end

until Convergence
Output: θ̂ , p̂, σ̂k , K̂ .

Remark 1: It can be noted that the noise power σ is esti-
mated in each SF model as σ̂k . A reasonable estimate of σ
can be calculated as σ̂ = 1

K̂

∑K̂
k=1 σ̂k .

Remark 2: Model (12) is regarded as an SLA with �′
=

{�1, · · · , �N ′}, which is not necessarily a redundancy array
since its coarray is not guaranteed to be a ULA. It is natural
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to require K < M where M is the maximum num-
ber of detectable sources. Our model always satisfies this
requirement since there exists only one signal in each SF
model as shown in (12), hence SF-CMRA can be imple-
mented straightforwardly. The computational complexity of
SF-CMRA is inevitably high because of the optimization
problem (17) in each iteration. Solving this semidefinite pro-
gramming problem (17) involves employing the optimization
toolboxes such as CVX [34] or SeDuMi, which are time-
consuming. Hence, we would like to propose in the following
a more efficient implementation for SF-CMRA.

C. FAST IMPLEMENTATION OF SF-CMRA
Our idea behind a fast implementation of SF-CMRA is
to obtain a closed-form solution for the DOA estimation
problem in each iteration. It is noted that, the covariance
matrix T (uk ) in model (17) is constrained to be positive
semidefinite, which is almost sure with moderate or large
number of snapshots. The research in [35] suggests that
L ≥ 15 is large enough to ensure that the estimated covari-
ance matrix is positive semidefinite. Under this assumption,
we can drop the constraint T (u(q)k ) ≥ 0 in (17), leading to a
Lagrangian form of the optimization problem as given by,

min
u(q)k

λtr
[
T (u(q)k )

]
+

1
2

∥∥∥∥(Ŵ (q)
k
)− 1

2 vec(E(q)
k )

∥∥∥∥2
2
, (18)

where λ > 0 is a user-defined regularization parameter.

By defining Q = Ŵ−
1
2 and R̂−σ = R̂Y − σFFH , we can

then rewrite model (18) as,4

min
u

1
2

∥∥∥Qvec(R̂−σ − T�′ (u))∥∥∥2
2
+ λtr

[
T (u)

]
= min

u

1
2

[
tr
[
T�′ (u)R̂

−1
−σT�′ (u)R̂

−1
−σ

]
− 2tr

[
T�′ (u)R̂−σ

]]
+ λtr

[
T (u)

]
= min

u

1
2
tr
[
T (u)CT (u)C

]
+ tr

[
(λI − C)T (u)

]
, (19)

where C = 0T
�′
R̂−1−σ0�′ . By using the Karush-Kuhn-

Tucker (KKT) conditions, the optimal value of (18) can be
given as follows,

T∗(CT (u)C) = T∗(C − λI). (20)

where T∗(V ) = [v−(N ′−1), · · · , vN ′−1]T , in which vn is the
sum of entries in the n-th diagonal of V ∈ CN ′×N ′ which is
defined as,

vn =


∑N ′−1−n

i=0
V1+i,n+1+i n = 0, · · · ,N ′ − 1∑N ′−1+n

i=0
V1−n+i,1+i n = −(N ′ − 1), · · · ,−1.

(21)

In the following, we will provide an easy-to-implement
procedure to efficiently solve (20). First, the left-hand term

4We drop the superscript (q) and the subscript k for notational
convenience.

of (20) can be transformed as,

T∗(CT (u)C) =


8N ′,:
...

82,:
8



uN ′
...

u2
u

 , (22)

where

8 =



T∗T
(
C :,{1,··· ,N ′}C{1,··· ,N ′},:

)
T∗T

(
C :,{1,··· ,N ′−1}C{2,··· ,N ′},:

)
...

T∗T
(
C :,1CN ′,:

)


, (23)

We then rewrite (22) as,

T∗
[
CT (u)C

]
= Z

[
u
u

]
= [Z1 Z2]

[
u
u

]
, (24)

where Z1 and Z2 have the same dimension. Let G denote the
right-hand side of (20), we can have that,[

R(G)
I(G)

]
︸ ︷︷ ︸

Gr

=

[
R(Z1 + Z2) I(Z2 − Z1)
I(Z1 + Z2) R(Z1 − Z2)

]
︸ ︷︷ ︸

Zr

[
R(u)
I(u)

]
︸ ︷︷ ︸

ur

. (25)

It is seen from (25) that u can be easily obtained from
ur = Z†rGr . Compared to using CVX, the derived closed-
form solution can greatly save computations and is termed
as fast SF-CMRA (FSF-CMRA). Its superiorities will be
investigated in the following section.

IV. SIMULATION RESULTS
We carry out extensive simulations to illustrate the superi-
ority of our methods SF-CMRA/FSF-CMRA compared to
some state-of-the-art methods, i.e., `1 reconstruction after
Singular Value Decomposition (L1SVD) [36], sparse itera-
tive covariance-based estimation (SPICE) [37] and SPA in
correlated/coherent sources scenario. Moreover, we also take
CMRA with spatial smoothing preprocessing into consid-
eration and name it as SS-CMRA. It should be noted that,
SS-CMRA is applicable for the uncorrelated sources sce-
nario only. The iteration in SF-CMRA stops if the maximum
number of iterations, set to 20, is reached, or the relative
change of θ̂ at two consecutive iterations is less than 10−4,

i.e., ‖̂θ j+1−θ̂ j‖F
‖̂θ j‖F

< 10−4. For L1-SVD and SPICE, we set the
discretized interval to be 2◦ and the iterative grid refinement
procedure is employed [36]. The arrays employed in this
paper include one ULA with 7 sensors and one SLA with
� = {1, 2, 5, 7}.

A. CONVERGENCE OF SF-CMRA
First, we give an example to illustrate the iterative process of
SF-CMRA. Assume two narrowband coherent signals with
p = [100, 100]T impinge onto the ULA from [−10◦, 10◦],
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and the noise power σ = 1. We collect 100 snapshots for
SF-CMRA algorithm and show theDOA and power estimates
in each iteration in Fig. 1. In the upper two figures, the green
and red points denote the initialization and last outputs of
SF-CMRA, respectively. Blue points denote the outputs of
SF-CMRA during iterations (the arrows indicate the order
of iterations), and black circles denote the true powers and
DOAs of sources. The lower two figures show the RMSEs of
the estimates of DOAs and signal powers, respectively. From
Fig. 1 we can observe that our method SF-CMRA is able to
converge to the true points, providing accurate estimates of
DOAs and powers. In particular, the RMSEs of θ , p and σ
are 0.0102◦, 0.0883 and 0.1181, respectively.

FIGURE 1. DOA and power estimates of SF-CMRA with L = 100,
SNR = 20dB in the ULA case. The green and red points denote the
initialization and last output of SF-CMRA, respectively. Blue points denote
the outputs of SF-CMRA during iterations (the arrows indicate the order
of iterations), and black circles denote the true positions of the signals.

FIGURE 2. DOA and power estimates of SF-CMRA with L = 100,
SNR = 20dB in the SLA case. The green and red points denote the
initialization and last output of SF-CMRA, respectively. Blue points denote
the outputs of SF-CMRA during iterations (the arrows indicate the order of
iterations), and black circles denote the true DOAs and powers of signals.

Then, we re-implement the above experiment with the
same settings except that we replace the ULA by the SLA
and show the results in Fig. 2. It can be seen that SF-CMRA
is applicable in the coherent sources scenario and is able to
provide accurate estimates of both DOAs and signal powers.

FIGURE 3. Detection probabilities comparison for two sources impinging
from [−6◦,6◦], L = 40. (a) Uncorrelated sources. (b) Coherent sources.

In particular, the RMSEs of θ , p and σ are 0.0222◦, 0.0913
and 0.1457, respectively.

B. COMPARISONS WITH PRIOR ARTS
We first evaluate the signal detection performance of our
sliding window scheme by comparing with AIC, MDL as
well as SORTE. Both the uncorrelated and coherent scenarios
are considered. Assume two signals impinged onto the ULA
from [−6◦, 6◦] with L = 40. The success probabilities of
the signal detection are measured in Fig. 3. From the left
figure we can see that when the sources are uncorrelated, all
methods can correctly detect the sources with high probabil-
ities in the large SNR region and our sliding window scheme
is able to give the best performance in most cases. However,
when the sources are coherent, from the right figure we can
observe that, only our method is able to correctly detect the
sources with appropriate SNRs. Other methods failed when
the sources are coherent since the covariance matrix may loss
rank in this case.

We now evaluate the estimation performance of SF-CMRA
by comparing the RMSEs of different methods with respect
to SNR, L and correlation coefficient, respectively. First,
we assume two coherent sources impinged onto the ULA
from [−16◦ + v, 16◦ + v] where v is varied in each trial
to simulate a realistic scenario. Assume that 100 snapshots
are collected in each trial. We compare the estimation results
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FIGURE 4. Performance comparison for two coherent sources impinging
from [−16◦ + v,16◦ + v ], L = 100. (a) RMSE comparison. (b) CPUtime
comparison.

of the aforementioned methods based on 400 independent
trials in Fig. 4 and vary the SNR from −15dB to 20dB.
Fig. 4(a) and (b) show the RMSEs and CPU times of
these methods, respectively. From Fig. 4(a) we can see that
SF-CMRA enjoys the best estimation performance in most
cases and follow the CRLB curve when SNR is larger than
5dB. With the help of spatial smoothing, SS-CMRA is able
to give a satisfying performance in this experiment. Although
the performance of FSF-CMRA is slightly inferior to that of
SF-CMRA in the small/moderate SNR region (this is partially
because we drop the nonnegative constraint), it can also fol-
low CRLBwhen the SNR is large than 15dB.We also provide
the running time comparisons in Fig. 4(b). SF-CMRA is time-
consuming because it has to carry out the CVX toolbox to
solve the optimization problem, which is computationally
inefficient. The running times of SS-CMRA and SPA are
comparable with each other and nearly remain stable in the
compared SNR region. In contrast, the running times of
L1SVD and SPICE increase as SNR becomes large since
the grid size grows in proportion to the SNR. Thanks to the
derived closed-form solution of problem (18), FSF-CMRA is
more than an order of magnitude faster than other methods,
making it more appealing in real applications.

We then evaluate the performance of these methods by
varying L from 50 to 400 and setting SNR= 20dB.

The simulation results are given in Fig. 5, from which we
can conclude that SF-CMRA is able to follow well the
CRLB in the compared region. Although L1-SVD, SPICE
and SPA are shown to be robust to the coherent sources [21],
they fail to provide a satisfying performance in this exper-
iment. In contrast, SS-CMRA and FSF-CMRA outperform
L1-SVD, SPICE and SPA and have a similar trend as
the CRLB.

FIGURE 5. Performance comparison for two coherent sources impinging
from [−16◦ + v,16◦ + v ] with L varying from 50 to 400, SNR= 20dB.

FIGURE 6. Performance comparison for two correlated sources impinging
from [−16◦ + v,16◦ + v ] with correlation coefficient varying from 0 to 1,
L = 100, SNR= 20dB.

Finally, we carry out simulation to evaluate the RMSEs
with the correlation coefficient varying from 0 to 1 and set
L = 100. The simulation results can be seen in Fig. 6.
We can observe that the RMSEs of L1-SVD, SPICE and SPA
increase when the two sources become correlated each other,
especially when the two sources are coherent. In contrast,
our proposed methods and SS-CMRA are immune to the
correlation between the sources.

C. EXTENDABILITY OF SF-CMRA
We now show that our proposed framework can be eas-
ily extended to another gridless method SPA. In particular,
we update uk by SPA instead of CMRA in Algorithm 1 and
name the proposed method as SF-SPA. Note that other grid-
less methods such as the proposed methods in [38] and [39]
can also be incorporated into Algorithm 1 for performance
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FIGURE 7. RMSE comparison of SPA and SF-SPA with respect to SNR with
N = 7, M = 4, L = 40 for two coherent signals impinging from
[−16◦ + v,16◦ + v ].

FIGURE 8. Estimation performance comparison of SPA and SF-SPA.
(a) SPA. (b) SF-SPA.

improvement in the correlated sources scenario. We then
evaluate the estimation performance of SPA and SF-SPA by
comparing their RMSEs with respect to SNR. First, it is sup-
posed that two coherent signals impinge onto the SLA from
[−16◦ + v, 16◦ + v]. We set L = 40 and compare SPA and
SF-SPA in Fig. 7. It is seen that the SF-SPA curve coincides
with the CRLB curve while there still exist a noticeable gap
between the SPA curve and the CRLB curve.

Finally, we study the estimation capabilities of SPA and
SF-SPA in terms of the angle separation and correlation
coefficient. We assume two signals impinge onto the ULA

from [−3◦, 3◦+1θ ], where1θ varies from 0◦ to 10◦. In each
Monte Carlo run, the SNR and L are set to 15dB and 100,
respectively. Successful estimate is declared if the RMSE of
DOA estimation is less than 0.1. The simulation results are
presented in Fig. 8 where white means complete success and
black means complete failure. It is obvious that SF-SPA has
a larger success region compared to SPA. Moreover, Fig. 8
also shows that SPA suffers from high correlations even if the
signals are well-separated while SF-SPA is insensitive to the
correlations. From Fig. 7 and Fig. 8 it can be concluded that,
the proposed framework can help gridless methods in general
to improve their estimation performance in the correlated
sources scenario.

V. CONCLUSIONS
In this paper, we have made a special effort to enhance
the ability of the original CMRA algorithm in correlated/
coherent sources scenario. By incorporating the SF model
into CMRA, we have proposed a modified CMRA, called
SF-CMRA method that uses a sliding window scheme to
estimate the number of sources and an iterative procedure
to estimate the DOAs. An update rule for the noise power
is also provided. We have also derived an efficient algo-
rithm, named FSF-CMRA, for fast implementation. Numeri-
cal results have revealed that the SF-CMRA is applicable in
both ULA and SLA cases and is superior to other methods in
estimation accuracy while FSF-CMRA enjoys a much lower
computational complexity than other methods. We have also
investigated the extendability of our proposed algorithmic
framework revealing that other gridless methods can be easily
incorporated into this framework to improve their estimation
accuracy for correlated sources.
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