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ABSTRACT Inspired by security applications in the image transmission, this paper focuses on the usage
of chaotic properties of memristor-based bidirectional associate memory neural networks (MBAMNNs) for
image encryption against illegal attack. A class of memristor-based bidirectional associate memory neural
networks with delays and stochastic perturbations is formulated and analyzed. Based on drive-response
concept, Itô’s differential formula and inequality technique, some sufficient criteria are obtained to guarantee
the finite-time projective synchronization. In order to realize the image encryption, we propose a chaotic
color image encryption algorithm based on MBAMNNs. Illustrative examples are provided to verify the
developed finite-time projective synchronization results. And we also show the great chaotic properties of
themodels proposed in this paper. Analysis of the encryption effect demonstrated the security of the proposed
image encryption algorithm, and the potential applications of our models in secure image transmission are
analyzed.

INDEX TERMS Finite-time projective synchronization, image encryption, memristor-based BAM neural
networks, stochastic perturbation.

I. INTRODUCTION
During the past few decades, image encryption has attracted
much attention from worldwide researchers due to its
important applications in secure image transmission [1]–[4].
However, transmission of encrypted large images per-
forms inefficiently by means of traditional image encryp-
tion schemes. To overcome the drawbacks of traditional
encryption algorithms, chaotic encryption algorithmwas pro-
posed [5]. Chaotic image encryption algorithm provides a fast
and secure way for image transmission, which is based on the
chaotic systems.

Chaotic systems have many useful properties such as
the sensitivity to their initial values and system parameters,
pseudo-randomness, ergodicity, etc.. Quality of properties of
chaotic systems determines the effectiveness of chaotic image

encryption. Weak chaotic properties may lead to the prob-
lems of small key space and low security. Therefore, various
chaotic systems with great chaotic properties are designed
and widely used to generate the pseudo-random keystreams
for chaotic image encryption [6]–[10]. In [6], authors pre-
sented a new chaotic system by combining Logistic, Sine and
Tent systems. A new two-dimensional hyperchaotic map was
proposed in [10]. Recently, memristor-based BAM neural
networks is considered in chaotic image encryption due to
its hyperchaotic properties.

Memristor-based BAM neural networks is a form of BAM
neural networks [11]. This form of BAM neural networks
is built replacing resistors with memristors. Memristor is
a nonlinear circuit element with memory function. Supe-
rior non-volatile characteristic of memristor promotes the
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chaotic properties of memristive BAM neural networks.
Memristor-based BAM neural networks consists of two
layers of neurons. Neurons in one layer are completely
connected to neurons in the other layer, while neurons
in the same layer are not interconnected [12]. The struc-
ture of two layers gives memristor-based BAM neural net-
works powerful associative memory capabilities and hyper-
chaotic properties. Hence, it is interesting and significant
to investigate the dynamic behaviors of memristor-based
BAM neural networks [13], [14] and its applications in
chaotic image encryption and secure image transmission.
For instance, authors in [13] were concerned with anti-
synchronization results for a class of memristor-based BAM
neural networks with different memductance functions and
time-varying delays.

Secure image transmission is based on the synchroniza-
tion control between drive systems and response systems.
L.M. Pecora and T.L. Carroll introduced the synchroniza-
tion in chaotic system [15]. Veljko Milanović investiagted
the synchronization of chaotic neural networks for secure
communications in 1996 [16]. Recently, efforts have been
devoted to the synchronization control of memristor-based
neural networks [17]–[19], especially memristor-based BAM
neural networks [20]–[23]. However, most studies of syn-
chronization are about infinite-time synchronization control.
Infinite-time synchronization can not determine the time for
reaching complete synchronization, which may cause the
inconsistency between the sent time and the receipt time.
The inconsistency caused by infinite-time synchronization
control is often undesirable in practical applications. There-
fore, the study of the synchronization that can be reached
in finite time is important [24]–[29]. Furthermore, projective
synchronization can strengthen the security of image trans-
mission and it is widely employed in secure communica-
tion [30]–[32]. In [33]–[36], authors studied the projective
synchronization of memristor-based neural networks, and
authors in [36] investigate the projective synchronization of
BAM neural networks. Authors investigated the fixed-time
synchronization of memristor-based BAM neural networks
with discrete delay in [37]. As far as we know, few scholars
have studied the finite-time projective synchronization of
memristor-based BAM neural networks with time delays and
stochastic perturbations, so in this paper we will fill this gap.

Inspired by the above discussions, this paper investi-
gates the problem of finite-time projective synchronization
of MBAMNNs with time delays and stochastic perturba-
tions and then we applicate it in chaotic image encryption.
The main contributions of this paper lie in the following
aspects:

1) We propose two memristor-based BAM neural net-
works models. Since these models have great chaotic
properties, they can be employed in image encryption
algorithm effectively.

2) We consider the stochastic perturbations and time
delays in our models and we get some correspond-
ing criteria for finite-time projective synchronization

of memristor-based BAM neural networks. These cri-
teria can be applied to guarantee the secure image
transmission.

3) An image encryption algorithm is also designed based
on the memristor-based BAM neural networks models
that we will propose in this paper.

The rest of this paper is organized as follows. In Section 2,
we describe models of drive-response system. Inspired
by [37], we introduce some necessary preliminaries.
In Section 2, two feedback controllers are designed and
conditions of finite-time projective synchronization of
MBAMNNs are presented. In Section 4, four examples are
provided to demonstrate the validity of proposed results and
show the image encryption applications. Section 5 draws the
conclusion.

II. MODEL DESCRIPTION AND PRELIMINARIES
In this paper, we consider the following memristor-based
BAM neural networks with time delays.

dxi(t) = [−δi(xi(t))xi(t)+
m∑
j=1

aji(xi(t))fj(yj(t))

+

m∑
j=1

bji(xi(t))fj(yj(t − τ (t)))]dt,

dyj(t) = [−ρi(yj(t))yj(t)+
n∑
i=1

cij(yj(t))gj(xj(t))

+

n∑
i=1

dij(yj(t))gj(xj(t − τ (t)))]dt,

(1)

where t ≥ 0, i = 1, 2, ..., n, j = 1, 2, ...,m; xi(t) and yj(t)
donate the voltage of the capacitors Ci and Ĉj of the i-th neuron
in x-layer and j-th in y-layer, respectively; δi > 0 and ρj > 0
represent the rates of neuron self-inhibition; fj(·) and gi(·) are
the neuron activation functions; τ (t) is the time-varying delay
and satisfies 0 ≤ τ (t) ≤ θ, τ̇ (t) ≤ τ ; aji, bji, cij, dij are
connection weights, which are given by

δi(γ ) =

{
δ́i, |γ | < Ti,
δ̀i, |γ | > Ti,

ρj(γ ) =

{
ρ́j, |γ | < T̂j,
ρ̀j, |γ | > T̂j,

aji(γ ) =

{
áji, |γ | < Ti,
àji, |γ | > Ti,

cij(γ ) =

{
ćij, |γ | < T̂j,
c̀ij, |γ | > T̂j,

bji(γ ) =

{
b́ji, |γ | < Ti,
b̀ji, |γ | > Ti,

dij(γ ) =

{
d́ij, |γ | < T̂j,
d̀ij, |γ | > T̂j,

where the switching jumps Ti, T̂j are positive constants, while
δ́i, δ̀i, ρ́j, ρ̀j, áji, àji, b́ji, b̀ji, ćij, c̀ij, d́ij, d̀ij are constants. The
initial values of system (1) are assumed to be x(s) = ψ(s) ∈
C([−τ, 0],Rn) and y(s) = φ(s) ∈ C([−τ, 0],Rm).
Since the drive-response concept is used to derive the cri-

teria of finite-time projective synchronization and system (1)
is regarded as the drive system, the corresponding response
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system is presented as follows

dx̃i(t) = [−δi(x̃i(t))x̃i(t)+
m∑
j=1

aji(x̃i(t))fj(ỹj(t))

+

m∑
j=1

bji(x̃i(t))fj(ỹj(t − τ (t)))+ ui(t)]dt,

dỹj(t) = [−ρi(ỹj(t))ỹj(t)+
n∑
i=1

cij(ỹj(t))gj(x̃j(t))

+

n∑
i=1

dij(ỹj(t))gj(x̃j(t − τ (t)))+ vj(t)]dt,

(2)

where i = 1, 2, ..., n, j = 1, 2, ...,m; ui(t) and vj(t) are the
feedback controllers to be designed.

In consideration of stochastic perturbations, the corre-
sponding response system is described as follows

dx̃i(t) = [−δi(x̃i(t))x̃i(t)+
m∑
j=1

aji(x̃i(t))fj(ỹj(t))

+

m∑
j=1

bji(x̃i(t))fj(ỹj(t − τ (t)))+ ui(t)]dt

+

m∑
j=1

σji(t, e
y
j (t), e

y
j (t − τ (t))dωj(t),

dỹj(t) = [−ρi(ỹj(t))ỹj(t)+
n∑
i=1

cij(ỹj(t))gj(x̃j(t))

+

n∑
i=1

dij(ỹj(t))gj(x̃j(t − τ (t)))+ vj(t)]dt

+

n∑
i=1

σ̃ij(t, exi (t), e
x
i (t − τ (t))dω̃i(t),

(3)

where i = 1, 2, ..., n, j = 1, 2, ...,m; ω̃i and ωj(t) are
n-dimensional and m-dimensional Brownian motion defined
on a complete probability space (�,F ,P) with a natural
filtration {Ft }t≥0. σji(·) and σ̃ij(·) are the noise intensity func-
tion matrices, where i = 1, 2, ..., n and j = 1, 2, ...,m.
Assume the initial values of system (2) is the same as (3),
which are x̃(s) = ψ̃(s) ∈ C([−τ, 0],Rn) and ỹ(s) = φ̃(s) ∈
C([−τ, 0],Rm).

The errors of projective synchronization is set as follows{
exi (t) = x̃i(t)− αi(t)xi(t),
eyj (t) = ỹj(t)− βi(t)yj(t),

(4)

where i = 1, 2, ..., n, j = 1, 2, ...,m; α(t) and β(t) are
bounded and differentiable scalars with |α(t)| < ξ , |β(t)| <
η, where ξ and η are positive constants.

In order to obtain the criteria of finite-time projective
synchronization, we need the following assumptions.
Assumption 1: There exists constant pj > 0, such that
|fj(·)| ≤ pj, where j = 1, 2, ...,m.
Assumption 2: There exists constant qi > 0, such that
|gi(·)| ≤ qi, where i = 1, 2, ..., n.

Assumption 3: There exist two real matrices G1 =

diag(g11, g12, ..., g1n) ≥ 0 and G2 = diag(g21, g22, ..., g2n)
≥ 0, such that

trace[σ T (t, x, y)σ (t, x, y)] ≤ xT (t)G1x(t)+ yT (t)G2y(t).
Assumption 4: There exist two real matrices H1 =

diag(h11, h12, ..., h1n) ≥ 0 and H2 = diag(h21, h22, ..., h2n)
≥ 0, such that

trace[σ̃ T (t, x, y)σ̃ (t, x, y)] ≤ xT (t)H1x(t)+ yT (t)H2y(t).
Lemma 1:

sign(exi (t))(−δi(x̃i(t))x̃i(t)+ αi(t)δi(xi(t))xi(t))

≤ −min{δi}
∣∣exi ∣∣+ (1+

∣∣ξi − 1
∣∣)∣∣δ̀i − δ́i∣∣Ti,

for i = 1, 2, ..., n.

Proof: Here we discuss four cases.
(1) When |x̃i(t)| < Ti and |xi(t)| < Ti,

sign(exi (t))(−δi(x̃i(t))x̃i(t)+ αi(t)δi(xi(t))xi(t))

= sign(exi (t))(−δ́ix̃i(t)+ αi(t)δ́ixi(t))

= −sign(exi (t))
[
δ́i(x̃i(t)− αi(t)xi(t))

]
= −δ́i

∣∣exi ∣∣ ≤ −min{δi}
∣∣exi ∣∣ ;

(2) When |x̃i(t)| > Ti and |xi(t)| > Ti,

sign(exi (t))(−δi(x̃i(t))x̃i(t)+ αi(t)δi(xi(t))xi(t))

= sign(exi (t))(−δ̀ix̃i(t)+ αi(t)δ̀ixi(t))

= −δ̀i
∣∣exi ∣∣ ≤ −min{δi}

∣∣exi ∣∣ ;
(3) When |x̃i(t)| < Ti and |xi(t)| > Ti,

sign(exi (t))(−δi(x̃i(t))x̃i(t)+ αi(t)δi(xi(t))xi(t))

= sign(exi (t))(−δ́ix̃i(t)+ αi(t)δ̀ixi(t))

= sign(exi (t))(−δ́ix̃i(t)+ δ̀ix̃i(t)− δ̀ix̃i(t)

+αi(t)δ̀ixi(t))

= sign(exi (t))(δ̀i − δ́i)x̃i(t)− δ̀i
∣∣exi ∣∣

≤ −min{δi}
∣∣exi ∣∣+ ∣∣∣δ̀i − δ́i∣∣∣Ti;

(4) When |x̃i(t)| > Ti and |xi(t)| < Ti,

sign(exi (t))(−δi(x̃i(t))x̃i(t)+ αi(t)δi(xi(t))xi(t))

= sign(exi (t))(−δ̀ix̃i(t)+ αi(t)δ́ixi(t))

= sign(exi (t))(−δ̀ix̃i(t)+ αi(t)δ́ixi(t)+ αi(t)δ̀ixi(t)

−αi(t)δ̀ixi(t))

= sign(exi (t))αi(t)(δ̀i − δ́i)xi(t)− δ̀i
∣∣exi ∣∣

≤ −min{δi}
∣∣exi ∣∣+ αi(t) ∣∣∣δ̀i − δ́i∣∣∣Ti

≤ −min{δi}
∣∣exi ∣∣+ (1+ |ξi − 1|)

∣∣∣δ̀i − δ́i∣∣∣Ti.
The proof is completed. �
Lemma 2:

sign(eyj (t))(−ρj(ỹj(t))ỹj(t)+ βj(t)ρj(yj(t))yj(t))

≤ −min{ρj}
∣∣∣eyj ∣∣∣+ (1+

∣∣ηj − 1
∣∣) ∣∣ρ̀j − ρ́j∣∣ T̂j,

for j = 1, 2, ...,m.
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Similar to the proof of Lemma 1, here we omit it. �
Lemma 3:∣∣∣ m∑
j=1

aji(x̃i(t))fj(ỹj(t))+
m∑
j=1

bji(x̃i(t))fj(ỹj(t − τ (t)))

−

m∑
j=1

αi(t)aji(xi(t))fj(yj(t))

−

m∑
j=1

αi(t)bji(xi(t))fj(yj(t − τ (t)))
∣∣∣

≤

m∑
j=1

[
(max{|aji|} +max{|bji|})(1+ ξi)pj

]
,

for i = 1, 2, ..., n.

Proof: Here we discuss four cases. (1)When |x̃i(t)| < Ti
and |xi(t)| < Ti,∣∣∣ m∑

j=1

{áji[fj(ỹj(t))− αi(t)fj(yj(t))]

+ b́ji[fj(ỹj(t − τ (t)))− αi(t)fj(yj(t − τ (t)))]}
∣∣∣

≤

m∑
j=1

[
|ájifj(ỹj(t))− αi(t)fj(yj(t))|

+ |b́jifj(ỹj(t − τ (t)))− αi(t)fj(yj(t − τ (t)))|
]

≤

m∑
j=1

{|áji|
[∣∣fj(ỹj(t))∣∣+ ∣∣αi(t)fj(yj(t))∣∣]

+ |b́ji|
[∣∣fj(ỹj(t − τ (t)))∣∣+ ∣∣αi(t)fj(yj(t − τ (t)))∣∣]}

≤

m∑
j=1

{
|áji|(pj + ξipj)+ |b́ji|(pj + ξipj)

}
≤

m∑
j=1

[
(max{|aji|} +max{|bji|})(1+ ξi)pj

]
;

(2) When |x̃i(t)| > Ti and |xi(t)| > Ti,∣∣∣ m∑
j=1

{àji[fj(ỹj(t))− αi(t)fj(yj(t))]

+ b̀ji[fj(ỹj(t − τ (t)))− αi(t)fj(yj(t − τ (t)))]}
∣∣∣

≤

m∑
j=1

[
(max{|aji|} +max{|bji|})(1+ ξi)pj

]
;

(3) When |x̃i(t)| < Ti and |xi(t)| > Ti,∣∣∣ m∑
j=1

[
ájifj(ỹj(t))− αi(t)àjifj(yj(t))

+ b́jifj(ỹj(t − τ (t)))− αi(t)b̀jifj(yj(t − τ (t)))
]∣∣∣

≤

m∑
j=1

[
|ájifj(ỹj(t))| + |àjiαi(t)fj(yj(t))|

+ |b́jifj(ỹj(t − τ (t)))| + |b̀jiαi(t)fj(yj(t − τ (t)))|
]

≤

m∑
j=1

(
|áji|pj + |àji|ξipj + |b́ji|pj + |b̀ji|ξipj

)
≤

m∑
j=1

[
(max{|aji|} +max{|bji|})(1+ ξi)pj

]
;

(4) When |x̃i(t)| > Ti and |xi(t)| < Ti,∣∣∣ m∑
j=1

[
àjifj(ỹj(t))− αi(t)ájifj(yj(t))

+ b̀jifj(ỹj(t − τ (t)))− αi(t)b́jifj(yj(t − τ (t)))
]∣∣∣

≤

m∑
j=1

[
(max{|aji|} +max{|bji|})(1+ ξi)pj

]
.

The proof is completed. �
Lemma 4:∣∣∣∣∣

n∑
i=1

cij(ỹj(t))gi(x̃i(t))+
n∑
i=1

dij(ỹj(t))gi(x̃i(t − τ (t)))

−

n∑
i=1

βi(t)cij(yj(t))gi(xi(t))

−

n∑
i=1

βi(t)dij(yj(t))gi(xi(t − τ (t)))

∣∣∣∣∣
≤

n∑
i=1

[
(max{|cij|} +max{|dij|})(1+ ηj)qi

]
,

for j = 1, 2, ...,m.

Similar to the proof of Lemma 3, here we omit it. �
Lemma 5 (Mao [38]): Assume the error system exists a

unique solution e(t, ψ) on t > 0 for any given initial data
{x(θ ) : −τ ≤ θ ≤ 0} = ψ ∈ Cbz([−τ, 0];Rn), moreover,
both f (x, y, t) and g(x, y, t) are locally bounded in (x, y) and
uniformly bounded in t , where (x, y, t) ∈ Rn

× Rn
× R+.

If there are a function V ∈ C2,1(Rn
× R+;R+), β ∈

L1(R+,R+) and ω1, ω2 ∈ C(Rn
;R+) such that

LV (x, y, t) ≤ β(t)− ω1(x)+ ωy(y),

ω1(x) > ω2(x), x ∈ Rn,

lim
‖x‖→∞

inf
0≤t≤∞

V (x, t) = ∞. (5)

Then

lim
t→+∞

x(t, ψ) = 0 a.s. (6)

for every ψ ∈ Cbz([−τ, 0];Rn).
Lemma 6 (Hardy, Littlewood, & Polya, 1952 [39]): If xi ≥

0 and 0 < p ≤ 1 where i = 1, 2, ..., n, then we have

n∑
i=1

xpi ≥

(
n∑
i=1

xi

)p
.
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Definition 1: The drive system (1) is said to achieve finite-
time projective synchronization with the response system (2)
if there exists a constant t1(e(0)) ≥ 0 satisfies{
limt→t1(e(0)) ||e

x
i (t)||= limt→t1(e(0)) ||x̃i(t)−αi(t)xi(t))||=0,

limt→t1(e(0)) ‖ e
y
j (t)‖= limt→t1(e(0)) ‖ ỹj(t)−βj(t)yj(t)‖=0,

where i = 1, 2, ..., n and j = 1, 2, ...,m; t1(e(0)) is called
the settling time that is depended on the initial value e(0) and
e(t) = (ex1(t), e

x
2(t), ..., e

x
n(t), e

y
1(t), e

y
2(t),..., e

y
m(t))T .

Lemma 7 (Tang, 1998 [40]): Assume that a continuous
positive-definite function V(t) satisfies the following differ-
ential inequality:

V̇ (x(t)) ≤ −kV η(x(t)), ∀t ≥ t0, V (t0) ≥ 0,

where k > 0, 0 < µ < 1 are two constants. Then, for any
given t0, V (t) satisfies the following inequality:

V 1−µ(t) ≤ V 1−µ(t0)− k(1− µ)(t − t0), t0 ≤ t ≤ t1,

and

V (x(t)) ≡ 0, ∀t ≥ t1,

Drive and response system can achieve synchronization in
finite-time and the settling time t1 is given by

t1 = t0 +
V 1−µ(x(t0))
k(1− µ)

.

III. MAIN RESULTS
In this section, some criteria of the finite-time projective
synchronization will be obtained.
Theorem 1: Assume the Assumptions 1 and 2 hold and the

feedback controllers are designed as follows

ui(t) = −λ1isign(exi (t))− λ2ie
x
i (t)

− λ3isign(exi (t))|e
x
i (t)|

~

+ sign(exi (t))α̇i(t)xi(t),
vj(t) = −l1jsign(e

y
j (t))− l2je

y
j (t)

− l3jsign(e
y
j (t))|e

y
j (t)|

~

+ sign(eyj (t))β̇j(t)yj(t),

(7)

where i = 1, 2, ..., n, j = 1, 2, ..., n, 0 < ~ < 1. λ1i, λ2i, λ3i,
l1j, l2j, l3j are constants and satisfy

λ1i >

m∑
j=1

[
(max{|aji|} +max{|bji|})(1+ ξi)pj

]
+ (1+ |ξi − 1|)

∣∣∣δ̀i − δ́i∣∣∣Ti,
l1j >

n∑
i=1

[
(max{|cij|} +max{|dij|})(1+ ηj)qi

]
+ (1+

∣∣ηj − 1
∣∣) ∣∣ρ̀j − ρ́j∣∣ T̂j,

λ2i > −min{δi},
l2j > −min{ρj},
λ3i > 0, l3j > 0,

(8)

then systems (1) and (2) can achieve the finite-time projective

synchronization within t1 =
V 1− ~+12 (0)

2
~+1
2 (mini,j{λ3i,ł3j})(1− ~+12 )

.

Proof: We consider the following Lyapunov-Krasovskii
function

V (t) = V1(t)+ V2(t),

where

V1(t) =
1
2

n∑
i=1

(exi (t))
2, V2(t) =

1
2

m∑
j=1

(eyj (t))
2.

The derivative of V1(t) can be calculated as

V̇1(t) =
n∑
i=1

exi (t)
{
− δi(x̃i(t))x̃i(t)

+αi(t)δi(xi(t))xi(t)

+

m∑
j=1

aji(x̃i(t))fj(ỹj(t))

−

m∑
j=1

αi(t)aji(xi(t))fj(yj(t))

+

m∑
j=1

bji(x̃i(t))fj(ỹj(t − τ (t)))

−

m∑
j=1

αi(t)bji(xi(t))fj(yj(t − τ (t)))

+ ui(t)− α̇i(t)xi(t)
}
,

Under Lemma 1 and 3, we get

V̇1(t) ≤
n∑
i=1

|exi (t)|
{
−min{δi}

∣∣exi ∣∣
+ (1+ |ξi − 1|)

∣∣∣δ̀i − δ́i∣∣∣Ti
+ sign(exi (t))

m∑
j=1

[
(max{|aji|}

+ max{|bji|})(1+ ξi)pj
]

+ sign(exi (t))ui(t)− sign(e
x
i (t))α̇i(t)xi(t)

}
≤

n∑
i=1

|exi (t)|
{
−min{δi}

∣∣exi ∣∣
+ (1+ |ξi − 1|)

∣∣∣δ̀i − δ́i∣∣∣Ti
+ sign(exi (t))

m∑
j=1

[
(max{|aji|}

+ max{|bji|})(1+ ξi)pj
]

− λ1i − λ2i|exi (t)| − λ3i|e
x
i (t)|

~
}
,
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then we have

V̇1(t) ≤
n∑
i=1

{
− (λ2i +min{δi})(exi (t))

2

+

{
(1+ |ξi − 1|)

∣∣∣δ̀i − δ́i∣∣∣Ti − λ1i
+

m∑
j=1

[
(max{aji} +max{bji})(1

+ ξi)pj
]}
|exi | − λ3i|e

x
i |
~+1

}
. (9)

Similarly, the derivative of V2(t) can be calculated as fol-
lows:

V̇2(t) ≤
m∑
j=1

{
− (l2i +min{ρj})(e

y
j (t))

2

+

{
(1+

∣∣ηj − 1
∣∣) ∣∣ρ̀j − ρ́j∣∣ T̂j − l1j

+

n∑
i=1

[
(max{cij} +max{dij})(1

+ ηj)qi
]}
|eyj | − l3j|e

y
j |
~+1

}
. (10)

Now combining (9) and (10), we get

V̇ (t) = V̇1(t)+ V̇2(t)

≤

n∑
i=1

{
− (λ2i +min{δi})(exi (t))

2

+

{
(1+ |ξi − 1|)

∣∣∣δ̀i − δ́i∣∣∣Ti − λ1i
+

m∑
j=1

[
(max{aji} +max{bji})(1

+ ξi)pj
]}
|exi | − λ3i|e

x
i |
~+1

}
+

m∑
j=1

{
− (l2i +min{ρj})(e

y
j (t))

2

+

{
(1+

∣∣ηj − 1
∣∣) ∣∣ρ̀j − ρ́j∣∣ T̂j − l1j

+

n∑
i=1

[
(max{cij} +max{dij})(1

+ ηj)qi
]}
|eyj | − l3j|e

y
j |
~+1

}
. (11)

Substituting (8) into (11) and using Lemma 6, we obtain

V̇ (t) ≤ −
n∑
i=1

λ3i|exi |
~+1
−

m∑
j=1

l3j|e
y
j |
~+1

≤ −2
~+1
2 (mini,j{λ3i, ł3j})

( n∑
i=1

(
1
2
exi (t))

2

+
1
2

m∑
j=1

(eyj (t))
2
) ~+1

2

≤ −2
~+1
2 (mini,j{λ3i, ł3j})(V1(t)+ V2(t))

~+1
2 .

It is obviously that

V̇ (t) ≤ −2
~+1
2 (min{λ3i, ł3j})(V (t))

~+1
2 . (12)

According to Definition 1 and Lemma 7, system (1)
and (2) can achieve the finite-time projective synchroniza-
tion under feedback controller (7). Furthermore, we can get
k = 2

~+1
2 (mini,j{λ3i, ł3j}), µ = ~+1

2 and the settling time

t1 =
V 1− ~+12 (0)

2
~+1
2 (mini,j{λ3i,ł3j})(1− ~+12 )

. �

Corollary 1: Change the scalars αi(t), βj(t) from functions
to positive constants satisfying αi ≤ ξi and βj ≤ ηj, respec-
tively. System (1) and (2) can achieve the finite-time modi-
fied projective synchronization under the following feedback
controller


ui(t) = −λ1isign(exi (t))− λ2ie

x
i (t)

− λ3isign(exi (t))|e
x
i (t)|

~ ,

vj(t) = −l1jsign(e
y
j (t))− l2je

y
j (t)

− l3jsign(e
y
j (t))|e

y
j (t)|

~ ,

(13)

where i = 1, 2, ..., n, j = 1, 2, ..., n, 0 < ~ < 1. λ1i, λ2i, λ3i,
l1j, l2j, l3j are positive constants defined in Theorem 1.
Theorem 2: Now we are in a position to introduce the

stochastic perturbations to response system. Assume the
Assumptions 1 – 4 hold, while the G1, G2 in Assumption 3
and H1, H2 in Assumption 4 are known matrices. System (1)
and (3) can finte-timely projectively synchronized within set-

tling time t1 =
V 1− ~+12 (0)

2
~+1
2 (mini,j{λ3i,λ4i,ł3j,l4j})(1− ~+12 )

under feedback

controller designed as follows



ui(t)=−λ1isign(exi (t))− λ2ie
x
i (t)

− λ3isign(exi (t))|e
x
i (t)|

~

− λ4i
sign(exi (t))

|exi (t)|

(∫ t
t−τ (t)(e

x
i (s))

2ds
)~ + 1

2

+ sign(exi (t))α̇i(t)xi(t),

vj(t)=−l1jsign(e
y
j (t))− l2je

y
j (t)− l2je

y
j (t)

− l3jsign(e
y
j (t))|e

y
j (t)|

~

− l4j
sign(eyj (t))

|eyj (t)|

(∫ t
t−τ (t)(e

y
j (s))

2ds
)~+1

2

+ sign(eyj (t))β̇j(t)yj(t),

(14)
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where i = 1, 2, ..., n, j = 1, 2, ..., n; 0 < ~ < 1, λ1i, λ2i, λ3i,
λ4i, l1j, l2j, l3j, l4j satisfy the conditions as

λ1i > (1+ |ξi − 1|)
∣∣∣δ̀i − δ́i∣∣∣Ti

+

m∑
j=1

[
(max{|aji|} +max{|bji|})(1+ ξi)pj

]
,

λ2i > −min{δi} +
h1i
2 +

h2i
2(1− τ )

,

λ3i > 0, λ4i > 0,
l1j > (1+

∣∣ηj − 1
∣∣) ∣∣ρ̀j − ρ́j∣∣ T̂j

+

n∑
i=1

[
(max{|cij|} +max{|dij|})(1+ ηj)qi

]
,

l2j > −min{ρj} +
g1j
2
+

g2j
2(1− τ )

,

l3j > 0, l4j > 0.

(15)

Proof: We consider the following Lyapunov-Krasovskii
function

V (t) = V1(t)+ V2(t),

where

V1(t) =
1
2

n∑
i=1

(exi (t))
2
+

1
2

∫ t

t−τ (t)
(ey(s))TMey(s)ds,

V2(t) =
1
2

m∑
j=1

(eyj (t))
2
+

1
2

∫ t

t−τ (t)
(ex(s))TNex(s)ds,

i = 1, 2, ..., n, j = 1, 2, ...,m; M = diag(m1,m2, ...,mm)
and N = diag(n1, n2, ..., nn) are positive matrices, in which
0 < ni,mj < 1.

By Itô’s differential formula, the stochastic derivative of
V1(t) can be calculated as

LV1(t)

=

n∑
i=1

exi (t)
(
− δi(x̃i(t))x̃i(t)+ αi(t)δi(xi(t))xi(t)

+

m∑
j=1

aji(x̃i(t))fj(ỹj(t))

−

m∑
j=1

αi(t)aji(xi(t))fj(yj(t))

+

m∑
j=1

bji(x̃i(t))fj(ỹj(t − τ (t)))

−

m∑
j=1

αi(t)bji(xi(t))fj(yj(t − τ (t)))

+ ui(t)− sign(exi (t))α̇i(t)xi(t)
)
+

1
2
(ey(t))TMey(t)

+
1
2
trace[σ T (t, ey(t), ey(t − τ ))σ (t, ey(t), ey(t − τ ))]

−
1− τ̇ (t)

2
(ey(t − τ (t)))TMey(t − τ (t)).

Since Assumptions 3 and 4 hold, we have

LV1(t) ≤
n∑
i=1

exi (t)
(
− δi(x̃i(t))x̃i(t)+ αi(t)δi(xi(t))xi(t)

+

m∑
j=1

aji(x̃i(t))fj(ỹj(t))

−

m∑
j=1

αi(t)aji(xi(t))fj(yj(t))

+

m∑
j=1

bji(x̃i(t))fj(ỹj(t − τ (t)))

−

m∑
j=1

αi(t)bji(xi(t))fj(yj(t − τ (t)))

+ ui(t)− sign(exi (t))α̇i(t)xi(t)
)

+
1
2
(ey(t − τ (t)))TG2ey(t − τ (t))

−
1− τ
2

(ey(t − τ (t)))TMey(t − τ (t))

+
1
2
(ey(t))TG1ey(t)+

1
2
(ey(t))TMey(t).

Now using the Lemma 1 and Lemma 3, we get

LV1(t) ≤
n∑
i=1

|exi (t)|
{
−min{δi}

∣∣exi ∣∣
+ (1+ |ξi − 1|)

∣∣∣δ̀i − δ́i∣∣∣Ti
+ sign(exi (t))

m∑
j=1

[
(max{|aji|}

+ max{|bji|})(1+ ξi)pj
]
+ sign(exi )ui(t)

− sign(exi (t))α̇i(t)xi(t)
}

+
1
2
(ey(t))T (G1 +M )ey(t)

+
1
2
(ey(t − τ (t)))T (G2 − (1− τ )M )ey(t − τ (t)).

According to the controller (14), it follows that

LV1(t) ≤
n∑
i=1

|exi (t)|
{
−min{δi}

∣∣exi ∣∣
+ (1+ |ξi − 1|)

∣∣∣δ̀i − δ́i∣∣∣Ti
+ sign(exi (t))

m∑
j=1

[
(max{|aji|}

+ max{|bji|})(1+ ξi)pj
]

− λ1i − λ2i|exi (t)| − λ3i|e
x
i (t)|

~

− λ4i
|exi (t)|

|exi (t)|
(
∫ t

t−τ (t)
(exi (s))

2ds)
~+1
2

}
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+
1
2
(ey(t))T (G1 +M )ey(t)

+
1
2
(ey(t − τ (t)))T (G2 − (1− τ )M )ey(t − τ (t))

≤

n∑
i=1

{
− (λ2i +min{δi})(exi (t))

2

− λ3i|exi (t)|
~+1
− λ4i(

∫ t

t−τ (t)
ni(exi (s))

2ds)
~+1
2

+

{
(1+ |ξi − 1|)

∣∣∣δ̀i − δ́i∣∣∣Ti
+

m∑
j=1

[
(max{aji} +max{bji})(1+ ξi)pj

]
− λ1i

}
|exi |

}
+

1
2
(ey(t))T (G1 +M )ey(t)

+
1
2
(ey(t − τ (t)))T (G2 − (1− τ )M )ey(t − τ (t)).

(16)

Similarly, the stochastic derivative of V2(t) can be calcu-
lated as follows

LV2(t) =
m∑
j=1

eyj (t)
(
− ρj(ỹj(t))ỹj(t)+ βj(t)ρj(yj(t))yj(t)

+

n∑
i=1

cij(ỹj(t))gi(x̃i(t))

−

n∑
i=1

βj(t)cij(yj(t))gi(xi(t))

+

n∑
i=1

dij(ỹj(t))gi(x̃i(t − τ (t)))

−

n∑
i=1

βj(t)dij(yj(t))gi(xi(t − τ (t)))

+ vj(t)− sign(e
y
j (t))β̇j(t)yj(t)

)
+

1
2
(ex(t))TNex(t)

+
1
2
trace[σ̃ T (t, ex(t), ex(t

− τ ))σ̃ (t, ex(t), ex(t − τ ))]

−
1− τ̇ (t)

2
(ex(t − τ (t)))TNex(t − τ (t)).

Under Lemma 2 and Lemma 4, we have

LV2(t) ≤
n∑
j=1

{−(l2j +min{ρj})(e
y
j (t))

2

− l3j|e
y
j (t)|

~+1

− l4j(
∫ t

t−τ (t)
mj(e

y
j (s))

2ds)
~+1
2

+{(1+
∣∣ηj − 1

∣∣) ∣∣ρ̀j − ρ́j∣∣ T̂j

FIGURE 1. (a) The synchronization errors ex (t) without control. (b) The
synchronization errors ex (t) under the controller (7).

+

n∑
i=1

[
(max{cij} +max{dij})(1

+ ηj)qi
]
− l1j}|e

y
j |}

+
1
2
(ex(t))T (H1 + N )ex(t)

+
1
2
(ex(t − τ (t)))T (H2

− (1− τ )N )ex(t − τ (t)). (17)

Now combining (16) and (17), we get

LV (t) = LV1(t)+ LV2(t)

≤

n∑
i=1

{
− (λ2i +min{δi})(exi (t))

2
− λ3i|exi (t)|

~+1

− λ4i(
∫ t

t−τ (t)
ni(exi (s))

2ds)
~+1
2
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FIGURE 2. (a) The synchronization errors ey (t) without control. (b) The
synchronization errors ey (t) under the controller (7).

+{(1+ |ξi − 1|)
∣∣∣δ̀i − δ́i∣∣∣Ti + m∑

j=1

[
(max{aji}

+ max{bji})(1+ ξi)pj
]
− λ1i}|exi |

}
+

1
2
(ey(t))T (G1 +M )ey(t)+

1
2
(ey(t

− τ (t)))T (G2 − (1− τ )M )ey(t − τ (t))

+

n∑
j=1

{−(l2j +min{ρj})(e
y
j (t))

2
− l3j|e

y
j (t)|

~+1

− l4j(
∫ t

t−τ (t)
mj(e

y
j (s))

2ds)
~+1
2

+{(1+
∣∣ηj − 1

∣∣) ∣∣ρ̀j − ρ́j∣∣ T̂j + n∑
i=1

[
(max{cij}

+ max{dij})(1+ ηj)qi
]

− l1j}|e
y
j |} +

1
2
(ex(t))T (H1 + N )ex(t)+

1
2
(ex(t

− τ (t)))T (H2 − (1− τ )N )ex(t − τ (t))

FIGURE 3. The chaotic attractors of the drive system (20) and response
system (21).

≤

n∑
i=1

{−(λ2i +min{δi} −
1
2
h1i −

ni
2
)(exi (t))

2

− λ3i|exi (t)|
~+1
− λ4i(

∫ t

t−τ (t)
mi(exi (s))

2ds)
~+1
2

+{(1+ |ξi − 1|)
∣∣∣δ̀i − δ́i∣∣∣Ti + m∑

j=1

[
(max{aji}

+ max{bji})(1+ ξi)pj
]
− λ1i}|exi |}

+
1
2
(ey(t − τ (t)))T (G2 − (1− τ )M )ey(t − τ (t))

+

n∑
j=1

{−(l2j +min{ρj} −
1
2
g1j −

mj
2
)(eyj (t))

2

− l3j|e
y
j (t)|

~+1
− l4j(

∫ t

t−τ (t)
nj(e

y
j (s))

2ds)
~+1
2

+{(1+
∣∣ηj − 1

∣∣) ∣∣ρ̀j − ρ́j∣∣ T̂j + n∑
i=1

[
(max{cij}

+ max{dij})(1+ ηj)qi
]
− l1j}|e

y
j |}

+
1
2
(ex(t − τ (t)))T (H2 − (1− τ )N )ex(t − τ (t)).
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FIGURE 4. The dynamic behavior of state x in drive-response system.

Since λ1i, λ2i, l1j, l2j satisfy the conditions in (15), letting
G2 = (1− τ )M and H2 = (1− τ )N , we obtain

λ2i > −min{δi} +
h1i
2
+
h2i
2

⇔ λ2i > −min{δi} +
h1i
2
+
ni
2
,

l2j > −min{ρj} +
g1j
2
+
g2j
2

⇔ l2j > −min{ρj} +
g1j
2
+
mj
2
.

Applying Lemma 6, we can get

LV ≤
n∑
i=1

{
− λ3i|exi (t)|

~+1

− λ4i(
∫ t

t−τ (t)
mi(exi (s))

2ds)
~+1
2

}
+

n∑
i=1

{
− l3j|e

y
j (t)|

~+1

− l4j(
∫ t

t−τ (t)
nj(e

y
j (s))

2ds)
~+1
2

}

FIGURE 5. The dynamic behavior of state y in drive-response system.

≤ −2
~+1
2 (

n∑
i=1

λ3i

2
(exi (t))

2
+

m∑
j=1

ł3j
2
(eyj (t))

2)
~+1
2

− 2
~+1
2 (

1
2

∫ t

t−τ (t)
(ex(s))TMex(s)ds)

~+1
2

− 2
~+1
2 (

1
2

∫ t

t−τ (t)
(ey(s))TNey(s)ds)

~+1
2

≤ −2
~+1
2 (mini,j{λ3i, λ4i, ł3j, l4j})(V (t))

~+1
2 . (18)

According to Lemma 5, system (1) and (3) achieve function
projective synchronization. Therefore,

E[V ] ≤ −2
~+1
2 (mini,j{λ3i, λ4i, ł3j, l4j})(E[V (t)])

~+1
2 . (19)

By Lemma 7, E[V (t)] stochastically converges to zero
in a finite time, and the finite time is estimated by t1 =

V 1− ~+12 (0)

2
~+1
2 (mini,j{λ3i,λ4i,ł3j,l4j})(1− ~+12 )

. Hence, system (1) and (3) can

projectively synchronize under stochastic perturbations in
finte-time. This completes the proof. �
Remark 1: In Theorem 1, we only consider the finite-

time projective synchronization with time delays of system.
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FIGURE 6. (a) The synchronization errors ex (t) without control, (b) The
synchronization errors ex (t) under the controller (13).

However, we take into account consider the stochastic pertur-
bations system in Theorem 2.
Remark 2: Stochastic perturbations are inevitable and

may lead to instability of system in real nervous systems.
Therefore, it is of great essence to consider stochastic per-
turbations in MBAMNNs as our analysis in Theorem 2.
Remark 3: In the controllers (7) and (14), the discontinu-

ous terms sign(e(t)) may be undesirable in practical applica-
tions.In this case, the continuous terms e(t)

e(t)+k can be chosen
as approximations of sign(e(t)), in which k > 0 is sufficiently
small.

IV. NUMERICAL SIMULATIONS
In this section, three numerical simulations are given to show
the effectiveness of the obtained results and the potential
applications in image encryption.
Example 1: Here we consider the following memristor-

based BAM neural networks with n = 2 and m = 2 as drive

FIGURE 7. (a) The synchronization errors ey (t) without control. (b) The
synchronization errors ey (t) under the controller (13).

system

dxi(t) = [−δi(xi(t))xi(t)+
2∑
j=1

aji(xi(t))fj(yj(t))

+

2∑
j=1

bji(xi(t))fj(yj(t − τ (t)))]dt,

dyj(t) = [−ρi(yj(t))yj(t)+
2∑
i=1

cij(yj(t))gj(xj(t))

+

2∑
i=1

dij(yj(t))gj(xj(t − τ (t)))]dt,

(20)

with the following parameters

δ1(γ ) =

{
1.5, |γ | < 1,
2, |γ | > 1,

δ2(γ ) =

{
0.9, |γ | < 1,
0.8, |γ | > 1,

a11(γ ) =

{
−0.3, |γ | < 1,
1.5, |γ | > 1,

a12(γ ) =

{
0.2, |γ | < 1,
1, |γ | > 1,
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FIGURE 8. The chaotic attractors of the drive system (20) and response
system (22).

a21(γ ) =

{
−1.8, |γ |<1,
0.8, |γ |>1,

a22(γ ) =

{
0.1, |γ | < 1,
−1.9, |γ | > 1,

b11(γ ) =

{
0.9, |γ | < 1,
1.7, |γ | > 1,

b12(γ ) =

{
0.7, |γ | < 1,
1.5, |γ | > 1,

b21(γ ) =

{
0.5, |γ |<1,
−0.3, |γ |>1,

b22(γ ) =

{
−0.95, |γ |<1,
1, |γ |>1,

ρ1(γ ) =

{
0.9, |γ | < 2,
1, |γ | > 2,

ρ2(γ ) =

{
1, |γ | < 2,
0.8, |γ | > 2,

c11(γ ) =

{
−1, |γ | < 2,
0.7, |γ | > 2,

c12(γ ) =

{
1, |γ | < 2,
1, |γ | > 2,

c21(γ ) =

{
0.7, |γ | < 2,
−1, |γ | > 2,

c22(γ ) =

{
1.2, |γ | < 2,
0.5, |γ | > 2,

d11(γ ) =

{
1, |γ | < 2,
−1, |γ | > 2,

d12(γ ) =

{
−2.4, |γ | < 2,
0.5, |γ | > 2,

d21(γ ) =

{
−1, |γ | < 2,
1, |γ | > 2,

d22(γ ) =

{
1, |γ | < 2,
−1, |γ | > 2.

FIGURE 9. The dynamic behavior of state x in drive-response system.

The activation functions are f1(γ ) = f2(γ ) = g1(γ ) =
g2(γ ) =
|γ+1|−|γ−1|

2 ; pj = qi = 1; α1(t) = α2(t) = β1(t) =
β2(t) = 0.7; τ (t) = et

et+1 . The initial values of (20) are
ψ(s) = (1, 0.5)T and φ(s) = (−1, 0.5)T .
For drive system (20), we construct the corresponding

response system as

dx̃i(t) = [−δi(x̃i(t))x̃i(t)+
2∑
j=1

aji(x̃i(t))fj(ỹj(t))

+

2∑
j=1

bji(x̃i(t))fj(ỹj(t − τ (t)))+ ui(t)]dt,

dỹj(t) = [−ρi(ỹj(t))ỹj(t)+
2∑
i=1

cij(ỹj(t))gj(x̃j(t))

+
∑2

i=1 dij(ỹj(t))gj(x̃j(t − τ (t)))+ vj(t)]dt.

(21)

The initial values of (21) are ψ̃(s) = (0.5, 1)T and φ̃(s) =
(0.5,−1)T .

According to Theorem 1, it can be calculated that λ11 >
7.8, λ12 > 7.15, λ21 > −1.5, λ22 > −0.8, l11 > 5.46,
l12 > 7.54, l21 > −0.9, l22 > −0.8. Therefore, we choose
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FIGURE 10. The dynamic behavior of state y in drive-response system.

FIGURE 11. (a) The color plain image. (b-c-d) The R, G, B components of
plain image.

λ11 = 10, λ12 = 8, λ21 = 1, λ22 = 1, λ31 = 0.5, λ32 = 0.5,
l11 = 6, l12 = 8, l21 = 0.5, l22 = 1, l31 = 0.5, l32 = 0.5,
~ = 0.6, then the settling time t1 = 6.50.

FIGURE 12. (a) The encrypted image. (b-c-d) the R, G, B components of
encrypted image.

The dynamic behavior of state x in drive-response system
is shown in Fig. 4 and the dynamic behavior of state y in drive-
response system is presented in Fig. 5.
Fig. 1(a) and Fig. 2(a) show the state trajectories of syn-

chronization errors ex(t) and ey(t) without controller, respec-
tively. Fig. 1(b) and Fig. 2(b) show the synchronization errors
ex(t) and ey(t) under the feedback controllers (7), respec-
tively. From these two figures, we can see that synchro-
nization errors ex(t) and ey(t) are converge to zero within
finite-time 6.50, which shows the finite-time projective syn-
chronization achieved between system (20) and (21). The
effectiveness of Theorem 1 is verified.

The chaotic attractors of the drive system and response
system are given in Fig. 3. From Fig. 3, it can be seen that
(20) and (21) are great chaotic systems and can be effectively
employed in chaotic image algorithms.
Example 2: For drive system (20), we consider the

stochastic perturbations in response system as follows

dx̃i(t) = [−δi(x̃i(t))x̃i(t)+
2∑
j=1

aji(x̃i(t))fj(ỹj(t))

+

2∑
j=1

bji(x̃i(t))fj(ỹj(t − τ (t)))+ ui(t)]dt

+

2∑
j=1

σji(t, e
y
j (t), e

y
j (t − τ (t))dωj(t),

dỹj(t) = [−ρi(ỹj(t))ỹj(t)+
2∑
i=1

cij(ỹj(t))gj(x̃j(t))

+

2∑
i=1

dij(ỹj(t))gj(x̃j(t − τ (t)))+ vj(t)]dt

+

2∑
i=1

σ̃ij(t, exi (t), e
x
i (t − τ (t))dω̃i(t).

(22)
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FIGURE 13. Histogram of the plain image. (a) Histogram of R components
of the plain image. (b) Histogram of G components of the plain image. (c)
Histogram of B components of the plain image.

The activation functions are f1(γ ) = f2(γ ) = g1(γ ) =
g2(γ ) =
|γ+1|−|γ−1|

2 ; pj = qi = 1; α1(t) = α2(t) = β1(t) =
β2(t) = 0.7; τ (t) = et

et+1 , τ̇ (t) ≤ 0.25 < τ = 0.5.
Moreover, we assume the initial values of drive system (20)
are ψ(s) = (1, 2)T , φ(s) = (1, 0.5)T and the initial values
ψ̃(s) = (1.5, 1)T , φ̃(s) = (−1, 0.5)T .

FIGURE 14. Histogram of the encrypted image. (a) Histogram of R
components of the encrypted image. (b) Histogram of G components of
the encrypted image.
(c) Histogram of B components of the encrypted image.

Let σ (t, e(t), e(t − τ (t)) = σ̃ (t, e(t), e(t − τ (t)) =(
0.4e(t − τ (t)) 0.4e(t − τ (t))
0.7e(t − τ (t)) 0.7e(t − τ (t))

)
and we get G1 = H1 =

diag(0, 0), G2 = H2 = diag(0.16, 0.49).
According to Theorem 2, it can be calculated that λ11 >

7.8, λ12 > 7.15, λ21 > −1.34, λ22 > −0.31, l11 > 5.46,
l12 > 7.54, l21 > −0.74, l22 > −0.31. Therefore, we choose
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FIGURE 15. Correlation of neighborhood pixels at different directions of
the plain image. (a) Horizontal directions. (b) Vertical directions.
(c) Diagonal directions.

λ11 = 8, λ12 = 7.5, λ21 = 1, λ22 = 1, λ31 = 0.5, λ32 = 0.5,
λ41 = 0.5, λ42 = 0.5, l11 = 6, l12 = 8, l21 = 0.5, l22 = 1,
l31 = 0.5, l32 = 0.5, l41 = 0.5, l42 = 0.5, ~ = 0.6, then the
settling time t1 = 6.50.

Fig. 6(a) and Fig. 7(a) show the state trajectories of
synchronization errors ex(t) and ey(t) without controller,

FIGURE 16. Correlation of neighborhood pixels at different directions of
the encrypted image. (a) Horizontal directions. (b) Vertical directions.
(c) Diagonal directions.

respectively. Synchronization errors ex(t) and ey(t) under
the feedback controllers (7) are presented in Fig. 6(b) and
Fig. 7(b), respectively. These two figures indicate that the
projective synchronization achieves within finite-time t1 =
6.50, which illustrates the effectiveness of the obtained results
in Theorem 2.
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FIGURE 17. (a) The color plain image. (b-c-d) The R, G, B components of
plain image.

Dynamic behavior of state x in drive-response system is
presented in Fig. 9 and the dynamic behavior of state y in
drive-response system is shown in Fig. 10.
The chaotic attractors of the drive and response systems

are given in Fig. 8. From Fig. 8, it can be seen that (20) and
(22) are systems with strong chaotic properties and can be
employed in chaotic image algorithms effectively.
Example 3: Memristor-based BAM neural networks in

Example 1 has greate chaotic attractor, and it can be applied
to image encryption. Simulation results obtained from Exam-
ple 1 can be used in image encryption.We assume that the size
of the color plain image P is m× n× 3. The details about the
encryption algorithm is introduced as follows

Algorithm 1 Encryption
1: i := 1; j := 1; k := 1;
2: for i to m do
3: for j to n do
4: z1(i, j) :=

(
108 × (z1(k)− [z1(k)])

)
mod 256;

5: z2(i, j) :=
(
108 × (z2(k)− [z2(k)])

)
mod 256;

6: z3(i, j) :=
(
108 × (z3(k)− [z3(k)])

)
mod 256;

7: R(i, j) := R(i, j) XOR z1(i, j);
8: G(i, j) := G(i, j) XOR z2(i, j);
9: B(i, j) := B(i, j) XOR z3(i, j);

10: end for
11: end for

1) The drive system (20) in Example 1 generates four
chaotic sequences denoted by X1,X2,Y1,Y2 , and their
size ism×n. Since the color plain image P is consisted

FIGURE 18. (a) The encrypted image. (b-c-d) the R, G, B components of
encrypted image.

of three channels: red, green and blue, we separate it
into three pixel sequences: R(i, j), G(i, j) and B(i, j),
where i = 1, 2, ...,m, j = 1, 2, ...n.

2) Now we apply the permutation operation to color plain
image. We arrange the chaotic sequence X1 in ascend-
ing order to obtain the index sequence idx of the sorted
X1. The permutation operation is described as follows

R̂(k) := R(idx((i− 1)× n+ j)),

Ĝ(k) := G(idx((i− 1)× n+ j)),

B̂(k) := B(idx((i− 1)× n+ j)),

R(i, j) := R̂(k), G(k) := Ĝ(k), B(k) := B̂(k).

where k = 1, 2, ...,mn, i = 1, 2, ..., n, j = 1, 2, ...,m;
R̂, Ĝ, B̂ are sequences with the size of m× n.

3) We transform chaotic sequence X2,Y1,Y2 into m × n
matrices z1, z2, z3 as follows

z1(i, j) := X2(k),
z2(i, j) := Y1(k),
z3(i, j) := Y2(k).

4) Now we use z1, z2, z3 to encrypt the permuted R(i, j),
G(i, j), B(i, j) according to Algorithm 1, respectively.
After reorganizing R(i, j), G(i, j), B(i, j), the encrypted
image is obtained. It should be noted that [zi(k)] is
equivalent to floor(zi(k)).

Decryption process is the reverse of encryption process,
so it is omitted here. It should be noted that the decryption
process should use chaotic sequences generated by response
system (21). Fig. 11 and Fig. 12 show the color plain image
and encrypted image, respectively.
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FIGURE 19. Histogram of the plain image. (a) Histogram of R components
of the plain image. (b) Histogram of G components of the plain image.
(c) Histogram of B components of the plain image.

From Fig. 14, we find that the histograms of the encrypted
image are uniformly distributed and different from the his-
tograms of the plain image shown in Fig. 13. The uniformly
distribution means that the encrypted image does not provide
any information about the plain image and the proposed
encryption algorithm can resist statistical attack.

FIGURE 20. Histogram of the encrypted image. (a) Histogram of R
components of the encrypted image. (b) Histogram of G components of
the encrypted image. (c) Histogram of B components of the encrypted
image.

The correlations of neighborhood pixels at different direc-
tions (horizontal-vertical-diagonal) of the plain image and
encrypted image are shown in Fig. 15 and 16. From Fig. 15,
it can be seen that the plain image has strong correla-
tions between neighborhood pixels, while correlations of the
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FIGURE 21. Correlation of neighborhood pixels at different directions of
the plain image. (a) Horizontal directions. (b) Vertical directions.
(c) Diagonal directions.

encrypted image shown in Fig. 16 are weak. It can also be
illustrated by data in Table 1. Weak correlations and uni-
formly distributed histograms of the encrypted image indicate
the application potential of finite-time projective synchro-
nization of memristor-based BAM neural networks in image
encryption and illustrate the effectiveness of Theorem 1.

FIGURE 22. Correlation of neighborhood pixels at different directions of
the encrypted image. (a) Horizontal directions. (b) Vertical directions.
(c) Diagonal directions.

Example 4: In this example, we use the simulation results
from Example 2 to encrypt a new color plain image (as
shown in Fig. 17). Processes of encryption and decryption
are the same as those described in Example 3. Fig. 18 shows
the encrypted image and its R, G, B components. Analysis
of the encryption effect are exhibited in Fig. 19, Fig. 20,
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TABLE 1. Correlation coefficients of adjacent pixel in the original image
and in the encrypted image.

TABLE 2. Correlation coefficients of adjacent pixel in the original image
and in the encrypted image.

Fig. 21 and Fig. 22. These figures and Table 2 indicate that the
encrypted image has weak correlations and flat histograms,
which means that the encryption algorithm can withstand
statistical attack. The analysis of the experimental results
show that the encryption algorithm is secure and practical.
The potential application of MBAMNNs with stochastic per-
turbations and effectiveness of results obtained in Theorem 2
is verified.

V. CONCLUSION
In this paper, we have proposed two memristor-based BAM
neural networks models with stochastic perturbations and
time delays. These models have great chaotic properties,
and then we applied them in our image encryption algo-
rithm, respectively. To achieve the secure image transmission,
some criteria have been obtained to guarantee the finite-
time projective synchronization of drive-response system by
constructing two feedback controllers. Encryption effect has
demonstrated the security of our proposed image encryption
algorithm and we have also analysed the potential applica-
tions of our models in secure image transmission.
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