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ABSTRACT Recently, a simple, yet effective and efficient tracker named Staple has achieved promising
performance in terms of efficiency and accuracy on a series of visual tracking benchmarks. Staple is
equipped with complementary learners of discriminative correlation filters (DCFs) and color histograms,
which are robust to both color changes and deformations. However, it has some drawbacks: 1) Staple
only employs standard color histograms with the same quantization step for all sequences, which does not
consider the specific structural information of target in each sequence, thereby affecting its discriminative
capability to separate target from background. 2) The standard DCFs are efficient but suffer from unwanted
boundary effects, leading to failures in some challenging scenarios. To address these issues, we present a
dual color clustering and spatio-temporal regularized correlation regressions-based complementary tracker
(CSCT). The proposed CSCT includes two components with complementary merits to adaptively deal
with significant color variations and deformations for each sequence: First, we design a novel color
clustering-based histogram model that first adaptively divides the colors of the target in the 1st frame
into several cluster centers, and then the cluster centers are taken as references to construct adaptive color
histograms for targets in the coming frames, which enable to adapt significant target deformations. Second,
we propose to learn spatio-temporal regularized CFs, which not only enable to avoid boundary effects but
also provides a more robust appearance model than the discriminative CFs in Staple in the case of large
appearance variations. Compared to Staple, our CSCT with handcrafted features achieves a gain of 5.9%,
3.4%, and 1.5% on OTB100, Temple-Color, and VOT2016 benchmarks in terms of AUC and EAO scores,
respectively. Moreover, our CSCT performs favorably against several state-of-the-art trackers, including the
deep learning-based trackers.

INDEX TERMS Visual tracking, correlation filter, color histograms, spatio-temporal regularization.

I. INTRODUCTION
Visual tracking is a hot research topic in the filed of computer
vision with numerous applications such as video surveil-
lance, motion analysis, and autonomous driving, to name
a few [1]–[5]. Despite much progress in recent years,
it remains challenging to develop a robust tracking algo-
rithm due to significant target appearance variations caused
by the factors such as illumination changes, fast motions,
pose variations, partial occlusions and background clutters.
Hence, a robust representation plays a key role in a success-
ful tracking, thereby attracting much attention in the past

decades.
Recently, much attention has been paid to learn dis-

criminative CF (DCF) based representations for visual
tracking [6]–[10]. However, since the learned CFs strongly
depend on the spatial layout of the tracked target, they are
sensitive to deformations [11]. To address this issue, a simple
yet effective tracker named Staple [11] has been proposed,
which marries the merits of statistical color information and
template learning by CF to favorably handle deformation
and color changes simultaneously. However, there exist two
main issues to be addressed: (i) Staple only employs a stan-
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FIGURE 1. Basic flow of our CSCT. Here, CH denotes color histogram and CF indicates correlation filter. On the top, we employ the
K-means algorithm to get several clustering centers of the colors of the target object in the 1st frame. Then, we assign each pixel
the index of its nearest clustering center. Meanwhile, on the bottom, we learn a spatio-temporal regularized CF model with
multiple samples from the historical tracking results, and the learned CFs emphasize more to the recent samples to
adapt target appearance variations over time. Finally, the color clustering histogram response is merged with the
spatio-temporal CF response to yield the final response.

dard color histogram with the same quantization step for all
sequences, which does not consider the specific structural
information of the target in each sequence, thereby it may
reduce their description capability. (ii) Staple resorts to the
standard DCFs that are efficient but suffer from unwanted
boundary effects, leading to failures when target appearance
varies significantly in some challenging scenarios.

To alleviate the above issues, in this paper, we present a
dual Color clustering and Spatio-temporal regularized cor-
relation regressions based Complementary Tracker (CSCT).
The principle of CSCT is shown in Figure 1. Specifically,
CSCT leverages the color clustering of the target appearance
at the 1st frame to construct a color histogram representation
with a set of data-adaptive bins that can effectively encode
the structural information of target. Meanwhile, to improve
the discriminative capacity of the CFs to be learned, a spatio-
temporal regularization term is introduced to regularize the
CF model to be learned, which is more robust to dras-
tic appearance variations than the traditional CFs. Exten-
sive evaluations on the OTB100 [12], Temple-Color [13]
and VOT2016 [14] datasets demonstrate that the proposed
CSCT achieves obviously improved performance against the
baseline Staple [11], and performs favorably against several
state-of-the-art trackers [7], [11], [15]–[21].

The main contributions of this paper are summarized as
follows:

1) An effective color clustering histogram model is
proposed that ismore robust than the standard color his-
togram model, yielding a more reliable color tracking
model.

2) A novel spatio-temporal regularization term is
introduced to regularize the CFs to be learned, which

combines the useful spatial and temporal information,
leading to a more robust CF tracking model.

3) The proposed CSCT with handcrafted features
achieves promising performance on the OTB100,
Temple-Color and VOT2016 benchmarks in terms of
both accuracy and efficiency.

II. RELATED WORK
A. COLOR-BASED TRACKING
In the earlier proposed object tracking approaches, color
information is widely employed to increase their tracking
robustness. Pérez et al. [22] introduce a multi-part color
model to capture a rough spatial layout ignored by global his-
tograms. Adam et al. [23] represent object template by multi-
ple image fragments or patches to achieve a more robust local
histogram-based representation. Recently, instead of simple
color representations, Danelljan et al. [24] leverage more
sophisticated attribute-based color features to describe object
appearance, achieving promising tracking performance.
Possegger et al. [15] exploit an adaptive object color his-
togram model to suppress nearby similar regions, resulting
in a robust and reliable tracking result.

B. DISCRIMINATIVE CORRELATION FILTER TRACKING
Recently, DCFs have attracted much attention in visual track-
ing for their advantages in terms of efficiency and robustness.
UsingDCFs for visual tracking starts withMOSSE [6], which
learns CFs with a few samples in the frequency domain,
thereby facilitating fast Fourier transforms (FFTs) for effi-
cient computation that runs at 669 frames per second (FPS).
Henriques et al. [25] first explore the circulant structure of
dense samples with kernel embedding that facilitates learning
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CFs for fast tracking. Henriques et al. [7] further improve
the CF tracker in [25] by extending its feature representation
from image intensities to histogram of gradients (HOGs).
Ma et al. [26] exploit complementary traits of different layers
of deep features and use a coarse-to-fine search strategy to
learn more effective CFs for visual tracking, significantly
boosting performance in the OTB100 dataset. Recently,
Danelljan et al. propose a series of spatially regularized
CF-based trackers [8], [27], [28] with impressive perfor-
mance. The spatially regularized DCF (SRDCF) tracker [8]
tries to suppress the boundary effects of the learned CFs
with Gaussian shaped spatial regularization weights. Based
on [8], [27] proposes an adaptive decontamination scheme
to learn more effective CFs, which adaptively learns the reli-
ability of each training sample and eliminates the influence
of contaminated ones. In [28], learning CFs is conducted
in the continuous spatial domain of various feature maps,
which is able to achieve sub-pixel accuracy of the tracking
locations.

C. INTEGRATE MULTIPLE ESTIMATES
A widely adopted strategy to mitigate inaccurate predictions
is to combine the estimations of an ensemble of methods,
so that the weakness of the trackers are reciprocally com-
pensated. Kwon et al. [29], [30] make use of complemen-
tary basic trackers, built by combining different observation
models and motion models, and then integrate their estimates
in a sampling framework. Wang and Yeung [31] combine
several independent trackers via a factorial HMM, mod-
elling both the object trajectory and the reliability of each
tracker across time. Rather than using different kinds of
trackers, the Multi-Expert Entropy Minimisation (MEEM)
tracker [16]maintains a collection of past models and chooses
the prediction of one according to an entropy criterion.
Bertinetto et al. [11] combine two common ridge regression
scores directly, where the local representations (with HOGs)
and global representations (with color histograms) work
together.

III. METHODOLOGY
As the DCF based tracker [7], the proposed CSCT adopts the
tracking-by-detection paradigm. Here, our main concerns are
how to effectively take advantage of the color distribution
of the target object in the 1st frame and how to merge the
clustering color response with the CF response, which will
be depicted in detail as below.

A. COLOR CLUSTERING FOR HISTOGRAM-BASED MODEL
The top branch in Figure 1 illustrates how we design the
clustering color histogram in our algorithm. In the 1st frame,
we cluster all the RGB colors of the whole target area, which
contains both object and background areas, into n categories
by the K-means algorithm, yielding the clustering center set
{ci ∈ R3

}
n
i=1. Then, for each pixel of RGB color u ∈ R3, its

feature representation has a special form as

ψ[u] = ek[u], (1)

where ei = [0, 0, . . . , 0,︸ ︷︷ ︸
i−1

1, 0, . . . , 0]>. The index k[u] in (1)

is obtained by

k[u] = argmin
i
{‖u− ci‖22}

n
i=1, (2)

where ci denotes the i-th clustering center yielded by the
K-means algorithm. Afterwards, for each pixel feature rep-
resentation, we employ a linear regression objective over the
object and background regions �o and �b ⊂ R2 as

E (β) =
1
|�o|

∑
u∈�o

(
β>ψ [u]− 1

)2
+

1
|�b|

∑
u∈�b

(
β>ψ [u]

)2
, (3)

where β denotes the feature weight vector.
Replacing (1) in (3), we have

E(β) =
∑n

i=1

[
N i(�o)
|�o|

(
β i − 1

)2
+
N i(�b)
|�b|

(
β i
)2]

, (4)

where N i(�l) = |{u ∈ �l |k[u] = i}|, l ∈ {o, b}. Setting
∂E(β)/∂β i = 0, the solution of minimizing E(β) can be
achieved as

β̃ i =
N i(�o)

N i(�o)+
|�o|
|�b|

N i(�b)
. (5)

To adapt target appearance variations over time, we lever-
age a simple online update strategy

β t = (1− ηcc)β t−1 + ηccβ̃ t , (6)

where ηcc is a learning factor and β̃ t is the vector of β̃ it
calculated by (5) using the tracking results at frame t . Finally,
as for each pixel u at frame t , after calculating its color
clustering feature representationψ[u] via (1), its response can
be obtained by

rcc(u) = β t
>ψ[u] (7)

Note that our improvement can significantly relieve the
adverse impacts of the color noises due to the fixed quantiza-
tion step in the standard color histogram model in Staple [11]
and obtain a more reliable color response, finally improving
the tracking performance.

B. SPATIO-TEMPORAL REGULARIZED CORRELATION
TRACKING
The bottom branch in Figure 1 illustrates how we build
the spatio-temporal regularized CFs in our method. Let fdt−1
denote the d-th CF channel at the (t − 1)-th frame, w denote
the Gaussian-shaped spatial weight function, and {fd }Dd=1
denote the set of the CF channels to be learned. Then, as [10],
we introduce an effective spatio-temporal regularization term
D∑
d=1

∥∥w · fd − w · fdt−1
∥∥2
2, where w is the spatial weight to
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FIGURE 2. Visualization of the spatio-temporal regularized term in (8). When the object suffers from drastic variations, the difference between
w · fdt−1 and w · fdt will become large, leading to learning more stable CFs between two frames. Here, the w is the fixed gaussian-shaped weights
borrow from SRDCF [8].

regularize each frame’s learned d-th channel correlation fil-
ter fd , measuring the difference between the current frame’s
regularized CFs w · fd and the former learned CFs w · fdt−1.
As shown in Figure. 2, the purpose of introducing the spatio-
temporal regularized term is to make our learned CFs more
self-adaptive to the environment changes. For example, our
CF model will be more sensitive to these sudden appearance
variations (like motion blur, illumination changes), owing to
the spatio-temporal regularized term becoming large and con-
straining the learned filter ft . While suffering from the slow
variations (like partial occlusion), thanks to our CF update
strategy, the learnedCFwill be close to the former learnedCF,
which will not degrade in several occluded frames. In sum-
mary, with the introduction of the spatio-temporal regulariza-
tion, our method can provide a more robust appearance model
than the standard CFs, leading to superior performance.

Then, optimize the objective function as

argmin
{fd }Dd=1

D∑
d=1

∥∥∥xdt ∗ fd − y
∥∥∥2
2
+ λ

D∑
d=1

∥∥∥w · fd − w · fdt−1
∥∥∥2
2
,

(8)

where the symbol ∗ denotes correlation operator, the sym-
bol · denotes element-wise multiplication,

{
xdt
}D
d=1 is a set of

D channel features, y is a desired Gaussian-shaped response
map, and λ controls the impact of the spatio-temporal regu-
larization term.

Setting gd = fd − fdt−1, (8) can be rewritten as

argmin
{gd }Dd=1

D∑
d=1

∥∥∥xdt ∗ gd−(y−xdt ∗ fdt−1)∥∥∥22+λ
D∑
d=1

∥∥∥w·gd∥∥∥2
2
,

(9)

then we set ỹ = y− xdt ∗ f
d
t−1, and reformulate (9) as

argmin
{gd }Dd=1

D∑
d=1

∥∥∥xdt ∗ gd − ỹ
∥∥∥2
2
+ λ

D∑
d=1

∥∥∥w · gd∥∥∥2
2
. (10)

For notation clarity, we assume that only a single channel
in the following derivation, and drop the channel index (·)d ,
since the filter learning is independent across channels. Then,
the objective function is simplified to

argmin
g

∥∥xt ∗ g− ỹ
∥∥2
2 + λ ‖w · g‖

2
2 . (11)

The objective function in (11) is convex with respect to g,
and hence the minimization problem has a globally optimal
solution that can be achieved via ADMM [32]. To this end,
we introduce a dual variable h and the constraint h−w·g = 0,
yielding the following Augmented Lagrangian objective

L
(
ĥ, g, ŝ

)
=

∥∥∥ĥHdiag (x̂t)− ˆ̃y∥∥∥2
2
+ λ ‖gw‖22

+

[
ŝH
(
ĥ− ĝw

)
+ ŝH

(
ĥ− ĝw

)]
+ µ

∥∥∥ĥ− ĝw
∥∥∥2
2
, (12)

where ŝ is a complex Lagrange multiplier, µ > 0, and
we define gw = w · g for compact notation. Moreover,
the equivalence in (12) follows from the Parseval theorem,
where the operator ()H is conjugate transpose, the operator
â = vec (F(a)) is a DFT transform and reshape into a column
vector, i.e., a ∈ RD×1, withD = w×h, while () is conjugation
operation.

For the purposes of derivation we rewrite (12) into a fully
vectorized form

L
(
ĥ, g, ŝ

)
=

∥∥∥ĥHdiag (x̂t)− ˆ̃y∥∥∥2
2
+ λ ‖gw‖22

+

[
ŝH
(
ĥ−
√
DFWg

)
+ŝH

(
ĥ−
√
DFWg

)]
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+µ

∥∥∥ĥ−√DFWg
∥∥∥2
2
, (13)

where F denotes D × D orthonormal matrix of Fourier
coefficients, such that the Fourier transform is defined as
x̂ = F(x) =

√
DFx and W = diag (w). For simplicity,

we denote the (13) into four terms as

L
(
ĥ, g, ŝ

)
= L1 + L2 + L3 + L4, (14)

where

L1 =

(
ĥHdiag

(
x̂t
)
− ˆ̃y

) (
ĥHdiag

(
x̂t
)
− ˆ̃y

)>
,

L2 = ‖gw‖22 ,

L3 =

[
ŝH
(
ĥ−
√
DFWg

)
+ ŝH

(
ĥ−
√
DFWg

)]
,

L4 = µ

∥∥∥ĥ−√DFWg
∥∥∥2
2
. (15)

We then employ the ADMM algorithm that alternatively
solves the following subproblems,

ĥi+1 = argmin
h

L
(
ĥ, gi, ŝi

)
,

gi+1 = argmin
g

L
(
ĥi+1, g, ŝi

)
,

ŝi+1 = ŝi + µ
(
ĥi+1 − gi+1

)
.

(16)

Subproblem ĥ: Minimizer of ĥ is derived by setting its
complex gradient of the augmented Lagrangian to zero
as

∂L1

∂ĥ
+
∂L2

∂ĥ
+
∂L3

∂ĥ
+
∂L4

∂ĥ
= 0, (17)

where the partial complex gradients are:

∂L1

∂ĥ
= diag

(
x̂t
)
diag

(
x̂t
)H ĥ− diag (x̂t) ˆQH

y,

∂L2

∂ĥ
= 0,

∂L3

∂ĥ
= ŝ,

∂L4

∂ĥ
= µ

(
ĥ−
√
DFWg

)
, (18)

where
√
DFWg = ĝw according to our original definition

of ĝw. Putting (18) into (17), we have

ĥ =
x̂t · ˆ̃y+ µĝw − ŝ

x̂t · x̂t + µ
, (19)

whose iteration form is

ĥi+1 =
x̂t · ˆ̃y+ µĝim − ŝi

x̂t · x̂t + µi
, (20)

where the constraint penalty µi+1 = βµi.

Subproblem g: Similarly, we set its complex gradient
equal to zero

∂L1

∂g
+
∂L2

∂g
+
∂L3

∂g
+
∂L4

∂g
= 0, (21)

and the partial gradients are
∂L1

∂g
= 0,

∂L2

∂g
= λWg,

∂L3

∂g
= −
√
DWFH ŝ,

∂L4

∂g
− µ

(√
DWFH ĥ− DWg

)
. (22)

Putting (22) into (21), yielding

λWg−
√
DWFH ŝ− µ

√
DWFH ĥ+ µDWg = 0,

Wg =W

√
DFH

(
ŝ+ µĥ

)
λ+ µD

. (23)

According to the definition of the inverseDFT, i.e.,F−1
(
x̂
)
=

1
√
D
FH x̂, and the values in w are not zeros, so the solution

to (23) is

g =
F−1

(
ŝ+ µĥ

)
λ
D + µ

, (24)

and the iteration form is

gi+1 =
F−1

(
ŝi + µiĥi+1c

)
λ
D + µ

i
. (25)

After achieving the convergence of g as gn, the solution of
the learned CF is f = gn + ft−1.
Finally, we have the response map of the learned

CFs {fd }Dd=1 as

rcf =
D∑
d=1

F−1(x̂t · f̂d ) (26)

Different from the standard CF learning in Staple [11] that
only employs the standard CF tracker, we combine the spa-
tial and temporal regularizers into one term to constrain the
learned CFs. When the target object suffers from occlusion,
Staple will learn a corrupted CF, but our method can alleviate
this over-fitting problem via spatio-temporally regluarizing
the CFs to keep it close to the previous models.

C. MERGING STRATEGY
Finally, combining the color histogram response and the
spatio-temporal regularized correlation filter response in a
linear way, we obtain the final location response

r = ηrcc + (1− η)rcf , (27)

where rcc is the clustering color histogram response, rcf
is the spatio-temporal regularized CF response and η is a
merging factor, and the tracked location is determined by
maximizing r.
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FIGURE 3. Success and precision plots on OTB100. The legend of the success plot reports the AUC scores and the legend of the precision
plot reports the distance precision scores for the threshold at 20 pixels.

IV. EXPERIMENTAL RESULTS
A. IMPLEMENTATION DETAILS
We set the color cluster learning factor ηcc = 0.04, the cluster
center number n = 16 ,which is chosen according to a
simple experiment on the clustering center numbers, and the
merge factor η = 0.3, and s = 42-dimensional HOG+color
naming (CN) features are used to represent the targets. The
features are further weighted by a cosine window to reduce
the boundary discontinuities. As for the ADMM algorithm,
we set the hyper-parameter in (8) to λ = 0.01 and the step size
parameter in (20) and (25) β = 2, µ0

= 1 throughout all the
experiments. We extensively evaluate our method on 3 popu-
lar benchmarks including OTB100 [12], Temple Color [13]
and VOT2016 [14]. The proposed CSCT is implemented
in MATLAB 2015a and runs at 18 fps on a PC with Intel
i7-4790 CPU (3.6 GHz) and 16 GB RAM memory.

B. QUANTITATIVE EVALUATION
1) OTB-100 DATASET
a: OVERALL PERFORMANCE
Figure 3 shows the success and precision plots of 10 represen-
tative state-of-the-art trackers on OTB100, including the pro-
posed CSCT, Staple (CVPR2016) [11], DSST (BMVC2014)
[33], LCT (CVPR2015) [18], SRDCF (ICCV2015) [8],
BACF (ICCV2017) [34], CREST (ICCV2017) [35],
CSR-DCF (CVPR2017) [17], KCF (T-PAMI2015) [7] and
STAPLE_CA (CVPR2017) [9]. We exploit one-pass evalua-
tion (OPE) for all trackers and report both the precision and
success plots for comparison. Following [12], in the precision
plots, we use the distance precision rate at threshold 20 for
ranking, while in the success plots, we use the area under
curve (AUC) score for ranking.

Figure. 3 shows the results of all compared trackers.
Among them, the proposed CSCT achieves the best overall
performance in terms of both success and precision rates with

an AUC score of 63.8% and a precision score of 85.6%,
outperforming the second-best method CREST by 1.5%
and 1.8%. It is noted that different from our method which
only uses the HOG and CN features, CREST employs several
layers of deep CNN-based features, leading to a slow imple-
mentation, but still performs worse than our method, demon-
strating the effectiveness of the complementary advantages
between the color clustering model and the spatio-temporal
regularized model in our CSCT. Moreover, the comparison
shows that CSCT outperforms the other real-time trackers by
a large margin. As an instance, in the precision plots, our
method improves the second best real-time tracker BACF
by 3.6%, while in the success plots, our tracker has a gain
of 1.8% compared to BACF.

b: ATTRIBUTE-BASED PERFORMANCE
The targets in OTB100 mainly suffer from 11 attributes
of challenging factors including illumination variation (IV),
scale variation (SV), occlusion (OCC), deformation (DEF),
motion blur (MB), fast motion (FM), out-of-view (OV),
background clutters (BC), in-plane rotation (IPR), out-of-
plane rotation (OPR) and low resolution (LR). To facili-
ate analyzing the strength and weakness of the proposed
approach, we further evaluate the trackers on videos with
these 11 attributes. Figure. 4 shows the success plots of videos
with various attributes, while Figure. 5 shows the correspond-
ing precision plots. Among them, CSCT ranks within top 3
on all 11 attributes in the success plots, and outperforms the
others on 7 out of 11 attributes. In the precision plots, CSCT
ranks top 1 on 7 out of 11 attributes. Since the AUC score of
the success plot is much more accurate than the score at one
position in the precision plot, as in [36], in the following we
mainly analyze the ranked results based on the success plots.

On the videos with attributes such as SV, OCC, DEF, BC,
MB, FM and OV, CSCT ranks 1st among all the evaluated
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FIGURE 4. Success plots of videos with various attributes.

trackers. All these methods ignore the structure information
of the color-based representation and the variations among
a serious of learned CFs in consecutive frames. However,
to enhance the representation capability of the color-based

model, our CSCT leverages color clustering strategy to learn
a data-adaptive color histogram, leading to a more robust
appearance model. Moreover, to improve the discriminative
capacity of the learned CFs, CSCT employs the variations
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FIGURE 5. Precision plots of videos with various attributes.

between the CFs learned from consecutive frames as regular-
ization to learn a more reliable CF model. The experimental
results demonstrate that the improved color clustering model
along with the modified spatio-temporal regularized CF have

a positive effect on handling the challenging factors with the
above-mentioned attributes.

On the videos with LR, IPR, OPR and IV, CSCT ranks 2nd
among all evaluated algorithms with a narrow margin to the
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FIGURE 6. Expected Average Overlap (EAO) order plot on VOT2016. The better trackers are located at the right. The EAO measure,
computed as the average EAO over typical sequence lengths, is displayed in the legend (see [14] for details).

TABLE 1. Average AUC of the 10 trackers in terms of 11 attributes: top three results are in red, blue and green fonts. Best viewed in color model.

top tracker. Due to the sudden appearance variations (i.e. the
illumination changes) limit the color clustering learning and
spatio-temporal CF learning, CSCT cannot employ a more
robust appearance model than the deep CNN-based appear-
ance in CREST. Over time, it will cause the object drift,
making CSCT unable to perform well on these attributes.

Finally, Table 1 reports the AUC scores of all compared
trackers under these attributes. Among them, our CSCT
achieves the highest AUC scores in 7 out of the total
11 attributes. In the attributes of IPR, OPR and IV, CSCT
achieves favorable performance against CREST, BACF and
STAPLE_CA that achieve the top-3 best performance.

However, when the target undergoes LR, CSCT cannot
perform as well as CREST. This is mainly because the fact
that the HOG along with CN features cannot well represent
the texture information of the target with low resolution.
In general, CSCT significantly outperforms the others on
most attributes listed by Table 1.

2) TEMPLE-COLOR DATASET
We perform comparative experiments on Temple-Color
dataset [13] which consists of 128 color sequences.
We compare CSCT with the state-of-the-art trackers
mentioned above including Staple (CVPR 2017) [11],
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TABLE 2. Comparing CSCT with the 7 trackers using EAO, accuracy rate (Acc), robustness rate (Rob), no-reset average overlap (Ao) and average speed
(fps) on the VOT2016 benchmark. The top three results are in red, blue and green fonts. Best viewed in color display.

fDSST (T-PAMI 2017) [37], LCT (CVPR 2015) [18],
SRDCF (ICCV 2015) [8], MEEM (ECCV 2014) [16], BACF
(ICCV 2017) [34], HCFT (ICCV 2015) [26], KCF
(T-PAMI 2015) [7] and STAPLE_CA (CVPR 2017) [9].
Fig. 7 shows the comparisons of overlap success plots
for different trackers. We note that CSCT outperforms
STAPLE_CA and Staple by 2.0% and 3.4%, respectively,
further demonstrating the effectiveness of the color clustering
histogram and spatio-temporal regularization strategies.

3) VOT2016 DATASET
In Table 2, we compare our CSCT with several top trackers
on the VOT 2016 [14] benchmark, including CREST [35],
EBT [38], CSR-DCF [17], Staple [11], SRDCF [8],
Struck [39] and KCF [7]. As suggested by [14], Table 2
reports the results of the evaluated trackers in terms of EAO
(estimated average overlap), Acc (accuracy), Rob (robust-
ness), AO (average overlap) and speed (in fps). Among these
methods, CSR-DCF achieves the best result under EAO met-
ric. Meanwhile, CSCT achieves the second-best performance
with a EAO score of 0.310 and performs at a speed of 18 fps
that is faster than CSR-DCF with 13 fps. According to the
analysis of the VOT report [14], the EAO score of CSCT
is 0.310 that outperforms the definition of the strict state-of-
the-art bound 0.251 by 5.9%, and thus it can be regarded as
state-of-the-art.

Figure. 6 displays the EAO ranking orders of the compared
70 tracking methods that participate in the VOT2016 chal-
lenge. Our proposed CSCT ranks 5th in the ranking order
plot and outperforms the other real-time trackers (like Staple
and DAT) by a large margin. Among the four trackers that
perform better than ours, CCOT and TCNN both apply com-
plex continuous or tree-structured convolution operator to
improve their tracking accuracy, resulting in an inferior speed
compared to our CSCT. Moreover, it is noted that SSAT is an
extended version of MDNet tracker, which utilizes OTB and
VOT benchmark for pre-training. And MLDF also combines
low, mid and high-level features from the pre trained VGG
networks, which is complex and slower than our CSCT.

C. QUALITATIVE EVALUATION
Fig. 8 qualitatively compare the results of the top performing
trackers: CSR-DCF (CVPR2017) [17], Staple (CVPR2016)
[11], BACF (ICCV2017) [34], CREST (ICCV2017) [35]
and CSCT on 10 challenging sequences. In a majority of
these sequences, CSR-DCF fails to locate the targets or

FIGURE 7. Overlap success plots of different trackers on Temple-Color.
Only 10 trackers are displayed for clarity.

estimates scale incorrectly because of the limited per-
formance of the spatial regularized CF framework.
CREST reformulates DCFs as a one-layer convolutional
neural network and integrates feature extraction, response
map generation as well as model update into neural networks
for an end-to-end training. It performs well on the attributes
of LR, IPR, OPR and IV. However, the classifier of CREST is
trained to focus on the residual of appearance changes, which
may lead to overfitting in presence of severe deformation
and heavy occlusion. As a result, it does not perform well in
handling deformation (e.g. Bolt2) and occlusion (e.g. Box).
The CF based trackers (e.g. Staple and BACF) improve
conventional CFs by leveraging both the strength of CF-based
model and color-based model, or modeling foreground and
background of the object over time, respectively. Neverthe-
less, they do not take full advantage of the target color infor-
mation and ignore the temporal variation of the learned CFs
in consecutive frames. In contrast, our CSCT leverages target
color distribution to learn a more reliable color-based model
and incorporates both spatial and temporal regularization into
the CF framework, as a result, achieving a robust performance
against a variety of challenging factors in visual tracking.

D. ABLATION STUDIES
To verify the effectiveness of our color-based improvement
(refer to Section III-A) and CF-based improvement (refer
to Section III-B), we report the resluts using either only
color clustering-based improvement (CCI) or only CF-based
improvement (CFI), demonstrating howmuch the CCI or CFI
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FIGURE 8. Qualitative evaluations of our CSCT, CSR-DCF [17], Staple [11], BACF [34], CREST [35] on 8 challenging sequences (from left to right and
top to down: Human2, Football1, Dragonbaby, Clifbar, Carscale, Box, Soccer and Bolt2, respectively). Our CSCT performs favorably against
state-of-the-art.

FIGURE 9. Ablative experiments on OTB100. CCI, CFI denote only color
clustering-based improvement and only CF-based improvement,
respectively. Staple [11] is the baseline tracker, while CSCT is the
combination of CCI and CFI. The AUC score for each tracker is
shown in the legend.

contributes to the overall performance of CSCT. We employ
OTB100 for test and compare with CSCT, CCI, CFI, and
the baseline Staple [11]. Figure 9 shows the comparative
results in terms of the AUC scores of OPE of success rates.
Specifically, CFI outperforms Staple by 4.1%, demonstrating
the effectiveness of the spatio-temporal regularized term in
CFI. Besides, CCI cannot perform favorably as CFI mainly
because of the limitation of the color-based feature. Finally,
the CSCT (CCI+CFI) boosts the performance significantly

FIGURE 10. Failure cases of the proposed tracker, where we utilize red
and green bounding boxes to denote our results and ground-truths.

with anAUC score of 0.638 that outperforms the baseline Sta-
ple by 5.9%, demonstrating the complementary advantages of
these two mechanisms in CSCT.

E. FAILURE CASES
We show some failure cases of the proposedmethod in Fig 10.
In the first column, the glaring foreground and background
regions contain few colors, limiting the discriminative abil-
ity of our color clustering model. Furthermore, in the sec-
ond video, our method fails to track the leaf as it suffers
from low resolution. When calculating the clustering centers,
the low resolution-based frame cannot contain enough color
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information to train an effective color histogram model.
Although the spatio-temporally regularized CF is learned,
in some low resolution sequences, only the CF model cannot
solve the severe appearance variation problem. Namely, our
CSCT loses the color complementary merit. In the third
sequence, the target person has drastic motion and under-
goes severe illumination variation, the failure of our method
is due to the lack of enough motion information (like the
optical flow), which will be taken into account in our future
work.

V. CONCLUSION
In this paper, we have proposed a novel complementary
tracking algorithm via dual color clustering and spatio-
temporal regularized correlation regressions. Specifically,
to overcome the noisy interference of the standard color
histogram for visual tracking, we cluster the color channels
from the ground-truth target in the first frame by the K-means
algorithm, yielding a data-adaptive non-uniform quantizer to
design a robust color histogram, resulting in a more robust
color-based model. Moreover, to alleviate the drift problem
from sudden appearance variations and make better use of
the frame-wise temporal information, we propose a novel
spatio-temporal regularization to learn robust CFs. Finally,
both the color clustering histogram based model and the
spatio-temporal regularized CF model are linearly combined
to yield a robust appearance model for our CSCT. Extensive
experimental results on three popular benchmarks demon-
strate that the proposed CSCT achieves favourable perfor-
mance against several state-of-the-art tracking algorithms.
In the future work, we will merge two or several simple
trackers to obtain a more powerful tracking algorithm, while
running even faster. Also, more motion information (eg. the
optical flow) is encouraged to our future improvements of the
proposed CSCT.
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