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ABSTRACT In view of the problem that the traditional tracker does not adapt to the large displacement
or abrupt motion well, the optimization method attracts more and more attention for a robust tracker.
Considering population based has high feasibility for avoiding local optimal, the method of swarm opti-
mization is introduced to visual tracking. These methods convert visual tracking to search the optimal
solution in global. To show their merits, this paper reviews and evaluates three relatively classical swarm
optimization-based tracking algorithms. These algorithms are ant lion optimization, cuckoo search, and
particle swarm optimization. Their running results are compared with those of the probabilistic optimization
algorithm, namely, simulated annealing. The experiments demonstrate the strength as well as the weakness
of these methods. For illustrating their operational efficiency, run time is recorded and the convergence
speed is analyzed. In addition, quantitative and qualitative analysis experiments are performed to interpret
the accuracy of the tracking methods. In addition, the relation between parameters and tracking results is

explained.

INDEX TERMS Experimental comparison, swarm optimization, abrupt motion, visual tracking.

I. INTRODUCTION
Visual tracking is a task that continuously locates the state of
a specific target from an image sequence. At present, visual
tracking plays a crucial role in many applications, especially
for aerospace, autonomous navigation, medical diagnosis,
surveillance, video compression, intelligent robot and human
computer interaction by using technologies of artificial intel-
ligence, pattern recognition, automatic control, and so on.
Over the past decades, although researchers have made
significant progress, there still existing many challenging
problems, such as motion uncertainty (inconsistent speed,
camera switching, low frame-rate videos). On this occasion,
trackers tend to deviate from the actual position even though
the appearance model is flawless. This is may due to the
inefficient samples extracted from the incorrect state space.
Some methods have been proposed to overcome above prob-
lems. It includes detection based tracking methods [1]-[4],
optimization based tracking method [5]-[8], motion model
based tracking methods [9]-12] and random sampling based
tracking methods [13]-[16], and so on.

In these methods, optimization based tracking methods
have attracted more and more attention because of their supe-
rior global search performance. Many optimization methods
have been applied to visual tracking for improving tracking
performance particularly in the scene of motion uncertainty.
Minami et al. [17] use Genetic Algorithm (GA) in a method
called 1-step-GA for representing the error of the target in
the images. Meanwhile, the target fish obtains a better iden-
tification and tracking result with the help of the PD-type
controller. Zhang ef al. [6] incorporate the temporal continu-
ity information into PSO, multilayer sampling method based
particle filter is formed. The tracker gets better performance
especially when the target undergoes an arbitrary motion or
obvious appearance changes. Chen et al. [18] propose Hybrid
Quantum Particle Swarm Optimization (HQPSO) method,
which overcomes the problem that the population diversity
get easily lost during the latter period of evolution in PSO.
Hao et al. [19] propose a particle filtering algorithm based
on Ant Colony Optimization (ACO) to boost the property
of particle filter with small sample set, which improves
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the tracking efficiency. Nguyen and Bhanu [20] present a
modified Bacterial Foraging Optimization (BFO) algorithm,
and designed a pedestrian tracking system based on the
BFO to handle the some challenges. Gao et al. [21] pro-
pose a tracker is based on Firefly Algorithm (FA), which
can robustly track an arbitrary target in various challenging
conditions. Ljouad et al. [22] propose an extension version
of CS algorithm combined with the well-known Kalman
Filter, and design a visual tracking system based on the
Hybrid Kalman-Cuckoo Search (HKCS) algorithm. The new
tracker achieves very good tracking performances. In addi-
tion, Gao et al. [23], [24] present bat algorithm and flower
pollination algorithm to solve tracking problems.

Although the above researches have made great progress,
it still remains some problems: more iterative times, time-
consuming and the optimal resolution relying on parameters
setting greatly. Based on this, it is very important to review
and evaluate the optimization based tracking methods in
recent years for designing a new method with the specific
tracking scenarios. However, as far as we know, there is
scarcely researcher to perform the work.

In this paper, we described the tracking performance of
ALO, CS and PSO. For showing their effectiveness, the track-
ing results are compared against those of SA. The experi-
ments about tracking accuracy and efficiency are carried out.
In order to account for the running speed of the algorithm,
we record the running time and the convergence speed. For
explaining the convergence speed, we performed the track-
ing on one frame using different number of iterations and
population sizes. To verify the accuracy of tracking methods,
we perform the quantitative and qualitative analysis. The
result of quantitative analysis refers to average overlap rate
and average error center rate. The result of qualitative analysis
involves description and visualization in images. The influ-
ence of parameters to the speed and accuracy of the tracking
algorithm is analyzed.

II. VISUAL TRACKING AND OPTIMIZATION

A. VISUAL TRACKING

Visual tracking problem is equivalent to the correspond-
ing matching problem of the target position, speed, shape,
texture, color and other related features [25]-[27] in the
continuous image frames. Visual tracking consists of tar-
get initialization, appearance model, motion estimation and
target location, as shown in Fig. 1.

1) THE INITIALIZATION OF TARGET STATE

The initialization of target is usually implemented by manual
calibration or target detection. Manual calibration is the target
that the user marks on the first frame using a rectangle or
ellipse. Target detection generally adopts target detection
algorithm to get initial target.

2) THE APPEARANCE MODEL
Appearance model generally consists of two compo-
nents: feature representation and statistical learning.
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FIGURE 1. Flow chart of object tracking.

Feature representation focuses on how to construct robust
object descriptors using different features. Statistical learning
concentrates on how to build effective mathematical models
for object identification using different machine learning
methods.

Feature representation plays a vital role in the tracking
process, which is the core challenge in object tracking.
An object can be represented by either global representation
or local representation. The global representation reflects the
global statistical characteristics of object appearance, such
as the covariance and histogram representation. In general,
global representations are prominent in the tracking process
of abrupt motion or fast motion. It’s simple and computa-
tionally efficient in that case. However, the global represen-
tations are susceptible to the changes of global appearance
because of the imposed global geometric constraints. Local
feature-based representations describe the object informa-
tion by detecting the interest points or saliency. The local
representations can acquire the local texture of the target.
Nevertheless, they are often puzzled by background clutter
and noise disturbance.

Those feature vectors are then employed either in
the generative method [28]-[30] or in the discriminative
method [31]-[33] to detect and locate the target in the image
sequences. In practice, powerful appearance models rely
not only on effective feature representation but also robust
statistical learning. Occlusions, cluttered backgrounds, illu-
mination changes and other challenges are still existence
in real world. Therefore, it is more beneficial to exploit
target-specific representations through a learning process
rather than using a fixed set of pre-defined features. Deep
learning [34], [35], particle filter [36], [37], boosting [38]
and support vector machine (SVM) [39] are learning methods
commonly.

3) MOTION ESTIMATION

Motion estimation is formulated as a dynamic state esti-
mation problem: x; = f (x;—1,v;—1) and z; = h(x;, wy),
where f is designed to evolution function, x; refers to cur-
rent state, v,_1 denotes the process noise, z; involves to
the current observation, % is the measurement function, and
w; is the measurement noise. The motion model is used to
determine the search space which affects the tracking results
in a large part. For example, when the target undergoes abrupt
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motion and may jump out of the prediction space, the tracker
will fail.

4) SEARCH MECHANISM

Tracking methods can be divided into two categories accord-
ing to their search mechanisms, they are deterministic and
stochastic. Deterministic methods [40]—[42] track target by
iteratively searching the candidate space and maximizing
the fitness function between candidate patches and the tar-
get in each frame. Probabilistic methods [43]-[45] regard
the tracking process as a state solving problem under the
Bayesian framework, modeling uncertainty and propagating
the conditional densities through the tracking process.

5) TARGET LOCATION

Finally, based on the apparent modeling and motion estima-
tion, some strategies are used to obtain the position of the
target.

B. RELATIONSHIP BETWEEN OPTIMIZATION

AND VISUAL TRACKING

Optimization is the process of searching best solution from
all available candidate solutions. Most of the optimization
problems with explicit targets can be presented as nonlinearly
constrained as following generic form

Target = optimize f (x) ,x € D N

where D is the search space, f represents fitness function
or objective function. Each feasible solution x consists of
optimization variables x = [x1, X2, ..., X,].

In the tracking, the result of deterministic methods can be
obtained by minimizing or maximizing an objective func-
tion f (x) based on distance, similarity or classification mea-
sure. For stochastic methods, some stochastic factors are
introduced into the searching process to create a higher prob-
ability of reaching the global optimal solution in the search
space D.

lll. ALGORITHM REVISIT

A. ANT LION OPTIMIZATION

The ALO algorithm imitates the hunting behavior of ant lions

in nature [46]. Ants are search agents which wander over the

search space and ant lions build pits to trap and consume the

ants. The fitter function is optimized to reflect the hunting

ability of ant lion. The mainly elements of ALO algorithm

can be explained as below:

e Random walks of ants: In nature, ants move randomly

when they are searching for food. The random move-
ment of ants can be modeled as follows:

X(t) = [0, cumsum2r(t1) — 1), cumsumQ2r(t) — 1),
., cumsum2r(ty) — 1] (2)

where cumsum calculates the cumulative sum, 7" is the

maximum number of iteration, ¢ shows the step of ran-

dom walk (iteration in this study), and r(¢) is a stochas-
tic function. In order to limit the updating position of
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ants inside the boundary, the values are normalized using
the following equation:

o (K a) x (@~ <)
' (bi —aj)

Where g; is the minimum of random walk of i — th vari-
able, b; is the maximum of random walk in i—th variable,
c§ is the minimum of { — th variable at ¢ — th iteration,
and dl.’ indicates the maximum of i — th variable at t — th
iteration.
Trapping in antlions’ traps: The effect of ant lions on the
random walk of ants are shown in the antlions’ trap.

¢ = Antlion} +c 4)
dit = Antlion} +d 5)

+ ¢l 3)

where ¢} and d! have been defined earlier, ¢’ is the

minimum of all variables at ¢ — th iteration, and d’
indicates the maximum of all variables at ¢ — th iteration,
and Antlion} shows the position of the selected j — th
antlion at ¢ — th literation

Building traps: In order to model the antlions’ hunt-
ing capability, a roulette wheel is employed. The ALO
algorithm is required to utilize a roulette wheel operator
for selecting antlions based on their fitness during opti-
mization. Antlions shoot sands outwards the center of
the pit once they realize that an ant is in the trap. The
mathematical model describes the way how the trapped
ant slides down towards antlion is given as follows:

C[=

(6

d' = (N
where I = IOW% is aratio. T is the maximum number of
iterations, and w is a constant and the value be computed
by ¢t > 0.1T7, w=2; t > 0.5T, w=3; t > 0.75T, w=4;
t > 097, w=5; t > 0.95T, w=6.

Catching preys and rebuilding the traps: Catching preys
occurred when ants become fitter than its corresponding
predator. Then, antlion will update its latest location of
the hunted ant to improve its opportunity of catching new
prey, which this mechanism can be modeled as below:

~x~

Antlionjt- = Ant] if f (Ant}) > f (Antlion}-) ®)

where Ant! indicates the position of i — rh ant at t — th
iteration.
Elitism and rebuilding pits: the best antlion in each
iteration is considered to be elite. It means that every ant
randomly walks around selected antlion by the roulette
wheel and the elite simultaneously as follows:
R, + R
Ant! = % ©
whereRﬁ4 is the random walk around the antlion selected
by the roulette wheel at t — h iteration, R% is the random
walk around the elite antlion ¢ — h iteration.
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B. CUCKOO SEARCH

The basic idea of cuckoo search algorithm is based on the
obligate brood parasitic behavior of cuckoo specie combina-
tion with the Lévy flight behavior of fruit flies. The cuckoos
aggressively reproduce and lay their eggs in the nests of
other host bird species. Some host birds throw away the alien
eggs or build new nests elsewhere upon discovering cuckoo’s
eggs. In addition, some works have testified that the flight
behaviors of fruit flies have the typical characteristics of
the Lévy flights. Considering these propagation and flight
behaviors, a CS algorithm proposed by Yang and Deb [47].
It can be described by using three idealized rules as following:

1) A bird chooses a nest randomly then lays one egg at a
time.

2) The highest quality of nest will be reserved to the next
generation.

3) The number of host bird nests is fixed. The probability
of discovering the cuckoo’s eggs by the host bird is set at a
constant value pa € [0, 1].

The mainly elements of CS algorithm can be explained as
below:

o Lévy flight: The mathematical representation of cuckoo

random walk is performed using Lévy flight, the Lévy
flight based walk is given in

X=X +a®LO) (10)

Where ¢ represents the current iteration, « > 0 shows
the step size. The product @ is the entrywise multipli-
cations. The Leévy flight random walks based on Lévy
distribution, as given in

Levy(\) =17*, (1 < A < 3) (11)

o The discovering probability Pa: Pa provides the percent-
age of nest rebuilding required. The Pa value is used
to deserted the worst nests and replace with new nests.
If rand < Pa, keep the original nest. Otherwise, host
birds build a completely new nest using Eq.(12)

nest = Xmin + (Xmax — Xmin) rand (12)

where X, and x4 are the lower and upper boundary
values. rand is random number.

C. PARTICLE SWARM OPTIMIZATION
PSO is inspired by the social behavior of bird flocking which
use of group collaboration and information sharing to find the
optimal location of food [48]. In PSO algorithm, each of bird
represents a particle.Each particle is updated by the individual
optimal pbest and the global optimal gbest. In every iteration,
individual optimal pbest is the best solution that individual
has achieved so far, and the global optimal gbest is the best
solution obtained so far by all particles.

The mainly elements of PSO algorithm can be explained
as below:

o Updated speed: In D dimensional space, suppose the

population size is N, and the flight speed of each particle

75386

can be expressed as v; = (Vi, Vi2, «.., vid)T, the position
of the particle is expressed as x; = (xi1, Xi2, ..., xid)T,
the i-th particle can update speed and position according
to formula (13):

1+1 t ' t
vi; =wevy,+crerie (pbestid — xid)

+crere (gbestg,d — xild> (13)

Where i = 1,2,....N;d = 1,2,...,D. w is called
the inertia weight which range is [0.4, 0.9], and the
positive constants c¢; and ¢y are, respectively, cogni-
tive and social parameters. r; and r, are the random
between [0,1]. v, indicates the flying speed of i-th
particle at ¢ — th iteration. vﬁ(}'l indicates the flying speed
of i-th particle at (¢+1) — th iteration. xfd indicates the

position of i-th particle at ¢ — th iteration.
o Updated position: The position of the particle is updated
as follows:
t+1 _ ot 141
Xig = Xia T Vig (14)
Where xl-’jl indicates the position of i-th particle at
(t + 1) — th iteration.

D. SIMULATED ANNEALING
The simulated annealing algorithm is an annealing pro-
cess [49] that simulates solid matter which requires an initial
temperature Ty, final temperature 7,, and cooling rate «.
At each temperature, some disturbances are performed to
generate new sampling points and the energy of new sam-
pling points will be measured. Then, the energy of the new
sampling point is compared with the current energy. If the
energy value f (x’ ) of the new sampling point is higher than
the energy value f (x) of the current sampling point then it
will be accepted as current sampling point. If the energy value
f (x/ ) of the new sampling point is inferior to the energy
value f (x) of the current sampling point then it may still be
accepted based on the acceptance probability Pr.

The mainly elements of SA algorithm can be explained as
below:

o The acceptance probability: the acceptance probability

Pr is,

0 -7x) (x/)} (15)

pr = exp |: T

Where T (x) is the temperature at sampling point x.
If rand < pr, the new sampling point will be accepted.

o Cooling rate: The SA algorithm requires a static or adap-
tive cooling schedule. A common geometric cooling
schedule is used,

T (x') =aT (x) (16)

Where, T (x’ ) is the new temperature.
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FIGURE 2. Flow chart of optimization based tracker.

IV. VISUAL TRACKING BASED ON

OPTIMIZATION ALGORITHM

In the tracking framework, we adopt the way of manual
calibration to initialize the target state. Histogram of Oriented
Gradient (HOG) feature is extracted for feature description,
and the correlation coefficient is used to measure the similar-
ity. The ALO algorithm, CS algorithm, PSO algorithm and
SA algorithm are used as the search strategy respectively.
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The SA algorithin

The tracking flowchart is shown in Fig. 2. In the tracking,
the four algorithms can be described as follows:

o Suppose a ground-truth in the image (state space), which
corresponding to the target (best elite antlion) and a
set of target candidate images (antlions and ants) are
randomly generated. In a sense, the ants are actual
search agents that explore and move in the searching
space, whereas antlions can save the best position of ants
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that are obtained so far. Meanwhile, the antlions guide
the next searching of ants. This interaction mechanism
allows ants to update their location to find better solu-
tions and elite antlion to maintain their current best posi-
tion. The ALO-based tracker (ALOT) can be described
as a global optimization process for finding the best elite
antlion in all antlions and ants.

o As with ALO-based tracking process, a hypothesis that
ground-truth exists in the image corresponding to the
target is proposed. The target refers to best nest. And
a set of target candidates nests are randomly generated.
The purpose of the CS-based tracker (CST) is to search
the best nest in the all candidate nests by using the CS
algorithm. Based on the purport, a CS-based tracking
architecture is designed.

« A same hypothesis is proposed in the PSO-based track-
ing process. The target corresponds to the food. And
a number of birds are randomly generated as the can-
didates to search the food. The aim of the PSO-based
tracker is to find food using the PSO algorithm. The
framework of PSO-based tracker (PSOT) is designed for
robust and efficient visual tracking.

o In the SA-based tracking process, the target corre-
sponding to the point of minimum energy will be
located. A sampling point is randomly generated as
candidate at initial temperature. The algorithm performs
several perturbations in the sampling point to gener-
ate new sampling point and the temperature gradually
decreases simultaneously. Iterate through the execution
until the internal energy is minimized. The SA-based
tracker (SAT) is also shown in fig2.

V. TESTING AND EVALUATION

To evaluate different trackers’ performance, we test four opti-
mal algorithms on 8 challenging image sequences. For BOY,
COUPON, DEER, HUMAN7 and SHAKING sequences,
they are available on the website http://visualtracking.net.
7ZXJ, FACE2 and FHC are our own. They have 118, 310
and 123 frames, respectively, and their sizes are 568%320,
640%480, 1920*1080. These sequences main challenge large
displacement motion or abrupt motion. Trackers are imple-
mented in MATLAB R2014a. The experiments are conducted
on a PC with Intel Core i7 2.50GHz and 16GB RAM.

The initial parameters for the optimization algorithms were
set as follows:

1) ALOT: The number of ants and antlions n is set at
250 respectively. The number of iteration T is set at 100.
t > 05T, W=1;t > 07T, W=2;t > 09T, W=2.7
(¢ is the current number of iteration).

2) CST: The number of host nests n is set at 250. The
number of iteration is set at 100. The discovery probability
pa is set at 0.5. The step size « is set at 0.5.

3) PSOT: The number of particles n is set at 250. The
number of iteration is set at 100. Individual factor cl =
2.5, social factor ¢2 = 0.5, the inertia weight w is set
at 0.9-0.4;
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4) SAT: Initial temperature Ty is set at 10, final tempera-
ture T}, is set at 0.1'%. Cooling rate « is set at 0.9.

To compare the optimization algorithms fairly, each algo-
rithm is set to the same population size and the number of
iterations (for ALOT, CST, PSOT). These parameters ensure
that all methods perform 25,000 evaluations respectively,
which is enough to compare the performances of the opti-
mization algorithm for the tracking data set. The focus of
this study is to compare algorithms’ mechanisms rather than
tracking performance, so other parameters will not be adopted
any more. In this study, each tracker is run only one time
randomly.

A. ANALYSIS OF EFFICIENCY
1) THE AVERAGE EXECUTION TIME

Fig3 gives the statistics values of the average execution time
in seconds (s) of each optimization algorithm.

140
120

100
80

Average execution time / s

60 mALOT
40 mCST
20 | PSOT

ESAT

0 -
Q)
& < NN
S

The sequences

FIGURE 3. Average execution times.

As shown in Fig. 3, it can be observed that CST takes the
longest time. The reason may result from the update mecha-
nism of discovery probability. Some bird nests are replaced by
new randomly generated nests according to the value of Pa.
This operation actually increases the number of evaluations.
If the value of Pa is set greater than 0.5, the smaller possibility
of cuckoo’s eggs are discovered by the host bird. On this case,
the less number of the bird nests are be updated randomly so
as that the running time would be reduced. However, this may
result in the local minimum problem in tracking. PSOT takes
more time than ALOT and SAT since a higher computational
complexity. The average execution time of ALOT and SAT
are comparable.

2) CONVERGENCE SPEED
Fig. 4 shows the relation between the convergence accuracy
and the parameters setup, including the iteration numbers
and the population sizes. Here, for SAT the number of iter-
ations is set firstly, then the temperature cooling rate « is
adjusted to the same execution times as other algorithms (¢ =
0.3, 0.52,0.65,0.73, 0.78). In Fig. 4, the X axis represents
the number of iteration, the Y axis represents the population
size, and the Z axis represents the similarity value.

In this paper, as shown in Fig. 4, it can be seen that ALOT
shows the fastest convergence speed in tracking. Although the
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FIGURE 4. Similar values against population size N and number of iterations K . (a) The ALOT. (b) The CST. (c) The PSOT.

(d) The SAT.

worst fitness emerges when the population size N is set to
20 and the number of iterations K is set to 40, it can converge
to the global optimal for all cases when the population size N
is set to 30. The ALOT has an excellent performance that
profits from several reasons: 1) The adaptive shrinkage mech-
anism of random walk space promotes local exploitation with
the increasing number of iterations. High exploitation assists
the ALO algorithm to rapidly converge towards the target.
2) The best antlion is saved and considered as the elite in
each iteration, and the elite guides all ants toward promising
regions of the search space.

The CST is far behind the ALOT. Although it has already
converged to the optimal occasionally when the population
size N is set to 30 and the number of iteration K is set to 60,
the CST achieves the tracking successfully for all cases only
when the population size is up to 50. One of the main reasons
is that the mechanism of update nest is based on discovery
probability. Some bird nests are generated randomly, which
may deviate from the best nest. The mechanism facilitates
exploration in space, but it also results in slow convergence
speed.

The PSOT has strong local search capability. In most
cases, PSOT can converge to the optimal solution. But its
well-known stability problem limits the success rate. As can
be seen from Fig. 4 (¢), although the tracker firstly converges
to the optimal solution when N = 30 and K = 20, it can only
succeed for a few times.
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The SAT has the worst convergence, and it fails completely.
When N = 60 and K = 50, the tracker achieves the best
result that the similarity value is 0.9616. But it is still a failure.
Lacking of local exploitation and optimal solution guide was
blamed for all of these.

For ALOT, the greater value of W can lead to the smaller
range of ants’ random walk, which can achieve the faster
convergence speed. For CST, the greater value of Pa, the less
quantity of bird nest updated stochastically, the faster con-
vergence speed. For PSOT, the greater learning factor values
of cl and c2, the particle speeds up to the optimal value,
the faster convergence speed. However, for all algorithms,
a faster convergence speed is accompanied with the danger
of trapping to local optimal.

B. ANALYSIS OF THE ACCURACY

1) QUANTITATIVE ANALYSIS

Table.1 and Table.2 list a per-sequence comparison of ALOT,
CST, PSOT and SAT, while Table.1 refers to average overlap
rate and Table.2 is concerned with average error center rate.
For average overlap rate, the larger the value, the higher the
accuracy; for the central error rate, the smaller the value,
the higher the accuracy. Table.1 and Table.2 show some infor-
mation: 1) In those sequences that all trackers are successful,
the ALOT has a better performance than others. 2) When
viewed from all the sequences, the CST is superior.
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TABLE 1. Average overlap rate. TABLE 2. Average error center rate.
Sequences ALOT |CST PSOT | SAT Sequences ALOT |CST PSOT | SAT
BOY 0.27 0.69 0.01 0.2 BOY 123 6 207 140
COUPON 0.77 0.77 0.74 0.48 COUPON 9 9 11 27
DEER 0.74 0.72 0.69 0.70 DEER 7 8 8 9
FACE2 0.28 0.71 0.66 0.62 FACE2 213 10 12 15
FHC 0.84 0.83 0.80 0.61 FHC 15 16 20 46
HUMAN7 0.47 0.46 0.47 0.16 HUMAN?7 6 7 8 48
SHAKING 0.44 0.44 0.25 0.29 SHAKING 24 24 39 36
ZX]J 0.85 0.85 0.82 0.67 7ZX] 4 4 5 10

ALOT has the better performance in accuracy. The strength
of ALOT lies in its capability: 1) Exploration of the search
space is guaranteed by the random selection of antlions and
random walk of ants around them. The operation avoids that
tracker traps to local optimal. 2) Exploitation of search space
is guaranteed by the adaptive shrinking space of ants. This
strategy ensures that the tracking converges to the target.
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SAT delivers the worst tracking performance. This is due
to a completely random search mechanism. In the SAT, if the
new sampling point has greater energy then it will be accepted
as the current sampling point. If the new sampling point has
less energy than the current sampling point, then it may still
be accepted based on the acceptance probability. This tech-
nique encourages exploration while it restricts the capability
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FIGURE 7. The diagram of tracking results .

of exploitation. Therefore, candidates can be escaped from

local optimal, but the global optimal also may be missed.
Similar to ALOT, CST is also equipped with effi-

cient local exploitation and global exploration capabilities.
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The advantage of the Lévy flight in comparison to other
random walks patterns, such as Gaussian distributed walk,
is that it is a scale-free pattern. This operation enhances the
ability to diversify. The optimal nest will found, then be used
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to guide the search in the next iteration. The probability of
discovering intrusion facilitates exploration, but a randomly
generated nest may result in a poor similar value, then the
global optimal may be lost.

In contrast to SAT, PSOT has a weaker global exploration.
Particles are updated based on the individual optimal and the
global optimal which may reduce the diversity of particles.
The reducing results in the precocity of PSO algorithm that
makes the algorithm get into local optimal.

In tracking process, the parameter of step size is very
important to the tracking accuracy. It is difficult to decide
how much step size for the algorithm. Too small or too large
step size can greatly affect the performance of the tracking
algorithm in practice. Too small step size may lead to failing
to jump out of local optimal. If the step size is too large,
itis possible to lose the global optimal. For example, the flight
speed v in the PSOT and the step size « in the CST play
significant roles in tracking accuracy.

Fig. 5 shows the average success plot. The Y axis shows
ratio of frames, where, amount of overlap is above threshold,
to total frames. More the area under the curve then the tracker
is better. Fig. 6 shows the precision plot of the average
precision values of all sequences. Here, the Y axis also shows
the ratio of frames, where, distance of predicted and ground
truth bounding box is below the threshold, to total frames.
In precision plots if the slope is higher, then the tracker is
better, this is because more sequences have distance of centers
lower than the threshold.

2) QUALITATIVE ANALYSIS

In the BOY sequence (row#l1), shaking camera causes the
abrupt movement of the camera, which poses great challenges
to the tracker due to the motion uncertainty and the dras-
tic appearance change. In the COUPON sequence (row#2),
there is a similar target and the target appears deformed.
In the DEER sequence (row#3), the target undergoes fast
motion and some frames are blurred. Meanwhile, there are
similar targets. In the FACE2 sequence (row#4), the tar-
get has the motion displacement of 88 pixels and slight
illumination changing. In the FHC sequence (row#5),
the motion displacement reaches 188 pixels. In the HUMAN7
sequence (row#0), the target refers to fast motion and dras-
tic camera shaking. In addition, the brightness of the light
changes a lot when target goes through the shade. In the
SHAKING sequence (row#7), the target involves appear-
ance changes and dramatic illumination variation. In the
ZX]J sequence (row#8), the target concerns blur and the
large displacement. The target has the motion displacement
of 70 pixels.

It can be obtained from the Fig. 7 that CST has the
best performance. Benefiting from the more number of
evaluations, CST can track the target throughout every
sequence successfully. The ALOT fails in BOY sequence
and FACE2 sequence. This is possibly due to the fact that
the ALOT is only half times of iterations used to global
search. It is essentially making a dent in the ability of explore.
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Therefore, for ALOT, it is necessary to increase the number
of evaluations in some cases (We have verified that the ALOT
can realize the tracking of BOY and FACE2 sequence when
the number of evaluations reaches 37500. Although a little bit
of running time is added, there is a better tracking accuracy).

C. DISCUSSION

Something can be got from the experiments. On the one hand,
tracking algorithms make the best of the current optimal can-
didate to update the position of candidates, which will speed
up the convergence speed and improve the tracking accuracy.
For example, in ALO algorithm, elite antlion and the antlion
randomly selected by roulette jointly affect the ant walk path;
in the CS algorithm, the optimal nest of the current iteration
is used to perform Lévy flight; in PSO algorithm, the position
update of every particle is affected by the individual optimal
and the current global optimal; for SA algorithm, however,
the new sampling point is simply accepted or not. This mech-
anism lacks sufficient development of the sampling point.
So the SA algorithm has lower convergence than others.

On the other hand, it is crucial to balance the ability of
global exploration and local exploitation. ALO algorithm
proposes random walk mechanism and randomly selecting
antlion to promote exploration; then, with the increase of
the number of iterations, both adaptive shrinkage of ant
space boundary and elite development emphatically, make
the iteration result close to global optimal gradually. In CS
algorithm, some of the new nest can be generated by Lévy
walk around the optimal nest obtained so far, which will speed
up the local search. While a large part of the new nest is
generated by randomization, it should be far enough away
from the current optimal nest to ensure that the algorithm
does not fall into the local optimal solution. In PSO algorithm,
particle cognitive emphasizes that the particle is capable of
developing in local area. And particle social emphasizes that
the capabilities of global search. However, because the global
exploration of the particle is guided by the current global
optimal, its global exploration ability is weak, and it is easy
to get into local optimal. SA algorithm has a very powerful
global exploration capability. But there is no mechanism to
focus on local development. Although the algorithm can jump
out the local optimal, the target may be lost.

VI. CONCLUSION

This paper addresses the problem of abrupt motion tracking
based on swarm optimization. These trackers improve the
accuracy of traditional motion evaluation with the help of
the global searching mechanism. In these methods, visual
tracking is expressed as an optimization process in which
swarm optimization is introduced. And locating the target can
be interpreted as searching maximum or minimum similarity
in the candidate solutions.

In the paper, three classical swarm optimization algorithms
are investigated to determine the type optimization problem,
namely, ALO, CS and PSO. The tracking results of trackers
are compared with the results of SAT.
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The comparison experiments of trackers are carried out.
Their efficiency is analyzed by the properties of running
time and convergence speed, while their accuracy is evalu-
ated by quantitative analysis and qualitative analysis respec-
tively. Meanwhile, the relation between parameter setup and
tracking result is explained.

From the experiments, it can arrive that the ALOT algo-
rithm has better performance in average running time, conver-
gence speed. And CST has better performance in quantitative
analysis and qualitative analysis. On the whole, these tracking
methods are time-consuming,but there is an obvious advan-
tage that is these methods can predict the state of uncertain
motion.

Possible future work is to design a unify framework for
long-term object tracking combined the merits of traditional
trackers and swarm optimization theory.
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