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ABSTRACT In this paper, the Doppler frequency shift-based localization problem in the presence of sensor
location errors is addressed. Based on the measurement model, we present two methods, an explicit solution
and a semidefinite relaxation (SDR) technique, to estimate the position of the stationary source. In the two
proposed algorithms, the non-accurate information on sensor position and velocity is considered. In the
former algorithm, based on two best linear unbiased estimator, an explicit solution of the source position
can be obtained, whereas in the latter one, the SDR technique is applied to relax the original maximum
likelihood estimation into a convex semidefinite programming problem, which provides accurate estimate
without postprocessing. Compared with the methods where the sensor location errors are not taken into
consideration, the proposed algorithms are able to achieve a more accurate localization result. Simulations
verify a better performance of these two proposed algorithms.

INDEX TERMS Doppler frequency shift (DFS), sensor location uncertainty, best linear unbiased estimator
(BULE), semidefinite programming (SDP).

I. INTRODUCTION
The technology of passive source localization has received
considerable interest due to its wide applications in various
areas including radar, sonar, navigation and wireless commu-
nications [1]–[4]. In general, the most common technique is
to measure the time information of the source signal from
spatially separated sensors. Based on the time delay (TD)
measurements, a set of hyperbolic equations are formed, and
the solution of these nonlinear equations gives the estimate
of the source location [5], [6]. By utilizing the relative move-
ments between the source and moving platforms, the Doppler
frequency shift (DFS) measurements derived from Doppler
effect can be combined with TD to obtain a more accurate
estimate [7]–[9].

However, in the scenarios with low synchronization
accuracy or the narrow bandwidth of the signal, the time
information will not be valid and the source localization
accuracy will be degraded [10]. While in these cases, the DFS
information can still be accurately estimated. Hence, carry-
ing out the research of source localization based on DFS
measurements is important and indispensable. On account of
a higher nonlinearity between the measurement parameters

and the solution space, it is nontrivial to convert frequency
information into source position. In general, the DFS based
localization methods are divided into two categories: direct
and indirect methods. The direct methods estimate the source
position via process all the observed signals simultaneously;
while the indirect methods firstly extract all measurement
parameters from received signals, and estimate the source
position based on the extracted measurements subsequently.
The direct methods, which generally employ exhaustive
search in solution space (also named grid searching) to obtain
the desired result [11], [12], are asymptotically optimal;
however, the multidimensional grid searching algorithm will
render tremendous computation pressure. To simplify and
enhance the position computation process, some information
fusion techniques can be used [13]. In contrast, the indirect
methods, which normally apply iterative algorithm to address
the locating problem after linearizing the relation between the
measurements and the source position [14], [15], have the
advantage of low computational complexity and satisfactory
performance. Therefore, the indirect methods with iterative
algorithm are more popular in source localization. However,
the performance of the numerical iterative algorithm relies
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on a good initial value, which means the initial guess has to
get close to the true value, or else the convergence of this
algorithm is not assured. In fact, such a good initial value is
difficult to obtain.

In order to avoid the above mentioned drawbacks,
the explicit estimation, which has the advantages of lighter
computational load and locating without initial guesses, has
been proposed as an alternative method [16]. In order to
express the relationship between measurement parameters
and source position in a linear form, this solution only
remains the linear terms, therefore its localization result can-
not absolutely achieve the Cramer-Rao lower bound (CRLB).
After obtaining the estimate, a numerical iterative method
has to be implement to further improve the location result.
Recently, the semidefinite relaxation (SDR) technique which
relaxes the ML problem to obtain a convex semidefinite
programming (SDP) problem and then solved bymodern con-
vex optimization algorithms, has been successfully applied
and sparked some rapid developments in the area of source
localization [17]–[20], and as well some other fields, such as
waveform design [21]–[23] and beamforming [24], [25].

Nevertheless, whatever the position estimation methods
are, the estimation accuracy is fairly sensitive to the informa-
tion of the sensor positions and velocities [26]. A slight error
of the sensors may cause degradation of source localization
performance. Therefore, the inaccuracy of sensors has to be
taken into account. Among the existing works, Yang and Ho
analyzed TD based multiple disjoint sources localization in
presence of sensor location errors [27]. Afterwards, Sun and
Ho addressed the localization problem for multiple sources
by jointly using the time and frequency information under
the condition of sensor location errors [28], while few works
in literatures addressed the constrained localization problem
using frequency information only.

Different from previous works where the inaccuracy of
sensors is not taken into account [16], [20], this work aims to
employ DFSmeasurements to address the source localization
problem in presence of sensor location errors. In this work,
we add the sensor position errors into our received signal
models. In accordance with the best liner unbiased estimator
(BLUE) criterion, to obtain an explicit estimation, the first
solution transforms the relationship between DFS measure-
ments and the source position to a set of linear equations, and
further improves the initial estimate accuracy through the use
of the BLUE again. In this work, we propose another loca-
tion method by relaxing the maximum likelihood estimation
(MLE) of the source position into semidefinite programming
(SDP) problem, which can provide an accurate estimate with-
out post processing. With the location errors considered in
the above proposed localization methods, the source location
accuracy is improved. The CRLB is analyzed and simula-
tions are provided to confirm the estimated accuracy of the
proposed methods. The contributions of this paper can be
summarized as follows:
1)Weprovide an explicit solution (marked as TB-SLE) and

an SDR solution (marked as SDR-SLE) to address the DFS

based source localization problem without initial position
guesses in presence of sensor location errors.
2) The CRLB for DFS based source localization, under

the condition of sensor location errors, are derived as the
benchmark.
3) Simulation comparison is carried out to verify the effec-

tiveness of the proposed algorithms. The simulation result
shows that the TB-SLE and the SDR-SLE solutions out-
perform the algorithms without considering sensor location
errors.

The remainder of this paper is organized as follows:
Section II provides the DFSmeasurement models. Section III
presents the TB-SLE solution and the SDR-SLE solution in
the present of sensors location errors. After that, the CRLB
accuracy is analyzed in this section. Section IV compares the
location estimation performance of the proposed solutions to
the previous methods as well as CRLB, and Section V is the
conclusion.
Notation: uppercase and lowercase bold letters denote

matrices and vectors, respectively. The i-th to j-th components
of x is denoted by x (i:j). X (i:j) is the submatrix of X with
corners (i, i), (i, j), (j, i), (j, j). The symbols ‖·‖ and tr (·)
denote the Frobenius norm and trace. X � 0 means X is
positive semidefinite. x and x̂ denote the true value and the
estimate value of x, respectively.

II. PROBLEM STATEMENT
Assume the scenario with one stationary source whose posi-
tion is denoted as u, L moving sensors intercept the emit-
ted signals N times. As a result, the intercepting number
of frequency-shifted signals is M = LN . In each inter-
ception, the sensors’ position and velocity are denoted as
si (i = 1, . . . ,M) and vi (i = 1, . . . ,M). Assume that the
state of the sensors are constant within a short interval,
the DFS measurements models of this scenario related to the
source and sensors are expressed as

di =
fc
c
·
vTi (u− si)
‖u− si‖

, i = 1, . . . ,M , (1)

where c is the speed of signal propagation, and fc is the carrier
frequency, assumed known. By defining fi

1
= cdi/fc, (1) can

be reformulated as

fi =
vTi (u− si)
‖u− si‖

, i = 1, . . . ,M . (2)

Since the measurement errors are always present, we have
to take the noise into account. Define the true values as
fi = f̂i − 1fi, si = ŝi − 1si, vi = v̂i − 1vi, and (2) can
be rewritten as

f̂i −1fi =

(
v̂Ti −1viT

) (
u− ŝi +1si

)∥∥u− ŝi +1si
∥∥ , (3)

where f̂i, ŝi and v̂i are estimate values. 1fi is frequency
measurement noise, we express the M measurement noises
as a vector form

1f =
[
1f1 1f2 . . . 1fM

]T
, (4)
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f̂ 2i
∥∥u−ŝi∥∥2 = (v̂Ti u)2 + k2i −2kiv̂Ti u+2r̂iv̂Ti u1fi − 2kir̂i1fi − 2

(
f̂ 2i
(
u− ŝi

)T
+

(
ki − v̂Ti u

)
v̂Ti
)
1si

− 2
(
ki
(
ŝTi − uT

)
+ v̂Ti u

(
uT − ŝTi

))
1vi. (8)

f̂ 2i
(
x2 + y2 − 2xix − 2yiy+ ŝTi ŝi

)
= a2i x

2
+ b2i y

2
+ 2aibixy− 2kiaix − 2kibiy+ k2i + 2r̂iv̂Ti u1fi − 2kir̂i1fi

− 2
(
f̂ 2i
(
u−ŝi

)T
+

(
ki−v̂Ti u

)
v̂Ti
)
1si−2

(
ki
(
ŝTi −u

T
)
+v̂Ti u

(
uT−ŝTi

))
1vi. (9)

which is assumed to be zero-mean Gaussian with covariance
E
[
1f1fT

]
= Qf . 1si and 1vi are the errors of position

and velocity (sensor location errors), the error vectors are
respectively denoted as

1s =
[
1sT1 1sT2 . . . 1sTM

]T
, (5)

1v =
[
1vT1 1vT2 . . . 1vTM

]T
. (6)

Referring to the previous literatures [26]–[28], the errors of
position and velocity are modeled as zero-mean Gaussian
variables and independent of Doppler frequency measure-
ment noise. The covariance matrixes are E

[
1s1sT

]
= Qs

and E
[
1v1vT

]
= Qv, respectively.

Based on (3), the maximum-likelihood (ML) estimate of
the source position can be obtained. Nevertheless, the non-
linear relationship between the DFS measurements and the
source position implies that the global minimum is difficult
to achieve.

III. SOURCE LOCALIZATON IN PRESENCE OF
SENSOR LOCATION ERRORS
A. TB-SLE SOLUTION
In this section, we present an efficient solution to esti-
mate the source position using the DFS measurements only.
We elaborate the TB-SLE solutionmethod in 2D scenario and
this method can be extended to 3D-space straightforwardly.
Notice that (3) can be reformulated as

f̂i
∥∥u− ŝi +1si

∥∥ = 1fi ∥∥u− ŝi +1si
∥∥

+

(
v̂Ti −1vTi

) (
u− ŝi +1si

)
. (7)

Squaring both side and neglecting second-order error terms,
we get formula (8), as shown at top of this page, where

ki = v̂Ti ŝi. r̂i =
∥∥u− ŝi

∥∥ is the measurement distance
from the source to the i-th sensor. Defining u = [x, y]T ,
si = [xi, yi]T , vi = [ai, bi]T , equation (8) can be reformulated
as (9) which is shown below equation (8). Rewriting (9) as
matrix form yields

Aq− h = ε, (10)

where

q =
[
x, y, x2, y2, xy

]T
, (11)

ε = B1f+ C1s+ D1v. (12)

The expression of A, B, C, D and h can be found at the
bottom of this page page. According to the Gauss-Markov
theorem [29], the estimate of q can be obtained via the best
linear unbiased estimator, as follows

q̂ =
(
ATW−1A

)−1
ATW−1h, (18)

where

W = BQf BT + CQsCT
+ DQvDT , (19)

and the corresponding covariance matrix of q̂ is

cov
(
q̂
)
= E

[
1q1qT

]
=

(
ATW−1A

)−1
(20)

1q = q− q̂. (21)

In (19), the weighting matrix W is related to the source
position u, therefore it cannot be directly obtained. For imple-
mentation purpose, assume W=Qf and substitute it into (18)
to obtain an initial estimate of source position. Afterwards
substitute this initial estimate to (19) to recalculate W and
utilize the new weighting matrix to estimate a more accu-
rate source position u. It is acceptable to approximate the

A =

 −2x1 f̂
2
1 + 2k1a1 −2y1 f̂ 21 + 2k1b1 f̂ 21 − a

2
1 f̂ 21 − b

2
1 −2a1b1

...
...

...
...

...

−2xM f̂ 2M + 2kMaM −2yM f̂ 2M + 2kMbM f̂ 2M − a
2
M f̂ 2M − b

2
M −2aMbM

, (13)

B = diag
{[

2r̂1v̂T1 u− 2k1r̂1 2r̂2v̂T2 u− 2k2r̂2 · · · 2r̂M v̂TMu− 2kM r̂M
]}
, (14)

C = diag
{[
−2

(
f̂ 21
(
u− ŝ1

)T
+
(
k1 − v̂T1 u

)
v̂T1
)

. . . −2
(
f̂ 2M
(
u− ŝM

)T
+
(
kM − v̂TMu

)
v̂TM
) ]}

, (15)

D = diag
{[
−2

(
k1
(
ŝT1 − uT

)
+ v̂T1 u

(
uT − ŝT1

))
. . . −2

(
kM
(
ŝTM − uT

)
+ v̂TMu

(
uT − sTM

)) ]}
, (16)

h =
[
−f̂ 21 ŝ

T
1 ŝ1 + k

2
1 −f̂ 22 ŝ

T
2 ŝ2 + k

2
2 · · · −f̂ 2M ŝTM ŝM + k2M

]T
. (17)
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weighting matrix because of its little effects on the cost
function. In fact, this method has been used in many other
literatures [30], and has become a general approach in source
localization.

The first two elements of q̂ contain the source position
namely u = q̂ (1:2). The other elements of q related to the
source position is

q2 (1) = q (3), (22)

q2 (2) = q (4), (23)

q (1)q (2) = q (5). (24)

According to the definition of 1q in (21) and ignoring the
higher-order error terms, (22)-(24) can be rewritten as

q̂2 (1)+ 2q̂ (1)1q (1)− q̂ (3) = 1q (3), (25)

q̂2 (2)+ 2q̂ (2)1q (2)− q̂ (4) = 1q (4), (26)

q̂ (1) q̂ (2)+ q̂ (1)1q (2)+ q̂ (2)1q (1)

− q̂ (5) = 1q (5). (27)

Define1u1=[1q (1),1q (2)]T , and reformulate (25)-(27) as
a linear expression (matrix form)

C1u− b = 1q, (28)

where

C =


1 0
0 1

2q̂ (1) 0
0 2q̂ (2)

q̂ (2) q̂ (1)

, b =


0
0

q̂ (3)− q̂2 (1)
q̂ (4)− q̂2 (2)

q̂ (5)− q̂ (1) q̂ (2)

.
(29)

Basing on (28), the estimator of 1u is obtained

1û =
(
CT cov

(
q̂
)−1C)−1CT cov

(
q̂
)−1b. (30)

The final solution of source position is

û = q̂ (1:2)+1û. (31)

B. SDR-SLE SOLUTION
Note that the TB-SLE solution method neglects the second-
order error terms twice in the process of constructing linear
equations. This approximation may be reasonable at suffi-
ciently low noise levels. However, the increase of noise level
may affect the positioning accuracy.

In fact, the optimization problem can be constructed
directly from (3), and then the SDPmethod is used to approx-
imate the solution. The expression (3) can be rewritten as the
following form

f̂iri = 1firi +
(
v̂Ti −1vTi

) (
u− ŝi +1si

)
, (32)

where

ri =
∥∥u− ŝi +1si

∥∥ = ‖u− si‖ , (33)

is the true range between the source and the i-th sensor, and
it is only dependent on the value of the sensor position si.

Expanding ri = ‖u− si‖ in Taylor series and retaining only
the linear terms give

ri ≈ r̂i − ρTu,ŝi1si, r̂i =
∥∥u− ŝi

∥∥ , (34)

where ρx,y = (x− y) / ‖x− y‖. Substituting (34) into (32)
and eliminating the second-order noise terms yield

f̂ir̂i − v̂Ti u+ v̂Ti ŝi = r̂i1fi +
(
ŝTi − uT

)
1vi

+

(
f̂iρTu,ŝi + v̂Ti

)
1si, (35)

or, use vector notation

Ug+ k = η, (36)

where

η = R11f+ R21s+ R31v, (37)

g =
[
uT ,

∥∥u− ŝ1
∥∥ , . . . , ∥∥u− ŝM

∥∥]T , (38)

k =
[
v̂T1 ŝ1, v̂

T
2 ŝ2 . . . , v̂

T
M ŝM

]T
, (39)

U =


−v̂T1 f̂1 0 0 0
−v̂T2 0 f̂2 0 0
...

...
...

. . .
...

−v̂TM 0 0 0 f̂M

. (40)

The expression of R1, R2, and R3 can be found at the top of
next page. Addressing the following optimization functions
can provide the estimate of the source position

min
u

(Ug+ k)TQ−1 (Ug+ k), (44)

where Q =R1QfRT
1 + R2QsRT

2 + R3QvRT
3 . If function Q

contains u, the expression (44) is identical with a maximum
likelihood estimate. For the purpose of solving (44), assume
Q =Qf and get an initial estimate of u. Then, (44) can be
transformed into a constrained weighted least squares prob-
lem

min
g,u

(Ug+ k)TQ−1 (Ug+ k)

s.t. g (n+i) =
∥∥u− ŝi

∥∥ ,
g (1:n) = u, (45)

where n represents the dimension of the coordinate. Denoting
G=ggT , (45) can be equivalently written as

min
G,g,u

tr
(
UTQ−1UG

)
+2kTQ−1Ug

s.t. G (n+i, n+i) = ‖u− si‖2,

g (1:n) = u,

G = ggT . (46)

(46) is convex except the last constraint G = ggT . However,
the non-convex constraint is equivalent to two constraints [31]
as follows

G = ggT ⇔


[
G g
gT 1

]
� 0,

rank (G) = 1.
(47)
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R1 = diag
{
r̂1 r̂2 . . . r̂M

}
, (41)

R2 = diag
{[

v̂T1 + f̂1ρ
T
u,ŝ1

v̂T2 + f̂2ρ
T
u,ŝ2

. . . v̂TM + f̂Mρ
T
u,ŝM

]}
, (42)

R3 = diag
{[

ŝT1 − uT ŝT2 − uT . . . ŝTM − uT
]}
. (43)

With the rank constraint dropped, the constraint G=ggT can
be relaxed as

G = ggT ⇔
{[

G g
gT 1

]
� 0. (48)

Therefore, (46) is relaxed into the following SDP

min
G,g,u

tr
(
UTQ−1UG

)
+2kTQ−1Ug

s.t. G (n+i, n+i) = tr (G (1:n))−2ŝTi u+ŝ
T
i ŝi,

g (1:n) = u,[
G g
gT 1

]
� 0. (49)

Exploiting the interior-point methods [32], we can obtain the
optimal solution, denoted as

(
Ĝ, ĝ, û

)
. Notice that the esti-

mate Ĝ (1:n) also contains the information of source position.
By employing the rank-one approximation method, the final
estimate is obtained [33]. In addition, Gaussian randomiza-
tion procedure can be an alternative method to find the final
estimate when the dimension of the estimated parameter is
not high [34].

C. CRLB ANALYSIS
The CRLB is employed in many estimation problems to
establish a theoretical bound on the variance of the unbiased
estimator. In this section, the CRLB of source localization
algorithms under the condition of sensor location errors is
derived, and it is employed in the simulation as the benchmark
of the performance of the algorithms.

Note that the actual positions and velocities of the sensors
are unknown, we put them into vector form α =

[
sT , vT

]T ,
and collect the source position u, true sensor position s and
velocity v as ϑ =

[
uT , sT , vT

]T . The observation sensor
position vector ŝ and velocity vector v̂ are independent of the
measurement vector f̂, and both obey the Gaussian distribu-
tion. Hence, the logarithm of the probability density function

of the data vector ψ̂ =
[
f̂T , ŝT , v̂T

]T
is

ln f
(
ψ̂

∣∣∣ϑ) = ln f
(
f̂
∣∣∣ϑ)+ f ( α̂∣∣ϑ)

= k −
1
2

(
f̂− f

)T
Q−1f

(
f̂− f

)
−

1
2

(
α̂ − α

)TQ−1α (
α̂ − α

)
, (50)

where k is a constant independent of ϑ , and

Qα =
[
Qs 0
0 Qv

]
, (51)

According to (50) we express the Fishier Matrix with respect
of ϑ as following

FIMϑ = −E

∂2 ln f
(
ψ̂ |ϑ

)
∂ϑ∂ϑT

=[ X Y
YT Z

]
(52)

where

X = −E

∂2 ln f
(
ψ̂

∣∣∣ϑ)
∂u∂uT

, (53)

Y = −E

∂2 ln f
(
ψ̂

∣∣∣ϑ)
∂u∂αT

, (54)

Z = −E

∂2 ln f
(
ψ̂

∣∣∣ϑ)
∂α∂αT

. (55)

The details in evaluating the partial derivatives are provided
in Appendix A. The CRLB of ϑ is equal to

CRLB (ϑ) = FIM−1ϑ =
[

X Y
YT Z

]−1
. (56)

The partitioned matrix inversion [35] is applied in (56), and
we have

CRLB (u) = X−1 + X−1Y
(
Z− YTX−1Y

)−1
YTX−1.

(57)

Note that X−1 is the CRLB of the source location vector u
when there is no sensor position and velocity errors. Hence,
the second term in (57) represents the increase in CRLB in
presence of sensor location errors.

The CRLB under the 2-D plane and 3-D space are illus-
trated as examples, respectively. In the first one, the covari-
ance matrix of the measurement noise isQf = σ

2
f IM , the sen-

sor position and velocity errors covariance matrixes are
Qs = σ 2

s diag {8I2N , 10I2N , 2I2N } and Qv = 0.01Qs. Three
moving sensors s1 = [1000, 0]T , s2 = [10000, 10000]T ,
s3 = [10000, 1000]T with velocities v1 = [300, 0]T , v2 =
[−300, 0]T , v3 = [0, 300]T are set to locate the source. The
true position of the source is u = [6500, 4000]T . In the sec-
ond scenario, the sensors’ positions are s1 = [1000, 0, 0]T ,
s2 = [10000, 10000, 0]T , s3 = [0, 1000, 1000]T with
velocities v1 = [250, 100, 200]T , v2 = [−200, 100, 100]T ,
v3 = [100,−50, 200]T . The noise covariance matrixes of
the measurements and sensor locations are Qf = σ 2

f IM ,
Qs = σ 2

s diag {8I3N , 30I3N , 2I3N } and Qv = 0.01Qs.
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The source is placed at u = [6500, 4000, 2000]T . Each
sensor observes the emitted signals 10 times in both
scenarios.

FIGURE 1. Comparison of the CRLBs with and without sensor location
errors in 2-D plane when the σ2

s increases.

Fig. 1 shows the comparison of CRLBs with and without
sensor location errors in 2-D plane. In this simulation, we fix
the measurement noise variance at σ 2

f = −4 dB. It can be
seen that when the sensor location noise σ 2

s increases, the esti-
mation accuracy goes away from the noise-free CRLB.
Fig. 2 shows a similar comparison result of CRLBs in 3-D
space.

FIGURE 2. Comparison of the CRLBs with and without sensor location
errors in 3-D space when the σ2

s increases.

In Fig. 3 and Fig. 4, we plot CRLBs with the increas-
ing of σ 2

f in 2-D and 3-D scenarios, the variance of sen-
sor location errors is set to σ 2

s = −5 dB. The simula-
tion results show that when the measurement noise level is
low, the sensor location noise is the main factor affecting
the positioning accuracy. However, when the measurement
noise level is high, it plays a major role in the localization
accuracy.

FIGURE 3. Comparison of the CRLBs with and without sensor location
errors in 2-D plane when the σ2

f increases.

FIGURE 4. Comparison of the CRLBs with and without sensor location
errors in 3-D space when the σ2

f increases.

IV. SIMULATIONS
In this section, we carry out the simulations to evaluate the
performance of the proposed methods and compare it with
the previous works (which didn’t take the sensor location
errors into consideration) [12], [16], [20] and CRLB. For
convenience, we will mark these methods as DPD solution,
TB solution and SDR solution in the simulation result fig-
ures. The location scenarios are corresponding to the above
Subsection C. The solver SDPT3 in MATLAB CVX toolbox
can be used to deal with the SDP problems [32]. the root mean
squares error (RMSE) can be used to calculate the estimation
accuracy

RMSE =

√(∑K

k=1

∥∥ûk − u
∥∥2) /K , (58)

where the number of the Monte Carlo run is K = 1000
and ûk is the estimate of u at the k-th run. The total of the
independent ensemble runs is K = 1000.

Fig. 5 and Fig. 6 show the estimation performance of
the proposed methods, in the 2-D plane and 3-D space,
respectively. It is straightforward to observe that by taking
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FIGURE 5. Comparisons of the CRLB with and source location accuracy in
presence of sensors location errors in 2-D plane.

FIGURE 6. Comparisons of the CRLB with and source location accuracy in
presence of sensors location errors in 3-D space.

into consideration of the sensor location errors, both of the
proposed methods perform better than the localization algo-
rithms which do not do anything with the sensor location
errors. Specifically, when the noise of sensor location errors
is much smaller compared to the measurement noise (which
means that the sensor location errors are not the dominator of
localization accuracy), all the compared algorithms perform
similarly. Along with the sensor location errors increase,
the algorithms without considering the sensor location errors
show more performance decrease compared to the proposed
algorithms. Furthermore, the DPD method is more sensitive
to the sensor location errors compared to other algorithms.
It should be noted that, the SDR-SLE solution shows a better
positioning performance to the TB-SLE solution, due to the
fact that the proposed TB-SLE solution neglects the second-
order error terms twice.

V. CONCLUSION
The source localization problem based on the DFS measure-
ments with sensor location errors is discussed.With the errors
of both the location and measurements taken into account,
a TB-SLE solution and an SDR-SLE solution are proposed.
The former solution employs two BLUEs successively to pro-
duce an explicit estimate of the source position, and the latter
one relaxes the original MLE into a convex SDP problem
through the SDR technique. The simulation results show that
the performance of the proposed methods is more accurate
than that of the methods without the consideration of the
location errors, and also confirm the validity of the previ-
ous theoretical analysis. The potential future work would be
exploring the localization of multiple sources with the DFS
measurements in presence of sensor location errors.

APPENDIX A
DERIVATION OF THE CRLB
The appendix provides the partial derivatives in (53)-(55).
We rewrite matrix Y to a block matrix as

Y = [Y1,Y2], (59)

where

Y1 = −E

∂2 ln f
(
ψ̂

∣∣∣ϑ)
∂u∂sT

 = ( ∂f
∂u

)T
Q−1f

(
∂f
∂s

)
,

(60)

Y2 = −E

∂2 ln f
(
ψ̂

∣∣∣ϑ)
∂u∂vT

 = ( ∂f
∂u

)T
Q−1f

(
∂f
∂v

)
,

(61)

matrix Z is rewritten as

Z =
[
Z1 Z2
ZT2 Z3

]
, (62)

where

Z1 = −E

∂2 ln f
(
ψ̂

∣∣∣ϑ)
∂s∂sT

 = ( ∂f
∂s

)T
Q−1f

(
∂f
∂s

)
+Q−1s ,

(63)

Z2 = −E

∂2 ln f
(
ψ̂

∣∣∣ϑ)
∂s∂vT

 = ( ∂f
∂s

)T
Q−1f

(
∂f
∂v

)
,

(64)

Z3 = −E

∂2 ln f
(
ψ̂

∣∣∣ϑ)
∂v∂vT

 =
(
∂f
∂v

)T
Q−1f

(
∂f
∂v

)
+Q−1v .

(65)

The partial derivatives are expressed in (66)-(68), as shown
at the top of the next page.
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∂fT

∂u
=

[
(u− s1) (u− s1)T v1

r31
−

v1
r1

· · ·
(u− sM ) (u− sM )T vM

r3M
−

vM
rM

]
(66)

∂fT

∂s
= diag

{[
−
(u− s1) (u− s1)T v1

r31
+
v1
r1

· · · −
(u− sM ) (u− sM )T vM

r3M
+

vM
rM

]}
(67)

∂fT

∂v
= diag

{[
(u− s1)

r1

(u− s2)
r2

. . .
(u− sM )

rM

]}
(68)

REFERENCES
[1] R. J. Vaccaro, ‘‘The past, present, and the future of underwater acoustic

signal processing,’’ IEEE Signal Process. Mag., vol. 15, no. 4, pp. 21–51,
Jul. 1998.

[2] F. Shu et al., ‘‘Approximate analytic quadratic-optimization solution for
TDOA-based passive multi-satellite localization with Earth constraint,’’
IEEE Access, vol. 4, pp. 9283–9292, 2016.

[3] A. Tahat, G. Kaddoum, S. Yousefi, S. Valaee, and F. Gagnon, ‘‘A look at
the recent wireless positioning techniques with a focus on algorithms for
moving receivers,’’ IEEE Access, vol. 4, pp. 6652–6680, 2017.

[4] A. Beck, P. Stoica, and J. Li, ‘‘Exact and approximate solutions of source
localization problems,’’ IEEE Trans. Signal Process., vol. 56, no. 5,
pp. 1770–1778, May 2008.

[5] B. Xu, W. D. Qi, L. Wei, and P. Liu, ‘‘Turbo-TSWLS: Enhanced two-step
weighted least squares estimator for TDOA-based localisation,’’ Electron.
Lett., vol. 48, no. 25, pp. 1597–1598, Dec. 2012.

[6] B. Yegnanarayana, S. Prasanna, R. Duraiswami, and D. Zotkin, ‘‘Process-
ing of reverberant speech for time-delay estimation,’’ IEEE Trans. Speech
Audio Process., vol. 13, no. 6, pp. 1110–1118, Nov. 2005.

[7] K. C. Ho and Y. T. Chan, ‘‘Geolocation of a known altitude object from
TDOA and FDOA measurements,’’ IEEE Trans. Aerosp. Electron. Syst.,
vol. 33, no. 3, pp. 770–783, Jul. 1997.

[8] X. X. Niu, P. C. Ching, and Y. T. Chan, ‘‘Wavelet based approach for
joint time delay and Doppler stretch measurements,’’ IEEE Trans. Aerosp.
Electron. Syst., vol. 35, no. 3, pp. 1111–1119, Jul. 1999.

[9] K. C. Ho and W. Xu, ‘‘An accurate algebraic solution for moving source
location using TDOA and FDOA measurements,’’ IEEE Trans. Signal
Process., vol. 52, no. 9, pp. 2453–2463, Sep. 2004.

[10] Y. Kalkan and B. Baykal, ‘‘Target localization and velocity estimation
methods for frequency-only MIMO radars,’’ in Proc. IEEE Radar Conf.
(RADAR), May 2011, pp. 458–463.

[11] T. Tirer and A. J. Weiss, ‘‘High resolution localization of narrowband radio
emitters based on Doppler frequency shifts,’’ Signal Process., vol. 141,
pp. 288–298, Dec. 2017.

[12] A.Amar andA. J.Weiss, ‘‘Localization of narrowband radio emitters based
on Doppler frequency shifts,’’ IEEE Trans. Signal Process., vol. 56, no. 11,
pp. 5500–5508, Nov. 2008.

[13] A. M. Abu-Mahfouz and G. P. Hancke, ‘‘Localised information fusion
techniques for location discovery in wireless sensor networks,’’ Int. J. Sen-
sor Netw., vol. 26, no. 1, pp. 12–25, 2017.

[14] Y. T. Chan and J. J. Towers, ‘‘Passive localization from Doppler-shifted
frequency measurements,’’ IEEE Trans. Signal Process., vol. 40, no. 10,
pp. 2594–2598, Oct. 1992.

[15] Y.-Y. Chan and F. L. Jardine, ‘‘Target localization and tracking from
Doppler-shift measurements,’’ IEEE J. Ocean. Eng., vol. 15, no. 3,
pp. 251–257, Jul. 1990.

[16] L. J. Deng, P.Wei, Y. S. Du,W. C. Li, Y. X. Li, andH. S. Liao, ‘‘An effective
and simple solution for stationary target localization using Doppler fre-
quency shift measurements,’’ IEICE Trans. Fundam. Electron., Commun.
Comput. Sci., vol. 100, no. 4, pp. 1070–1073, 2017.

[17] K. W. K. Lui, F. K. W. Chan, and H. C. So, ‘‘Semidefinite programming
approach for range-difference based source localization,’’ IEEE Trans.
Signal Process., vol. 57, no. 4, pp. 1630–1633, Apr. 2009.

[18] Y. Zou, H. Liu, W. Xie, and Q. Wan, ‘‘Semidefinite programming methods
for alleviating sensor position error in TDOA localization,’’ IEEE Access,
vol. 5, pp. 23111–23120, 2017.

[19] G. Wang, Y. Li, and R. Wang, ‘‘New semidefinite relaxation method for
acoustic energy-based source localization,’’ IEEE Sensors J., vol. 13, no. 5,
pp. 1514–1521, May 2013.

[20] L. J. Deng, P. Wei, Y. S. Du, and H. G. Zhang, ‘‘A semidefinite pro-
gramming approach for Doppler frequency shift based stationary target
localization,’’ IEICE Trans. Fundam. Electron., Commun. Comput. Sci.,
vol. 101, no. 2, pp. 507–511, 2018.

[21] D. Ciuonzo, A. De Maio, G. Foglia, and M. Piezzo, ‘‘Intrapulse radar-
embedded communications via multiobjective optimization,’’ IEEE Trans.
Aerosp. Electron. Syst., vol. 51, no. 4, pp. 2960–2974, Oct. 2015.

[22] D. Ciuonzo, A. De Maio, G. Foglia, and M. Piezzo, ‘‘Pareto-theory for
enabling covert intrapulse radar-embedded communications,’’ in Proc.
IEEE Radar Conf., May 2015, pp. 0292–0297.

[23] X. Cheng, A. Aubry, D. Ciuonzo, A. De Maio, and X. Wang, ‘‘Robust
waveform and filter bank design of polarimetric radar,’’ IEEE Trans.
Aerosp. Electron. Syst., vol. 53, no. 1, pp. 370–384, Feb. 2017.

[24] Y. Huang and D. P. Palomar, ‘‘Rank-constrained separable semidefinite
programming with applications to optimal beamforming,’’ IEEE Trans.
Signal Process., vol. 58, no. 2, pp. 664–678, Feb. 2010.

[25] Z. L. Yu, M. H. Er, and W. Ser, ‘‘A novel adaptive beamformer based on
semidefinite programming (SDP) with magnitude response constraints,’’
IEEE Trans. Antennas Propag., vol. 56, no. 5, pp. 1297–1307, May 2008.

[26] K. C. Ho, X. Lu, and L. Kovavisaruch, ‘‘Source localization using TDOA
and FDOA measurements in the presence of receiver location errors:
Analysis and solution,’’ IEEE Trans. Signal Process., vol. 55, no. 2,
pp. 684–696, Feb. 2007.

[27] L. Yang and K. C. Ho, ‘‘An approximately efficient TDOA localization
algorithm in closed-form for locating multiple disjoint sources with erro-
neous sensor positions,’’ IEEE Trans. Signal Process., vol. 57, no. 12,
pp. 4598–4615, Dec. 2009.

[28] M. Sun and K. Ho, ‘‘An asymptotically efficient estimator for TDOA
and FDOA positioning of multiple disjoint sources in the presence of
sensor location uncertainties,’’ IEEE Trans. Signal Process., vol. 59, no. 7,
pp. 3434–3440, Jul. 2011.

[29] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory, vol. 1. Englewood Cliffs, NJ, USA: Prentice-Hall, 1993.

[30] Y. T. Chan and K. C. Ho, ‘‘A simple and efficient estimator for hyperbolic
location,’’ IEEE Trans. Signal Process., vol. 42, no. 8, pp. 1905–1915,
Aug. 1994.

[31] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[32] R. H. Tütüncü, K.-C. Toh, and M. J. Todd, ‘‘Solving semidefinite-
quadratic-linear programs using SDPT3,’’ Math. Program., vol. 95, no. 2,
pp. 189–217, 2003.

[33] Z.-Q. Luo and T.-H. Chang, ‘‘SDP relaxation of homogeneous quadratic
optimization: Approximation,’’ in Convex Optimization in Signal Process-
ing and Communications, D. P. Palomar and Y. C. Eldar, Eds. Cambridge,
U.K.: Cambridge Univ. Press, 2010, p. 117.

[34] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, ‘‘Semidefinite
relaxation of quadratic optimization problems,’’ IEEE Signal Process.
Mag., vol. 27, no. 3, pp. 20–34, May 2010.

[35] L. L. Scharf and C. Demeure, Statistical Signal Processing: Detection,
Estimation, and Time Series Analysis, vol. 63. Reading, MA, USA:
Addison-Wesley, 1991.

LIJUAN DENG received the B.S. degree in
electronic engineering from Air Force Engineer-
ing University, Xi’an, China, in 2009, and the
M.S. degrees in electronic engineering from the
Xi’an University of Technology, Xi’an, in 2013.
She is currently pursuing the Ph.D. degree with
the School of Information and Communication
Engineering, University of Electronic Science
and Technology of China, Chengdu, China. Her
research interests include array signal processing

and source localization.

VOLUME 6, 2018 59759



L. Deng et al.: DFS-Based Source Localization in Presence of Sensor Location Errors

PING WEI received the B.S. and M.S. degrees in
electronic engineering from the Beijing Institute
of Technology in 1986 and 1989, respectively, and
the Ph.D. degree in communication and electronic
system from the University of Electronic Science
and Technology of China (UESTC) in 1996. He
is currently a Professor with the School of Infor-
mation and Communication Engineering, UESTC.
His research interests include spectral analysis,
array signal processing, electronic surveillance,

and communication signal processing.

ZHAN ZHANG received the B.S. degree in elec-
tronic engineering from the University of Elec-
tronic Science and Technology of China, Chengdu,
China, in 2016, where he is currently pursuing the
Ph.D. degree with the School of Information and
Communication Engineering. His research inter-
ests include array signal processing and sampling.

HUAGUO ZHANG received the Ph.D. degree
in signal and information processing from the
University of Electronic Science and Technology
of China, Chengdu, China, in 2011. He is cur-
rently an Associate Professor with the School
of Information and Communication Engineering,
University of Electronic Science and Technology
of China. His research interests include noncoop-
erative communication signal processing and array
signal processing.

59760 VOLUME 6, 2018


	INTRODUCTION
	PROBLEM STATEMENT
	SOURCE LOCALIZATON IN PRESENCE OF SENSOR LOCATION ERRORS
	TB-SLE SOLUTION
	SDR-SLE SOLUTION
	CRLB ANALYSIS

	SIMULATIONS
	CONCLUSION
	REFERENCES
	Biographies
	LIJUAN DENG
	PING WEI
	ZHAN ZHANG
	HUAGUO ZHANG


