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ABSTRACT The continued ability to detect malicious network intrusions has become an exercise in
scalability, in which data mining techniques are playing an increasingly important role. We survey and
categorize the fields of data mining and intrusion detection systems, providing a systematic treatment of
methodologies and techniques. We apply a criterion-based approach to select 95 relevant articles from
2007 to 2017.We identified 19 separate data mining techniques used for intrusion detection, and our analysis
encompasses rich information for future research based on the strengths and weaknesses of these techniques.
Furthermore, we observed a research gap in establishing the effectiveness of classifiers to identify intrusions
in modern network traffic when trained with aging data sets. Our review points to the need for more empirical
experiments addressing real-time solutions for big data against contemporary attacks.

INDEX TERMS Intrusion detection system, real-time detection, data mining, network security.

I. INTRODUCTION
Detecting malicious network intrusions has been a subject of
study for decades. As data scientists can appreciate, however,
when the scale of a problem grows by an order of magnitude,
existing approaches often are no longer effective; the problem
is sufficiently different that it requires a new solution. As the
volume of network traffic has grown through orders of mag-
nitude, the field of intrusion detection has had to re-invent
itself around big data techniques.

An intrusion detection system (IDS) monitors either
networks or other systems for malicious or anomalous behav-
iors. Complementing preventative technologies such as fire-
walls, strong authentication, and user privilege [1], IDSs
have become an essential part of enterprise IT security man-
agement [2]. They are typically classified as either misuse-
based or anomaly-based systems [3]. Data Mining (DM)
techniques are increasingly being used to identify attacks,
anomalies or intrusions in a protected network environ-
ment [4]. DM can be defined as ‘‘the process of discovering
interesting patterns in databases that are useful in decision
making’’ [5]. On the other hand, machine learning is the
attempt to ‘‘automate the process of knowledge acquisition
from examples’’ [5].

Despite a large DM component in the IDS literature,
we noticed few papers deployed IDSs in the context of online
(real-time) detection, suggesting more research is needed

to improve their performance. As shown in Table 5 of the
Appendix which lists the selected articles in this survey (P# is
a unique identification number for each paper), many online
IDSs classify network traffic into two categories only: normal
and attack (P1, P4, P26, and P56). Some are able to classify
one attack type (P36, P45, P65, P74, P78, and P86), or two
(P20, P25, P29, P64 and P66), while others require manual
applications of expert knowledge to classify attacks. Some
used only one detectionmethod, such as accuracy or detection
rate (P5, P6, P25, and P68), and did not factor in the testing
time as an evaluation metric, which is a critical feature of an
IDS, but especially so in the big data context.

Several surveys have been conducted in related domains.
Khalilian et al. [6] conducted a survey of IDS shortcom-
ings, challenges, and solutions. Denatious and John [7]
presented a survey identifying DM techniques applied in
IDSs to classify the known and unknown attack patterns.
Similarly, Injadat textitet al. [8], discussed DM techniques
in the social media context. A systematic literature review
was conducted to identify distributed denial of service
(DDoS) attacks threatening the existence of cloud-assisted
WBANs [9]. Subaira and Anitha [10] compared the advan-
tages and disadvantages of the implemented DM techniques
in IDSs. The use of similarity and distance measures within
the network intrusion anomaly detection research was pre-
sented byWeller-Fahy et al. [11]. Few surveys, however, have
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been conducted in this area without giving full justification
for using DM techniques in IDSs.

To the best of our knowledge, there is no systematic litera-
ture review (SLR) concentrating on DM techniques actually
implemented in the IDS literature, which has motivated this
work. Articles were carefully considered and selected with
regards to: (i) the DM techniques used in intrusion detection,
(ii) attack types that different IDS implementations detect,
(iii) evaluation metrics used in the empirical studies of the
IDS, (iv) characteristics of the datasets used to train and
evaluate IDSs, and (v) the strengths and weaknesses of DM
techniques used.

The remainder of this paper is divided into five sections:
Section II describes our methodology. Section III lists and
illustrates the results. Section IV addresses the limitations of
the methodology, and Section V contains a discussion and
suggestions for future work.

II. METHODOLOGY
Our methodology was informed by guidelines proposed by
Kitchenham and Stuart [12], which consists of three primary
phases: planning, conducting, and reporting. Each phase has
specific and distinct steps. A crucial step of the planning
phase is to create a review protocol. The protocol should:
(I) identify research questions, (II) create a search strategy,
(III) define the study selection criteria, (IV) develop quality
assessment rules, (V) state the data extraction strategies that
will be used, and (VI) determine how the extracted data
will be synthesized. Fig. 1 illustrates this research methodol-
ogy. The following subsections (II-A–II-F) present a detailed
description of the proposed protocol.

A. RESEARCH QUESTIONS & SEARCH STRATEGY
1) RESEARCH QUESTIONS
Our main objective is to analyze the DM techniques and
implementations that were used in intrusion detection sys-
tems literature from 2007 to 2017 inclusive. With that in
mind, the following research questions were developed:

1) Which classical or novel DM techniques have been
used in the IDS research?

2) What types of attacks do various IDS implementations
detect?

3) What are the most common evaluation metrics used in
IDS literature?

4) What are the characteristics of the datasets/data sources
most commonly used in IDS research?

5) What are the strengths or weaknesses being addressed
in the implemented DM techniques in IDSs?

2) SEARCH STRATEGY
Because there are numerous papers related to this research
area, we adopted the following guidelines to narrow our
search:

• Search terms should be derived from our research
questions.

• Search for DM techniques were chosen from the top 10
most common techniques [13].

• Additional search terms were created as a workaround
to the synonyms or spelling variants problem.

• Boolean logic was added in the form of search operators
(AND, OR, quotations, parentheses) to make the search
results more relevant.

We performed numerous searches, but the search criteria that
yielded the most relevant results were:

• ‘‘Datamining’’ AND (‘‘Intrusion detection’’ OR ‘‘IDS’’)
• (‘‘Intrusion detection’’ OR ‘‘IDS’’) AND ((‘‘C4.5’’ OR
‘‘C5’’) OR ‘‘AdaBoost’’ OR (‘‘k-Means’’ OR (‘‘SVM’’
OR ‘‘support vector machine’’) OR ‘‘Apriori’’ OR
‘‘Naive Bayes’’ OR ‘‘CART’’ OR ‘‘Expectation Maxi-
mization’’ OR ‘‘PageRank’’ OR ‘‘kNN’’ OR ‘‘k-nearest
neighbours ’’ OR ‘‘Fuzzy’’ )

3) DIGITAL RESOURCES
An essential step in any SLR is to identify the sources/digital
libraries that will be used to retrieve the related articles. The
digital libraries were chosen in this work include: Google
Scholar (Springer, Elsevier,etc.), the Institute of Electrical
and Electronics Engineers (IEEE) Library, and the Asso-
ciation for Computing Machinery (ACM) Digital Library.
Table 6 of the Appendix summarizes the number of papers
selected from each resource.

B. STUDY SELECTION
Our initial search returned 931 articles. Becausemany articles
were duplicated, were of insufficient quality or were not
related to our research questions, we performed additional
filtering as shown in Fig. 1. Filtration was conducted concur-
rently and independently by the lead authors to reduce poten-
tial bias and identify discrepancies. Filtration accomplished
the following:

1) Any duplicate documents were removed.
2) Inclusion and exclusion criteria were applied to deter-

mine related articles and discard irrelevant ones.
3) Quality assessment was performed to ensure that we

included only high-quality papers.

Our criteria for inclusion included:

1) Articles utilizing DM techniques in IDSs.
2) The most recent version/edition of a paper.
3) Articles published between January 2007 and

September 2017.

Our criteria for exclusion included:

1) Articles that involve DM, but were not related to IDSs.
2) Articles that involve IDSs, but are not related to DM.
3) Papers that are not categorized as peer-reviewed

journal or conference papers.

After this filtration, 315 journal and conference papers
remained as candidates. This number was further reduced
by a quality assessment step outlined in the following
section.
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FIGURE 1. Research methodology.

C. QUALITY ASSESSMENT (QA)
To evaluate the quality of the initially selected articles,
we developed six QA rules to determine how relevant the
articles were to our research, in which each QA indicator had
a weight of 1. Each indicator was scored as follows: ‘‘fully
answered’’ = 1, ‘‘above average’’ = 0.75, ‘‘average’’ = 0.5,
‘‘below average’’ = 0.25, ‘‘not answered’’ = 0. An overall
quality score ranging from 0 to 6 was assigned to each article
by summing the individual indicator scores. An over quality
score of 3 or above was considered a passing grade, and
papers meeting or exceeding this threshold were included in
this review. The quality indicators were as follows:

1) Are the objectives of the research outlined in sufficient
detail?

2) Are any DM approaches explained with sufficient
detail?

3) Is the experiment well suited to the scope of this litera-
ture review?

4) Is the IDS experiment conducted on datasets/data
sources of sufficient size and quality?

5) Are the results generated by the respective DM tech-
niques properly measured and evaluated?

6) Are the experiment’ s results and findings clearly
reported?

D. FILTRATION PROCESS OUTPUT
After applying these criteria, a total of 95 articles were
selected. Table 5 of the Appendix shows the selected arti-
cles and the research questions they answer. Table 7 of the
Appendix shows the QA scores assigned to the selected
articles.

E. DATA EXTRACTION PROCESS
The objective of this step is to provide an answer to the
research questions for each paper in a semi-structured way.
We used a coordinated effort between the two lead authors to
extract and check the data independently, with a comparison
made between respective results. In case of disagreement,
an in-person meeting was conducted to reach consensus. The
data extraction form used in this SLR is given in Table 1.

TABLE 1. Data extraction form.

Extraction posed a challenge due to the fundamental
unstructured nature of the data. For example, researchers
would use different terminologies for related techniques, such
as ‘‘J48’’ or ‘‘C4.5.’’ Some articles used different names
for the same DM technique, such as Nearest Neighbor,
k-NN, and KNN when referring to the k-nearest neighbor
method, or Naive Bayes, Naïve Bayes, and Bayesian Network
when referring to the Naïve Bayes classifier.

To simplify the tracing procedure of the data extraction
process results, a binary model was used to show whether
each paper answers the research questions or not. This is
shown in Table 5 of the Appendix.

F. SYNTHESIS OF THE EXTRACTED DATA
Various methods were discussed in [12] to synthesize the data
extracted from the selected articles. To answer our research
questions (RQs) given in the following section, we used the
narrative synthesis method for RQs 1 and 2, the binary out-
come method for RQs 3 and 4, and the reciprocal translation
method to answer RQ 5. Narrative synthesis is the process
of tabulating the results with respect to the research question
and visualizing them using techniques such as bar charts and
pie charts to enhance the result presentation [12]. On the other
hand, reciprocal translation refers to the process of providing
additive summaries through the translation of similar con-
cepts into a unifying concept [14]. In this SLR, we translate
the strength/weakness of a DMormachine learning technique
retrieved from different studies with similar meanings into a
unified description of the strength/weakness.
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FIGURE 2. Taxonomy of techniques observed in the literature.

III. RESULTS AND DISCUSSION
In the following subsections, the findings of this SLR will be
presented and discussed for each RQ.

A. RQ1: WHICH CLASSICAL OR NOVEL DM TECHNIQUES
HAVE BEEN USED IN THE IDS RESEARCH?
As a fundamental question of this body of literature,
we sought to identify the most commonly used DM tech-
niques in the IDS literature. We reviewed DM techniques
implemented at all stages of an experiment, such as during
the feature selection stage, extraction stage, etc. The review
resulted in 92 papers out of the 95 considered to have
addressed this research question.

As shown in the right hand side of Fig. 2, we identified
19 different DM techniques that were applied in the develop-
ment of IDS models based on their application. These tech-
niques can be decomposed into seven categories including:
• Reinforcement learning: determine current action
according to past experience.

• Regression: predict a numeric/continuous value.
• Classification: predict a category based on a given
dataset.

• Optimization: determine an optimum or a satisfactory
solution based in various solutions executed iteratively.

• Ensemble: combine a set of classifiers’ predictions into
a single decision based on their weighted vote.

• Rule system: use a set of if-then rules for classification.
• Clustering: group a set of data into a set of meaningful
sub-classes (clusters).

Fig. 3 shows the prevalence of each technique. The
most prevalent DM techniques were SVM (48 papers), DT
(44 papers), BN (32 papers), and ANN (26 papers). It is
worth mentioning that many of the papers considered within
this work proposed an ensemble learning approach that com-
bines many of the discussed DM techniques. In such cases,
the base techniques used are identified. More findings about
the implemented techniques are discussed in Section III-E.

FIGURE 3. Comparisons of DM techniques.

Table 8 of the Appendix provides additional detail about the
distribution of the DM techniques by publication year.

Feature selection/extraction was broadly found in the
literature, and is an important step to discard irrelevant infor-
mation, which, in turn, increases the detection accuracy and
computational efficiency of the proposed models. Fig. 4
demonstrates 18 different feature selection/extraction tech-
niques were applied based on the data extracted for this RQ.
According to the figure, GA, IG, PCA, and CB were the most
popular techniques with frequencies of 9,8,7, and 4, respec-
tively. In addition to the reported techniques, this RQ summa-
rized some novel feature selection/extraction techniques and
frameworks (some of which incorporate hybrid techniques)
extracted from 8 studies, see Table 2. Even though feature
selection/extraction is a crucial step, a surprising number of
papers did not address it in a robust way. For instance, P5, P7,
P55, P65, P68, and P94 applied feature selection/extraction
in their methodology; however, their techniques were not
discussed. Similarly, P20, P85, and P87 did not use a formal
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TABLE 2. Novel feature selection/extraction techniques/frameworks.

FIGURE 4. Feature selection techniques.

methodology, relying instead on either expert knowledge,
or on trial and error. Surprisingly, we found 49 articles had
not considered this step at all. Note that this work focused
on the base feature selection techniques used as part of the
hybrid feature selection approaches proposed by many of the
discussed works.

B. RQ2: WHAT TYPES OF ATTACKS DO VARIOUS IDS
IMPLEMENTATIONS DETECT?
In this RQ, we attempt to enumerate the various attack types
that the DM techniques in IDS is designed to (80 papers in
total). We identified twenty-two differing attack types in the
literature, which fall into four main categories [15]:

1) Denial of Service Attacks (DoS): Denial of service
attacks render a computational or network resource

inaccessible to its intended users through flooding
the victim with excessive, useless requests. Examples
include Smurf, Neptune (SYN floods), Ping of death,
Mail bombs, and UDP storms.

2) Remote to User Attacks (R2L): An attacker attempts
to remotely exploit vulnerabilities in a target system
to obtain privileges of a local user. Examples include
Xlock, Xnsoop, Sendmail, Phf, and Ftp-write.

3) User to Root Attacks (U2R): The attacker begins with
some basic level of privilege on the target system
(usually a guest) and attempts to escalate that privilege
to that of the root user through a kernel or applica-
tion vulnerability. Examples include Eject, Ffbconfig,
Fdformat, and Xterm.

4) Probing: Probing involves the scanning of a net-
work or machine to gather information for the purposes
of discovering potential vulnerabilities. Probing is not
an attack per se, but can be an indicator thereof. Exam-
ples include Ipsweep, Saint, MScan, and Nmap.

Based on the data extracted for this RQ, we found that
the majority of IDSs in the selected studies were trained
and designed using virtualized/benchmark datasets to detect
attacks in an off-line mode. Few considered IDSs in the
context of online (real-time) detection. Given the fact that
network traffic is increasing dramatically each year, real-
time network monitoring remains an elusive computational
challenge for researchers. The distribution of attack types
based on the utilized datasets is shown in Fig. 5. We also
observed in this figure that most studies were able to distin-
guish the four major attack types in an off-line environment.
In contrast, few experiments were implemented for real-
time detection mode. Of those operating in an online mode,
the attack type was not fully classified, rather individual
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FIGURE 5. Attack classification.

packets were classified as being basic distinction (either
normal or malicious).

C. RQ3: WHAT ARE THE MOST COMMON EVALUATION
METRICS USED IN IDS LITERATURE?
We enumerate the most commonly used evaluation metrics
in IDSs. We found 17 different existing evaluation metrics,
and one novel technique in the data extracted for this RQ.
These metrics were categorized by detection efficiency and
computational performance. A total of 59 papers discussed
the evaluation metrics.

1) DETECTION PERFORMANCE/EFFICIENCY METRICS
This category encompasses all measurements used by
researchers to validate the results obtained in their DM mod-
els in terms of malicious or normal action. Eachmathematical
representation of these measurements involves any of: true
positive (TP), true negative (TN ), false positive (FP), or false
negative (FN ) [3]. In total, 13 metrics belong to this group:

1) Confusion Matrix (CM): A type of matrix allowing
easy comparison between predicted and actual classes.
Table 3 demonstrates an example of 2 × 2 CM.

2) Accuracy (Acc): The percentage of correctly classified/
predicted instances in the testing dataset, calculated by

Acc =
TP+ TN

(TP+ TN + FP+ FN )
(1)

3) Error Rate (ER): The percentage of all predictions that
were incorrectly classified:

ER = 1− Acc (2)

4) True Positive Rate (TPR): Also known as sensitivity,
detection rate, or recall, it is the intrusions that were

TABLE 3. Confusion matrix (2 × 2 dimensions).

correctly classified as an attack, given by:

TPR =
TP

TP+ FN
(3)

5) False Positive Rate (FPR): Also known as false alarm
rate. It is the normal patterns that were falsely classified
as an attack, given by:

FPR =
FP

FP+ TN
(4)

6) True Negative Rate (TNR): Also known as specificity,
is the normal patterns that were correctly detected as
normal, given by:

TNR = 1− FPR (5)

7) False Negative Rate (FNR): It is the intrusions that were
falsely detected as normal, given by:

FNR = 1− TPR (6)

8) Precision: It is the ration of actions correctly classified
as attack, given by

Precision =
TP

TP+ FP
(7)

9) F-measure (FM): The harmonic means of recall and
precision also known as f-value or f-score:

FM = 2×
precision× recall
precision+ recall

(8)

10) Kappa: Measures the chance of agreement between the
predicted and the real classes, given by:

k =
p0 − pe
1− pe

(9)

where p0 is the observed agreement, and pe is the
expected agreement.

11) Matthews Correlation Coefficient (MCC): Measures
the correlation between the predicted results and the
real data. MCC value is between [-1,1] as shown
in (10), if MCC = +1, indicates that the prediction
was 100 accurate, where MCC = −1, means that the
prediction was totally wrong.

MCC=
(TP·TN )− (FP·FN )

√
(TP+FP)·(TP+FN )·(TN+FP)·(TN+FN )

(10)

12) ROC Curve (ROC): It is a graphical representation
tool that shows the intrusion detection accuracy against
the false positive rate. ROC is considered one of the
powerful metrics used to evaluate the performance of
IDSs effectively.

13) NP Ratio (NPR): is a novel evaluation metric proposed
by [16], where ‘‘N ’’ denotes TN and ‘‘P’’ denotes TP.
NPR pays more attention towards classes distribution
in the test dataset to detect any negligibly bias due to
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imbalanced issue in the given data. The mathematical
representation of NPR is calculated as follows:

NPR =
TN
TP

(11)

Of course, any individual metric is not an adequate
performance indicator of detection efficiency. For instance,
accuracy in some cases, skewed dataset, can lead to biased
results in the performance indicator [17].

The problem is that if one class has a very small percentage
in comparison to the others, the classifiermight fail to classify
the minority class, although it shows high accuracy [18].
Most of the included papers evaluated their models using
several evaluation metrics (see Fig. 6). However, not many
of them did it effectively. For instance, (P5, P6, P9, P23,
P34, P48, P49, P54, P72, P74, P81, P85, and P90) only
relied on the accuracy rate, which is no longer a proper
measure for classification with the class imbalance prob-
lem [19]. Likewise, (P25 and P68) considered only detection
rate as a performance indicator. Therefore, a lot of papers and
experiments are bound to have inaccurate results. As shown
in Fig. 6, the TPR (85), FPR (69), and accuracy (56) are
the most commonly metrics used to measure IDS detection
effectiveness.

FIGURE 6. Histogram of detection efficiency metrics used in literature.

2) COMPUTATIONAL PERFORMANCE METRICS
This group incorporates metrics utilized to measure the com-
putational performance of IDSs. Overall, 5 different measure-
ments were identified based on the data extracted in this RQ:

1) Computational Time (CT): Also known as worst-case
running time, execution time, processing time, or com-
putational complexity, is the time needed to complete
a certain task that classifies an action as a normal or
malicious.

2) CPUUtilization (CPU-U): Also known as CPU or pro-
cessor usage, it is the percentage of the CPU load taken
by a certain IDS task.

3) Energy Consumption (EC): Also known as power con-
sumption, it is the measurement of the required addi-
tional energy to perform a certain IDS task.

4) Training Time (TRT): The time taken to build and train
a model to classify an IDS task.

5) Testing Time (TST): The time taken to classify an IDS
action as normal or malicious.

Although some of the aforementioned performance metrics
are considered critical to ensuring the effectiveness of the
IDS [20], we found 63 papers did not adopt any of these
metrics in their research. As seen in Fig. 7, only 16 articles
considered the testing time in their experiments, and only
6 consider computational time in their systems.

FIGURE 7. Histogram of computational performance metrics used in
literature.

To investigate how these evaluation metrics improved over
time, we tracked the metrics to measure IDS efficiency.
We noticed the lack of consideration given to some metrics
in the last decade including, in ascending order, CM, Kappa,
MCC, and ER. In contrast, as shown in Fig. 8, TPR, FPR, and
Accuracy remain the most popular metrics with the number
of relevant papers amounting to 85, 69, and 56, respectively.
Furthermore, we found that the popularity of F-Measure,
precision, ROC, and TNR increased substantially after 2012.

FIGURE 8. Popularity of efficiency metrics over time.

D. RQ4: WHAT ARE THE CHARACTERISTICS OF THE
DATASETS/DATA SOURCES MOST COMMONLY USED
IN IDS RESEARCH?
We examine the source and characteristics of the data source
used to develop intrusion detection in the related papers.
Overall, we identified 25 different public and private datasets
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used in IDSs within the 91 papers addressing this research
question. The classification of these datasets is categorized
into three categories as follows:

1) Virtualized: datasets artificially generated to meet a
certain task, in which many of its features and methods
are virtual or abstract. DARPA dataset [21] is a good
example used in the field of IDS.

2) Synthesized: dataset generated to satisfy certain
needs or specific conditions whichmay not be available
in the available realistic data, i.e. ISCX 2012 [22]. The
popularity of these synthetic datasets arises due to the
fact that realistic datasets can cause privacy concerns.

3) Realistic: datasets collected from real-world traffic,
which can be categorized into public (i.e. Kyoto
2006+ [23]) or private (i.e. blogs, profiles, and network
traffic).

Despite the fact that 25 different datasets were identified in
this RQ, Fig. 9 shows around 79% of the experiments were
adopted DARPA dataset. KDDCup 1999 [24] andNSL-KDD
are both derived from the original DARPA dataset and they
account for 56% and 20% of the papers, respectively.

FIGURE 9. Utilized datasets per category.

Other intrusion detection datasets, as shown in the figure,
represent approximately 8% of the total experiments, namely
A1a, A3a, A4a, Satimage, Vehicle, German, Segment,
Svmguide3, Wisconsin-wdbc were used to validate the qual-
ity of the proposed intrusion detection approach, additional
details about these datasets are presented in [25]. It is worth
mentioning that the majority of the experiments are based on
the outdated DARPA dataset, which also suffers from incon-
sistency with regard to the distribution of attacks types [26].

E. RQ5: WHAT ARE THE STRENGTHS OR WEAKNESSES
BEING ADDRESSED IN THE IMPLEMENTED DM
TECHNIQUES IN IDSs?
We extract the pros and cons of the implemented DM
techniques from 36 papers that discussed them. Under this
scenario, each relevant observation and conclusion about
DM techniques on the relevant papers was included in a
single combined list. Afterwards, similar (or equal) observa-
tions were grouped, and a table listing techniques’ strengths
and weaknesses (with their respective sources) was created.

The more independent sources an observation or statement
had, the more credible or reliable it was scored. Table 4 con-
denses the knowledge and experiments of numerous authors
and studies, providing a helpful cross-section of which DM
techniques are applicable to which IDS.

TABLE 4. Strength & weakness of the implemented DM techniques.

IV. LIMITATIONS
This study is restricted to journal and conference papers in
the field of DM and in IDSs. By applying our search strategy
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at the first stages of the review, we gained (and therefore
excluded) a large number of non-relevant articles. While this
ensured that the selected articles suited the research require-
ments, having additional sources would have further enriched
the review. The same idea applies to the quality assessment:
because we applied a rigorous QA.

V. CONCLUSIONS
We performed an SLR to investigate DM techniques in the
field of IDS. Our motivation was on the relevant empirical
studies reported in journals and conferences between the
desired period. We manually explored some 873 unique
papers returned by the initial search. Overall, 95 relevant
papers were chosen after applying our selection criteria.
We employed the findings of this SLR to provide an inte-
grated and unified view of DM techniques in IDSs. In addi-
tion, our results allow researchers to identify, compare, and
evaluate their methods for IDSs from different perspectives
including attack types, operation mode, evaluation criteria,
datasets, and strength and weakness of the utilized DM
techniques. Our conclusions are summarized as follows:
• RQ1: We found the most commonly used DM tech-
niques in IDSs are SVM, DT, BN, and ANN among
the 19 different techniques in the related literature. We
further enumerated 18 feature selection/extraction tech-
niques, as well as 8 novel techniques from the data
extracted in this RQ.

• RQ2: We counted the various attack types, in which
the IDSs are designed to prevent, namely DoS, R2L,
U2R, and Probe. We also observed that there is a lack
of research dealing with real-time IDS as most of the
papers designed using virtualized/benchmark datasets
to detect attacks in an off-line environment. Of those
operating in an online mode, the attack type was not
fully classified, rather individual packets were classified
as being normal or malicious.

• RQ3: We enumerated 17 different evaluation metrics,
as well as a novel technique used as performance indi-
cators in IDSs. The most popular metrics during the last
decade are TPR, FPR, and Accuracy.While, on the other
hand, the utilization of F-Measure, precision, ROC, and
TNR have increased considerably after 2012 in the
holistic studies in this SLR. The classification of these
metrics categorized based on the detection efficiency
metrics to validate the IDS results, and the compu-
tational performance metrics to express the empirical
measurements used in the context of the computational
performance.

• RQ4: We identified 25 different public and private
datasets used in IDS. The classification of these datasets
were grouped into virtualized, synthesized, and realistic
datasets. We noticed that the majority of the proposed
IDSs are based on outdated datasets, which suffer
from an inconsistency issue with the distribution of
the attacks and the lack of the contemporary attack
scenarios.

TABLE 5. Applicability of the selected papers to our research questions.

• RQ5: We summarized the strengths and weaknesses of
the utilized DM techniques based on the researchers’
experience. This information is rich in breadth and
depth, in which it provides a solid foundation that
researchers can extend for future research in IDS
domain.

Based on the SLR outcomes, we identify some interesting
opportunities for future work.

Given that many researchers did not appear to con-
sider or outline their feature selection/extraction strategy,
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TABLE 6. Number of papers selected per digital resource.

TABLE 7. Quality assurance score of the selected papers.

greater transparency and articulation of research methodol-
ogy will be an important area for improvement. More empir-
ical experiments should be performed to address the need of
real-time solutions that can operate effectively in the big data
era. Similarly, some researchers reported their results across
a single evaluation metric only (e.g., accuracy), which is not
an effective strategy when considering imbalanced datasets.
Additionally, very few researchers considered computational
effort as an evaluation metric for their systems, although
this is considered a very critical issue, especially with real-
time IDSs. Finally, the implication of our findings is that
there is a general lack studies that explore algorithms that
can be effective classifying traffic in contemporary networks,
when using antiquated datasets. Simply put, research with
new dataset is strong needed. In light of such a scenario, it is
significant to generate modern intrusion detection datasets
to resolve the current datasets issues, which, in turn, allow
researchers to support the findings and validity of their new
approaches.

APPENDIX
See Tables 5–8.

TABLE 8. Data mining techniques iteration per year.
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