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ABSTRACT Modern society is highly dependent on its critical infrastructures. These infrastructures usually
suffer intentional attacks, which is a serious threat to social wellbeing, making the protection of them to be
a great challenge for the security agencies. Many game models have been proposed to tackle this problem.
However, little of them consider the interrelationship of different targets within the infrastructures. In this
paper, the protection of critical infrastructures against a malicious attacker is modeled as a simultaneous
game, where the payoffs of the players are evaluated on the basis of the topology structure of the infrastructure
system. An efficient algorithm is adopted to obtain the Nash equilibrium solution. The experimental results
reveal that in the equilibriums, the defender distributes higher probabilities on protecting the targets who are
more important, for example, those with large degrees or betweenness, while the attacker prefers attacking
targets with medium degrees or betweenness. The effectiveness of the game-theoretic solution is validated,
and the experimental results in a real-world network provide us a clear insight on which targets to protect.

INDEX TERMS Critical infrastructures, complex network, game theory, Nash equilibrium.

I. INTRODUCTION
Critical infrastructures, such as transportation, communica-
tion and energy transmission, play a vital role in the eco-
nomic development and social wellbeing of modern societies
[1], [2]. In times of war, these infrastructures are important
military targets, whose destruction or degradation could have
a destructive impact. Moreover, terrorism activities against
critical infrastructures have inflicted substantial economic
losses and threatened the public health and safety in many
countries, for example, in Colombia, India, Pakistan, Turkey,
Algeria, and Spain. Therefore, the protection of these infras-
tructures has received enormous attentions by security agen-
cies and will continue to be paramount in modern society [3].

The attackers are always intentional and intelligent in
real-world scenarios, which means that they have the abil-
ity to collect the information of the infrastructures and
destruct or degrade them in a maximally harmful manner.
Game theory offers an appropriate framework to model
the confrontations between these intelligent attackers and
the defenders who want to maintain the performance of the

critical infrastructures as much as possible, and many game
models have been proposed [4]–[8]. The applications aiming
at the protection of infrastructures based on game-theoretic
algorithms have been deployed in airports [9], ports [10],
transportations [11] andmany other infrastructures [12], [13].
In most previous studies, the components within the infras-
tructures are treated as independent ones and there is an exact
valuation associated with each of them, given by security
specialists in advance [13]–[17]. For instance, Guan et al. [17]
proposed an attacker-defender game with budget constraints,
where the valuations of the targets are their monetary val-
ues. However, this is not appropriate to depict the infras-
tructures in real-world scenarios. The Cyber Era has caused
the emergence of networks and systems of networks with
exponentially increasing complexity, which leads to that the
functionalities of networked infrastructures rely heavily on
their connectivity and topology structures. The failure of
some components may cause devastating effect on the per-
formance of the system. For example, the cascading failure
caused by merely two power lines led to the blackouts in
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11 states in the U.S. in 1996 [18]. Therefore, it is necessary
to evaluate the payoffs of the players in the whole network,
rather than to sum the valuations of individual targets up.
In our previous study [19], we proposed a simultaneous-move
attacker-defender game, which defined the payoffs and the
strategies on the basis of the topology structure of the target
network. In this game model, we only considered two typical
attack and defense strategies, whichwere the targeted strategy
and the random strategy. Nevertheless, the attack and defense
approaches in real world are not always selected in such
manners.

In this paper, we will take a network science perspective
to solve the problem of which targets to protect in critical
infrastructures. We model the critical infrastructures as com-
plex networks which depict the fundamental relationships of
different targets. To provide a solution on which targets the
defender should protect facing the threaten of an intentional
attacker, we propose a two-player simultaneous-move game.
The valuations of each target are not specified in this game
model, but the payoffs of the players are evaluated from the
whole network, which is different from the previous studies.
Further, we consider all the possible attack and defense strate-
gies and introduce two efficient algorithms to get the payoff
matrix and to solve the game model.

II. THE GAME MODEL
An infrastructure system can be easily abstracted as a target
network, which is formalized in terms of a simple undirected
graph G(V , E). Suppose that V is the set of nodes and E ⊆
V × V is the set of edges. Let N = |V | be the number of
nodes in the network. The adjacency matrix of G is denoted
by A(G) = (aij)N×N , where aij = aji = 1 if nodes vi and vj
are adjacent, and aij = aji = 0 otherwise.
In this paper, we assume that there is only one attacker

who can attack some nodes in the target network to degrade
the system’s performance, and one defender that aims at
maintaining the functionality of the network by protecting a
subset of nodes. In other words, the attack and the defense
approaches are both against nodes and the attached edges will
be removed if one node is removed. It is also assumed that
both players can obtain the complete information of the target
network and full knowledge about the opponent, namely,
the total amount of attack and defense resources. Therefore,
they are perfectly informed of all the possible strategies that
the opponent may adopt and the payoffs of each other under
each strategy profile. Nevertheless, we also assume that the
players do not know exactly which nodes the opponent will
attack or defend when making their own decisions. Thus, this
game is a simultaneous one. One should note that the two
players do not have to move at exactly the same time, and it
is just required that no players know their adversary’s moves
before making decisions. Moreover, we assume that the game
is played in a single round and it does not repeat for multiple
rounds.

Suppose nA and nD be the amount of attack and defense
resources, respectively, which represent the amount of nodes

that the players can attack or defend. Denote by V A
⊆ V the

set of nodes that are attacked, where
∣∣V A

∣∣ = nA. We define an
attack strategy as X = [x1, x2, . . . xN ] ∈ SA, where SA is the
strategy set of the attacker and xi = 1 if vi ∈ V A, otherwise
xi = 0. Similarly, the defended nodes set VD and defense
strategy Y = [y1, y2, . . . yN ] ∈ SD are defined in the same
way as the attacker. We assume that a node vi is removed only
if it is attacked but not protected, that is, if xi = 1 and yi = 0.
Conversely, the node will never be removed if it is defended
(yi = 1). We denote the set of nodes that are removed by
V̂ ⊆ V and denote the network after the removing process by
Ĝ = (V − V̂ , Ê). It is easy to identify that

V̂ = V A
− V A

∩ VD. (1)

Suppose UA
: |SA| × |SD| be the payoff function of the

attacker and UA(X,Y ) be the payoff obtained by the attacker
when the attacker chooses the strategy X and the defender
takes Y . The attacker’s payoff UA(X,Y ) is defined as

UA(X,Y ) =
0(G)− 0(Ĝ)

0(G)
∈ [0, 1], (2)

and the defender’s payoff UD(X,Y ) is

UD(X,Y ) =
0(Ĝ)− 0(G)

0(G)
∈ [−1, 0], (3)

where 0 is the measure function of network performance.
If G1 = (V1,E1) is a subgraph of G2 = (V2,E2),
i.e., V1 ⊆ V2 and E1 ⊆ E2, then it is assumed that
0(G1) ≤ 0(G2). This monotonicity assumption ensures that
the network performance declines during the process of nodes
removals. The common measure functions can be the size of
the largest connected component, the efficiency [20] and so
on. Noting that UA(X,Y ) + UD(X,Y ) = 0, this game is a
two-player zero-sum game. The attacker’s aim is to destroy
the target network in a maximally harmful way by attacking
nA nodes, which is described by

max
X∈SA

UA(X,Y )

s.t.
N∑
i=1

xi = nA

xi = 0, 1. (4)

And the defender’s model is

min
Y∈SD

UA(X,Y )

s.t.
N∑
i=1

yi = nD

yi = 0, 1. (5)

III. ALGORITHM
For the simultaneous game we have proposed, it is worth
mentioning that there does not exist any pure strategy Nash
equilibrium. Suppose that a strategy X∗ is an attack strategy
in a Nash equilibrium, the attacker can obtain a higher payoff
when he/she deviates to a strategy X ′ where more attacked
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nodes are not defended, which is a contradiction. Whenever
the attacker tries to attack a set of nodes, the defender would
protect as many nodes within the attack set V A as he/she
can. Therefore, they can never reach to a pure strategy Nash
equilibrium. The proof of this result can be seen in Appendix.

Therefore, our main purpose is to compute and analyze
the mixed strategies in Nash equilibriums. To solve the game
model, we need to calculate the payoffs of the players in
each strategy profile and construct the payoff matrix first.
However, the sizes of the attack and defense strategy sets are
incredibly large even in a small network. For example, when
N = 100 and nA = 5, there are more than 7 × 107 different
pure attack strategies, making the payoff matrix be incredibly
large. It is very time-consuming to calculate the payoffs in
each strategy profile one by one. However, for a given attack
strategy X , the payoffs of the players are only determined
by which targets are removed eventually. Thus, the removed
nodes set V̂ is the subset of attacked nodes set V A, and
there are only 2

∣∣VA∣∣ outcomes of different payoffs. Therefore,
we use an efficient algorithm to construct the payoff matrix
as described in Algorithm 1. Because the game is a zero-sum
one, we only compute the payoffs of the attacker.

Algorithm 1 An Efficient Algorithm to Construct the Payoff
Matrix
Input: nA, nD
Output: payoff matrix of the attacker UA

|SA|×|SD|
;

1: Enumerate all the attack strategies X ∈ SA and the
defense strategies Y ∈ SD;

2: for i = 1 : |SA| do
3: Enumerate all the subsets V̂k ∈ V A under the

attack strategy X i, which represent the nodes that will be
removed (the empty set ∅ means that there are no nodes
removed), and calculate the corresponding payoffs of the
attacker UA(V̂k ) as eq. (2);

4: for j = 1 : |SD| do
5: V̂ij← find(X i − Y j == 1);
6: UA

ij ← UA(V̂k |V̂k = V̂ij);
7: end for
8: end for

As we have pointed out, this game is a two-player
zero-sum game. However, solving a game, even in the case
of two players, has been known to be intractable [21].
For this game with extremely large strategies sets, typical
algorithms such as the linear programming proposed by
Tardos and Vazirani [22], the Lemke-Howson method [23]
and Porter-Nudelman-Shoham (PNS) algorithm [24],
are too time-consuming to be efficiently implemented.
In this paper, we adopt the algorithm proposed by
Godinho and Dias [25], [26] to obtain the Nash equilibri-
ums, which is also adopted by Zhang et al. [7]. This algorithm
cannot identify all the Nash equilibrium solutions that exist,
but it is guaranteed to find one. The algorithm is described as:

Step 1. Let t = 1, start from an pure attack strategy X t

which attacks the nodes with the largest degrees, satisfying

the resource constraint. Then, identify the defender’s best
response to X t , which is a pure strategy Y t .

Step 2. Let t = t + 1, identify the attacker’s pure strat-
egy best response X t to Y t−1, and then also calculate the
defender’s pure strategy best response Y t to X t .
Step 3. If Y t = Y t−1, (X t , Y t ) is a pure strategy Nash

equilibrium, stop. Otherwise, if Y t = Y t−l , for any l = t − e
where e is an positive integer and 1 < e < t , let SA = {Xk

|l <
k ≤ t} and let SD = {Y k |l < k ≤ t}. Otherwise, go to Step 2.

Step 4. Compute the Nash equilibrium (σA, σD)
(σA = [p1, p2, . . . , pi, . . . , p∣∣SA∣∣] and σD = [q1, q2, . . . ,
qj, . . . , q∣∣SD∣∣] are vectors that represent the probability dis-
tributions of the two players over each pure strategy) of the
restricted game whose attack strategy set is SA and defense
strategy set is SD. For this restricted game, a linear program-
ming shown in eq.(6) and eq.(7) is adopted in this paper.

Step 5. Calculate a pure strategy best response of the
attacker, X∗ ∈ SA, to the mixed defense strategy σD, and
calculate the best response Y∗ ∈ SD to σA for the defender as
well.

Step 6. If UA(σA, σD) = UA(X∗, σD) and UA(σA, σD) =
UA(σA,Y∗), then (σA, σD) is a mixed Nash equilibrium
for the initial game, stop. Otherwise, if UA(X∗, σD) >

UA(σA, σD), SA ← SA ∪ X∗. And if UA(σA,Y∗) >

UA(σA, σD), SD← SD ∪ Y∗. Go to Step 5.
The linear programming to solve the reduced zero-sum

game in the algorithm above is

min z

s.t.
∑
j∈SD

uij · qj ≤ z ∀i ∈ SA

∑
j∈SD

qj = 1

qj ≥ 0 ∀j ∈ SD, (6)

and

max z

s.t.
∑
i∈SA

uij · pi ≥ z ∀j ∈ SD

∑
i∈SA

pi = 1

pi ≥ 0 ∀i ∈ SA, (7)

where eq.(6) is the defender’s optimization model and eq.(7)
is the attacker’s. In these equations, z is the expected payoff
of the attacker and uij is the payoff of the attacker under the
strategy profile (X i, Y j).
In the first step of the algorithm above, the algorithm

starts form an attack strategy which attacks the nodes with
the largest degrees, which is different from the algorithm
described by Godinho and Dias [25], [26]. This improvement
can reduce the steps before reaching a pure strategy equilib-
rium or a cycle, because the selected attack strategy can inflict
serious damage on the network and the defender are only
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TABLE 1. Probability distributions over pure strategies in the mixed strategy Nash equilibrium. In this experimentation, we set nA = nD = 4.
The strategies shown in this table are in the support set of the mixed strategy Nash equilibrium, which have positive probabilities.

motivated to protect the nodes that may be attacked. When
identifying the best pure strategy best response of one player,
for example, the attacker, to the opponent’s, if there are mul-
tiple pure attack strategies with the same payoff which is the
largest, we find the defender’s second best responses to these
pure attack strategies. We then compare the attacker’s pay-
offs under the strategy profiles composed of the pure attack
strategies and the pure defense strategies which are second
best responses. We choose one pure attack strategy with the
highest payoff as the attacker’s pure strategy best response.
If the payoffs of the second best response strategies are also
equal, we choose one of them randomly.

Because the number of pure strategies for the initial game
is finite, this algorithm is sure to converge to an equilibrium
and the worst case happens when all pure strategies are added
into the restricted game. However, in the experiments we have
implemented, the size of the pure strategies in the support set
of Nash equilibriums is extremely small compared with the
size of all pure strategies. Thus, this method is very efficient
for our game.

IV. EXPERIMENTAL RESULTS
A. NASH EQUILIBRIUM OF THE GAME MODEL
We first implement an experimentation in a target network,
whose topology structure is shown in Fig. 1, to validate our
proposed model and algorithm. We use the size of the largest
connected component as the measure function 0 in eq.(2).
The algorithms proposed in the previous section are coded
in Matlab and the linear programming is solved by calling
CPLEX.

FIGURE 1. Topology structure of the target network with 20 nodes and
35 edges.

We show the mixed strategy Nash equilibrium of the
proposed game in Table 1 when both the attacker and the
defender can attack or protect 4 nodes. In the attacker’s
support set of the Nash equilibrium, there are 6 pure strate-
gies in total, and the probabilities distributed on the strate-
gies {3, 5, 10, 13} and {4, 6, 7, 12} are highest. Likewise,
the defender’s support set has 9 pure strategies and the
defender allocates the highest probability on the strategy
{1, 3, 7, 13}.

From the Nash equilibrium, we find that the attacker’s sup-
port set is significantly different from that of the defender’s.
To showwhich nodes are more preferable for the two players,
we map the probabilities over pure strategies to those over
each node in the following manner

ρA =
1
nA

|SA|∑
i=1

pi · X i =
1
nA

σA · X |SA|×N , (8)

ρD =
1
nD

|SD|∑
j=1

qj · Y j =
1
nD

σD · Y |SD|×N , (9)

where ρA = [̃p1, p̃2, . . . , p̃i, . . . , p̃N ] and ρD = [̃q1,
q̃2, . . . , q̃j, . . . , q̃N ] are the probability distributions over
individual nodes of the two players, and σA = [p1, p2, . . . ,
pi, . . . , p|SA|] and σD = [q1, q2, . . . , qi, . . . , q|SD|] are
the probability distributions over all the attack and defense
strategies. The probability distributions over nodes mapped
from the Nash equilibrium in Table 1 are shown in Table 2.
The nodes attacked with the largest probabilities are
v4, v5, v6, v12, v13, whose degrees and betweenness are nei-
ther the largest nor the smallest. However, the defender allo-
cates the largest probability on protecting the node v1 which
has the largest degree and betweenness, and the nodes with
larger degree and betweenness are protected in larger proba-
bilities generally. Besides, the nodes whose betweenness are
0 are not appeared in neither the attacker’s support set nor the
defender’s support set. We also visualize this result in Fig. 2,
which shows the mapped probabilities over each node in the
mixed strategy Nash equilibrium.

B. EFFECTIVENESS OF THE EQUILIBRIUM STRATEGY
To verify the effectiveness of the mixed strategy in Nash
equilibrium, we compare the results when both players take
the Nash equilibrium strategy (NS) and some other typical
strategies. The NS means the players choose a pure strategy
from the support sets of their mixed strategy Nash equi-
librium with a probability proportional to the probability
distributions. The typical strategies considered in this paper
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TABLE 2. Probability distributions over all the individual nodes. The probabilities are mapped from the mixed strategy Nash equilibrium shown in Table 1.

FIGURE 2. Visualization of the probabilities over each node of the
attacker (a) and the defender (b). The nodes with larger size and deeper
color are attacked or protected with higher probabilities in the Nash
equilibrium.

are the hub nodes strategy (HS), which means the players
choose the nodes with the largest degrees to attack or defend,
the leaf nodes strategy (LS), which represents that the players
attack or protect the leaf nodes whose degrees are smallest,
and the random strategy (RS), where the players choose their
targets randomly. The results are shown in Table 3, where the
row is the attacker’s strategies and the column represents the
defender’s strategies. In each realization of the game, the NS
and the RS may be different and therefore induce different
payoffs. Thus, the payoffs shown in Table 3 are averaged
over 5000 independent realizations. The results show that
apart from the LS, nomatter which strategy the attacker takes,
the defender can obtain almost the highest payoff with the NS
(the defender’s payoff is the opposite of the attacker’s). This
means the mixed strategy in the Nash equilibrium is efficient
for the defender even when the attacker is not strategic.

TABLE 3. The payoffs of the attacker when the two players take different
kinds of typical strategies. The NS is the Nash equilibrium strategy. The
HS represents the hub nodes strategy. The LS is the leaf nodes strategy
and the RS represents the random strategy.

Further, if we define a new simultaneous game whose pure
strategies are the 4 strategies shown in Table 3, the Nash
equilibrium of this new game is also a mixed one, where
the attacker’s mixed strategy is [0.81, 0.19, 0, 0] and the
defender’s mixed strategy is [0.9996, 0.0004, 0, 0]. Both the
attacker and the defender take the NS with an extremely large
probability, which also validates the effectiveness of the Nash
equilibrium strategy.

When the attacker and the defender have unsymmetrical
attack and defense resources, which means nA and nD are not
equal, the Nash equilibriums are different.We also implement
experiments with different nA and nD, and the results are
similar with that in the case when nA = nD = 4, where
the attacker prefers nodes which are neither hub nodes nor
leaf nodes while the defender protects the hub nodes with
larger probabilities. Nevertheless, the nodes contained in the
support set of Nash equilibrium are different in these cases
and the equilibrium payoffs are also distinct. We show the
nodes attacked or protected with a probability larger than 0
in Table 4 and the equilibrium payoffs of the attacker in Fig. 3.
In Table 4, we find that the attacker attacks more nodes
with positive probabilities when the defender can protect
more nodes. In Fig. 3, the equilibrium payoffs of the attacker
increase almost linearly with nA in different cases of nD.

TABLE 4. Nodes attacked or protected with a positive probability with
unequal nA and nD. The experiment is implemented in the target network
shown in Fig. 1.

C. EXPERIMENTS IN A REAL-WORLD NETWORK
To consider a more realistic networked infrastructure,
we also implement experiments in USAir (http://vlado.fmf.
uni-lj.si/pub/networks/data/), which is the network of air
transportation system in the US. This network has 332 nodes,
thus, the amount of the total strategy profiles will be more
than 2.4 × 1017 when nA = nD = 4. The payoff matrix
is too big to construct, not to mention solving it. However,
in many real-world scenarios, both the attacker and the
defender will only focus on the airports which are the busiest.
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FIGURE 3. Equilibrium payoffs of the attacker versus nA in different cases
of nD. We only show the payoffs of the attacker because the zero-sum
feature of the proposed game.

Besides, the experimental results above indicate that the leaf
nodes are neither considered by the attacker nor the defender.
Therefore, we define θA and θD as the attack range and
defense range, respectively, and assume that the players only
consider attacking or protectingN ·θA orN ·θD nodes with the
largest degrees.When a set of nodes are removed, the players’
payoffs are evaluated in the whole network. In this experi-
ment, we use the efficiency as the measure function 0 and
we set that θA = θD = 0.1 and nA = nD = 3. We show
the probability distributions over pure strategies of the two
players in Table 5 and the probability distributions over indi-
vidual airports mapped from the Nash equilibrium in Table 6.
The visualization of this result is shown in Fig.4. It is clear
that not all airports within the attack and defense range are
attacked or protected with positive probabilities while some

FIGURE 4. Visualization of the attack and defense probabilities over each
airport in USAir. The nodes in larger size are defended with larger
probabilities and the nodes in deeper color are attacked with larger
probabilities.

TABLE 5. Probability distributions over pure strategies in USAir. The
indexes of the airports are sorted in the descending order by their
degrees.

TABLE 6. Probability distributions over each airport in USAir. The airports
shown in this table are attacked or protected with positive probabilities.

airports are targeted by both players. The airport protected
with the largest probability is not attacked with the largest
probability. From our results, the security agency should pay
more attention to these airports with positive probabilities.

V. CONCLUSION
Deciding which targets to protect in critical infrastructures
with limited resources is a key concern of security agencies
in many countries. This problem becomes more challenging
in this Cyber Era, because the infrastructures usually function
as networks and the complexity of these networked systems
will increase exponentially with the development of modern
society. Therefore, it is not reasonable to only consider the
values of individual targets when planning the protection
schedules. We should evaluate a target in the whole network
and take a network science perspective to tackle the protection
of infrastructures. In this paper, we propose a two-player
zero-sum simultaneous-move game model. The players’ pay-
offs are defined on the basis of the topology structure of the
target network. All the possible attack and defense strate-
gies are considered in this paper. We introduce an efficient
algorithm to compute the payoff matrix of the game and
adopt an iteration-based algorithm to solve the game. The
experimental results in a small size network show that in
the mixed Nash equilibrium, the attacker distributes larger
probabilities on targets with medium degrees or betweenness
while the defender prefers protecting hub targets with the
largest degrees. We then validate the effectiveness of the
defense strategy. This mixed strategy guarantees the defender
much higher payoffs even when the attacker is not strategic.
We also implement an experimentation in a real-world net-
work, the USAir, and find similar results. Besides, there are
only a limited number of airports appeared in the players’
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support set of the mixed strategy Nash equilibrium, which
provides the defender useful insights about which targets to
protect.

Although we give a game-theoretic solution for defending
the critical infrastructures in this paper, there are also some
problems to be settled. Because of the extremely large size
of the strategy profiles, our algorithm is not applied to the
networks with thousands of nodes and to the case when
nA and nD are large. Besides, our algorithm is guaranteed
to get a Nash equilibrium, but we do not know whether
this equilibrium provides the defender the highest payoff
and which nodes are protected in the optimal equilibrium.
In our future work, we will investigate how to construct the
payoff matrix in a compact representation and find a more
efficient algorithm to solve this game. Besides, the costs
to attack or protect different targets are not always equal,
which should be considered in our further study. Moreover,
in real-world scenarios, the attacker cannot always collect
all the information about the target network, which inspires
us to explore what the equilibriums will be with incomplete
information.

APPENDIX
PROOF OF THE NONEXISTENCE OF PURE STRATEGY
NASH EQUILIBRIUM IN THE PROPOSED GAME
Suppose an arbitrary pair of pure attack and defense strategy
to be (X∗,Y∗). Firstly, suppose that Y∗ protects at least one
node which is attacked by the attacker. In this case, there
must exist at least one node not protected whose removal
can degrade the network performance. Thus, the attacker
prefers the attack strategy X ′ which contains such nodes and
UA(X ′,Y∗) > UA(X∗,Y∗).

Secondly, suppose that the defense strategy Y∗ does not
protect any nodes within the attack strategy X∗. Because
of the assumption that the network performance declines
monotonically with the removal of nodes, there must exist
a defense strategy Y ′ that can protect at least one node within
X∗. Thus, UD(X∗,Y ′) > UD(X∗,Y∗).
In all, for every pair of pure strategies, at least one player

can obtain a higher payoff by changing their strategies unilat-
erally. Thus, there does not exist pure-strategy Nash equilib-
rium in the proposed game. �
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