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ABSTRACT Compared with community-based question answering systems and modern search engines,
social network-based question answering systems are more efficient in addressing non-factual questions.
In such systems, askers search answerers among their 1-hop neighbors; however, high-quality answerers
may exist in the k-hop neighbors of the social networks who are not known to askers directly. To address
this problem, we propose a dynamic SOcial network-based Question Answering System (SOQAS) that finds
high-quality answerers to each asker’s question with high response rate and low-response time. The SOQAS
finds high-quality answerers in the k-hop dynamic social network and selects optimal relays at each hop to
forward the question to, via social referral chains. In particular, the profile information is exchanged among
k-hop neighbors, and leveraged for finding high-quality answerers and optimal relays at each hop, so as to
increase the response rate and reduce the response time. We conduct trace-driven simulations, which show
that, compared with the state-of-the-art schemes, SOQAS achieves: 1) higher average expertise levels by
more than 42%, 2) higher average response rate by more than 26%, and 3) lower response time with as high
as 27% reduction. Furthermore, under diverse system parameters, such as question arrival rate, keywords per
question, answerers per question, number of hops, and predictability, the SOQAS consistently outperforms
the state-of-the-art schemes.

INDEX TERMS Dynamic social networks, distributed question answering system, high-quality answerers,
protocols, social referral chains.

I. INTRODUCTION
Modern search engines such as Google, Bing, and Yahoo!
may not provide satisfactory answers to non-factual
questions [1], due to the lack of relevant contents to
retrieve from their databases [2]. Non-factual questions
require people’s opinions, suggestions, recommendations,
etc., and therefore are better answered by humans through
question answering systems. Community-based question
answering systems such as Yahoo!Answers [3], Quora [4],
Answer.com [5], and Stack Overflow [6] suffer from
low-quality answers and long response time [7]. Alterna-
tively, social network-based question answering systems
such as Aardvark [8] and SOS [9] are promising in coping
with the issue, because friends in social networks know
each other’s expertise (levels) [7] and trust each other [10].
Finding high-quality answerers in dynamic social networks

is however challenging, because social network users have
diverse expertise levels and are not online (active) all the time.

In this article, we study the problem of distributively find-
ing high-quality answerers in a k-hop dynamic social network
to each question. The core challenge of our work is whom
to choose among the neighbors to reach the high-quality
answerers via social referral chains in a k-hop dynamic
social network. We argue that high-quality answerers are
those who have high expertise levels in their respective fields.
To the best of our knowledge, the problem considered in
this article is new. The closest studies in the literature are
probably Shen et al. [9], Lin and Shen [11], Zhang et al. [12],
and Ali et al. [13]. The former two studies [9], [11] retrieve
pre-assigned answers to given questions, while the third
study [12] searches for randomly selected experts. These
three studies, however, assume static social networks where
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users do not dynamically go online/offline. Our earlier
work [13] finds answerers of particular expertise levels
in a centralized infrastructure, which is more suitable in
smaller-scaled social networks.

FIGURE 1. An illustrative social network.

Fig. 1 shows a simplified example of a social network.
The number represents the expertise level (on the scale of
0 to 1) of each user with respect to user A’s question, where
a higher value means better expertise level and potentially
higher-quality answerers. In natural settings, A only knows
his/her 1-hop neighbors B and C’s expertise levels. This
may lead to suboptimal choices of answerers. Therefore,
we propose to maintain a table of highest expertise level
for each user from next-hop neighbors’ social networks. For
example, as shown in Fig. 1, the table maintained at user A
shows that the highest expertise levels that users B and C can
promise A to reach from their networks are 0.6 (user E) and
0.9 (user F), respectively. Accordingly, user A forwards the
question to neighbor C , and then C helps A to find answerer
with expertise level of 0.9 by forwarding the question to
neighbor F .

To distributively find high-quality answerers and the opti-
mal relays at each hop to forward the questions to via social
referral chains, we propose a dynamic SOcial network-based
Question Answering System (SOQAS). SOQAS consists of
two protocols responsible for: (i) exchanging information of
users’ expertise among k-hop neighbors, and (ii) identifying
users of highest expertise levels and forwarding each ques-
tion along the social referral chains. Furthermore, we also
propose to take users’ online times into consideration in
dynamic social networks. Lastly, we exclusively consider dis-
tributed solutions for several reasons: (i) a scalable solution
is crucial as the number of users in the social networks is
rapidly increasing, (ii) a robust solution is vital to handle
high question rates and avoid single point of failure, and
(iii) an inexpensive solution in terms of cost and bandwidth is
desired. The main contributions of the article are summarized
as follows:
• We propose SOQAS which is run by individual users
to identify high-quality answerers by exchanging infor-
mation of k-hop neighbors’ expertise in dynamic social
networks.

• SOQAS leverages the exchanged information to identify
optimal relays at each hop to build social referral chains

that lead to high-quality answerers. As a result, SOQAS
increases the response rate and reduces the response time
of each question.

• We conduct large-scaled simulations to evaluate
SOQAS’s performance in comparison with state-of-the-
art schemes. Our simulation results show that com-
pared to the state-of-the-art schemes, SOQAS achieves:
(i) higher average expertise levels by more than 42%,
(ii) higher average response rate by more than 26%,
and (iii) lower response time with as high as 27%
reduction. Additionally, over networks of different sizes,
SOQAS consistently performs better under diverse
parameters.

The rest of the article is organized as follows. Sec. II
reviews the related work. Sec. III presents the system model
and problem statement. Sec. IV describes the proposed solu-
tion method. Sec. V presents and discusses our trace-driven
simulation results. Sec. VI concludes the article.

II. RELATED WORK
We survey two categories of the question answering systems
in this section.

A. CENTRALIZED QUESTION ANSWERING SYSTEMS
In centralized question answering systems, each question is
sent by an asker to a central server that identifies the answer-
ers and forwards the question to them. Community-based
question answering systems [14]–[16] are classic examples
of centralized question answering systems. Zhao et al. [14]
identify potential answerers from their profiles and answers’
history, and the question is then forwarded to the best
answerer. Nie et al. [15] present a scheme consisting of
offline learning component and online search component
that is used to rank the potential answerers via pairwise
comparisons. To find potential answerers, semantic relevance
between pairs of question-answer and users’ authority on the
question is presented [16]. Srba and Bielikova [17] conduct a
comprehensive survey on community-based question answer-
ing systems such as Yahoo!Answers, Quora, and Stack Over-
flow. These community-based systems may not always pro-
vide high-quality and trusted answers to the askers because
users are anonymous to each other and their expertise levels
are unknown.

On the other hand, Paul et al. [18] analyze Twitter for
different types and topics of questions and find that social
networks can be leveraged for asking questions. Some rep-
resentative social network-based question answering sys-
tems in this category are Aardvark [8], IM-an-Expert [19],
CRAQ [20], and SearchBuddies [21] for finding answerers
to asked questions. Aardvark [8] is a social search engine,
where questions are forwarded to identified answerers in
asker’s extended social network. IM-an-Expert [19] is a syn-
chronous question answering system that identifies avail-
able potential answerers and then forwards the questions
to them, for real-time dialogue via the instant messenger.
CRAQ [20] finds a group of potential answerers from their
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tweets to answer the question in a collaborative mechanism.
SearchBuddies [21] is a system that responds to questions
asked by Facebook users on their Facebook-walls as their
status message where SearchBuddies provides the best link
to users’ messages from the search results. Lappas et al. [22]
identify experts with required skills for a given project such
that all experts can work as a team. Bouadjenek et al. [1] con-
duct a detailed survey on different social network-based sys-
tems. Ali et al. [13] propose a social network-based question
answering system for identifying and forwarding questions
to potential answerers in dynamic social networks. All these
systems achieve their desired objectives; however, centralized
systems may suffer from high service request rate, single
point of failure, and privacy concerns.

B. DISTRIBUTED QUESTION ANSWERING SYSTEMS
In distributed question answering systems, a user searches for
potential answerers among neighbors who can most likely
answer the question. Flooding a question to all neighbors
(and neighbors of neighbors, etc.) results in large overheads
and an overwhelming number of received answers, and there-
fore is inefficient [23]. Targeting specific neighbors for dif-
ferent applications is more efficient. Kukla et al. [24] find
that users are more likely to answer the questions if the
requests come via a chain of acquaintance in a social net-
work. Some of the representative studies in this category are
reported in [25]–[29]. In [25], a social network-based ques-
tion answering system with a spammer detection mechanism
is proposed which focuses on the trustworthiness of required
answerers along with their willingness and capability. Simi-
larly, another work [26] proposes a framework that leverages
multi-hop friendship relations to identify and select trust-
worthy participants among neighbors or neighbors of neigh-
bors to participate in a sensing campaign. Guo et al. [27]
present a privacy-preserving based friend recommendation
scheme for social network users who are interested in find-
ing similar users, and want to establish social links with
unknown similar users by leveraging multi-hop chains. Like-
wise, Shen et al. [28] propose a social network-based ques-
tion answering system for improving the security of social
users by protecting their privacy while forwarding questions
in the social referral chains. In Lin et al. [29], a system is
introduced that helps the users to manage their social net-
works, and reach out to their extended network (the neighbors
of their neighbors) to find their expertise and information.

Generally, in a social network-based question answering
system, if no answerer is found among neighbors for a given
question, the question is then forwarded either to the most
relevant neighbor, or neighbor with the highest degree until
the desired experts are found [12]. Similarly, two state-of-the-
art question answering systems, i.e., SOS [9] and iASK [11],
select relevant neighbors for forwarding questions based on
combination of different metrics such as neighbors’ willing-
ness to answer or forward, profiles’ similarity to question,
and response rate to search for answerers, if no answerer
is found among the neighbors. These strategies, however,

cannot guarantee that the answerers found are high-quality
answerers in a k-hop social network. There are also studies on
social network-based peer-to-peer systems [30]–[32] which
aim to search for a particular content in the network using
social network properties; however, they are quite different
from social network-based question answering systems.

III. SYSTEM MODEL
In this section, we present the system model and the problem
statement. Table 1 summarizes the notations used throughout
this article.

TABLE 1. Summary of notations.

A. DISTRIBUTED DYNAMIC SOCIAL NETWORK MODEL
The underlying social network in SOQAS is dynamic in
nature where users have varying online times. It has two main
components: (i) bootstrap server and (ii) clients, as shown
in Fig. 2. In SOQAS, clients are the users who construct
the dynamic social network based on bidirectional neighbor
links (e.g., Facebook). Similar to online social networks, each
SOQAS user is associated with a unique social ID and a
profile containing personal information, personal attributes,
timeline posts, and question answering record. We assume

FIGURE 2. The considered social network-based question answering
system.
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that social network users truthfully post information on their
timelines and provide answers to questions of their interests
and expertise. However, the spammer detection techniques
reported in [25], [33] can be utilized to detect and prevent the
malicious users from taking part in the question answering
system if the assumption of truthfulness is violated. The pro-
files comprising of timeline posts and previously answered
questions are used to identify experts, similar to [12], [34].
Each user may have k-hop neighbors but can directly com-
municate with 1-hop neighbors only. An example is shown
in Fig. 2, where the asker has 3-hop neighbors. The bootstrap
server maintains a list of users who have recently joined/left
the social network. With the help of the bootstrap server,
a user ui knows the personal attributes of his/her neighbors
Ni in the dynamic social network. Multiple bootstrap servers
can be utilized, if necessary, to avoid the single point of failure
problem.

In dynamic and distributed systems, modeling of network
users’ online time plays an important role in forwarding
questions. Let [Osi,n,O

e
i,n) =

{
t ∈ T | Osi,n ≤ t <

Oei,n
}
represent the nth online time of user ui, where, without

loss of generality, we consider 1-hour time slots, i.e., T =
{0, 1, 2, . . . , 23}, and Osi,n ∈ T and Oei,n ∈ T are the starting
and ending times of online time intervals. All the disjoint
online times of user ui is represented byOi =

⋃
n[O

s
i,n,O

e
i,n).

For example, Oi = [14, 17) shows user ui’s online time is
from 2 p.m. to 5 p.m., andOj = [14, 17)∪[20, 23) represents
user uj’s online times are from 2 p.m. to 5 p.m., and from
8 p.m. to 11 p.m.

Wemodel the dynamic social network by a time-dependent
undirected social graph, GT = (VT , ET ), where the vertex
set VT represents all users and the edge set ET contains all
neighbor links at time T ∈ T . Let dT (ui, uj) represent the
response time user ui needs to process (i.e., answer or for-
ward) user uj’s question after receiving the question. In the
graph GT , we consider user ui online at time t if t ∈ Oi.
Every neighbor uj ∈ Ni of user ui is either online or offline
with respect to user ui’s online time. We say that user uj is
online in ui’s nth online time if [Osi,n,O

e
i,n) ∩ Oj 6= ∅, and

otherwise offline. A message is forwarded from user ui to
user uj if Oi ∩Oj 6= ∅. If [Osi,n,O

e
i,n) ∩ Oj 6= ∅, user ui

answers/forwards the question to user uj during their com-
mon online time after dT (ui, uj); otherwise, the question is
buffered at user ui until both users go online in their forthcom-
ing overlapping online times. Let [tri,q, t

f
j,q] be the question

buffered time at ui for uj for question q, where tri,q ∈ Oi and

t fj,q ∈ Oi ∩ Oj represent the times ui receives and forwards
question q to uj, respectively. The question buffered time is
given by σq(ui, uj) = t fj,q − t

r
i,q.

Consider an asker ua ∈ VT has a question q, and wants to
find a high-quality answerer uk ∈ VT for the question. Since
a positive correlation between human-ranked answerers and
their expertise levels exists [35], we use the expertise levels
as a measure to find high-quality answerers. The expertise
level is a function of the asked question and answerer’s

profile keywords. We denote the expertise level of user uk
on question q by 9k,q. Let pk denote the vector of keywords,
extracted from user uk profile posts and previously answered
questions. We say that user uk has high expertise level if
user uk ’s profile keywords vector pk matches question qwell.
Naturally, in a social network, an asker has no knowledge
of the entire network users; however, high-quality answer-
ers may exist in the asker’s k-hop social network. Thus,
an asker ua requests his/her neighbors to help search and for-
ward the question to high-quality answerers. The neighbors
then search for the answerers and forward the question to
their neighbors for help, if no suitable answerers are found.
Forwarding question from neighbors to neighbors defines a
social referral chain, as shown by the dash-dotted line in Fig. 2
from an asker to an answerer. However, there is no guarantee
that the found answerers are high-quality answerers, as this
is only possible if the question is flooded to asker’s all k-hop
neighbors, which increases tremendous overhead and is not
feasible.

B. PROBLEM STATEMENT
The objective of our work is to find high-quality answerers to
each question in a k-hop dynamic social network. Consider-
ing that high-quality answerers are positively correlated with
the answerers’ expertise levels, we explicitly aim to search
and forward the question q to answerers who have the highest
expertise levels 9k,q to that question in the k-hop dynamic
social network via social referral chains. To this end, SOQAS
utilizes two protocols, as presented in the next section.

IV. PROPOSED SOLUTION
The objective of SOQAS is to: (i) identify high-quality
answerers to each question, and (ii) select optimal relays
for building social referral chains to forward the question
to the answerers. We propose two protocols, BuildNIT
and SearchNIT in SOQAS. We describe the details in the
following.

A. BUILDNIT
Social closeness is a strong attribute for the willingness
of users to forward or answer the questions. As neigh-
bors having social links are considered socially close, they
are more willing to share some information and help each
other by forwarding or answering questions [9], [11], [28].
In SOQAS, each user ui shares his/her social identity (ID),
hop-distance (�), and profile keywords vector (p) with
(socially close) neighbors Ni. User ui’s profile keywords
vector pi consists of l most frequently used keywords pi =
{wi,n}n=1,2...,l where w represents a keyword, and l varies on
each profile bases. State-of-the-art privacy-preserving tech-
niques (e.g., [36]–[38]) can be utilized to protect users’ pri-
vacy while sharing their profiles information with neighbors.

Every two neighbors ui and uj can only exchange the
information with each other if Oi ∩ Oj 6= ∅. Each user ui
maintains all k-hop neighbors in a Neighbors Information
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Table (NIT) denoted by 0i. User ui’s NIT 0i contains neigh-
bor uj’s information ∀uj ∈ Ni, and neighbor um’s information
∀um ∈ 0j, ∀uj ∈ Ni. The information of a neighbor um ∈
0j, uj ∈ Ni in user ui’s NIT 0i is represented as 0i(j) =
(IDm, �m, pm). Only the hop-distance �m of a particular
user um is updated in user uj’s NIT 0j if user um’s information
is received again with smaller hop-distance, which is then
forwarded to user ui for update. The information of particular
user um is disseminated until �m = k in the dynamic social
network via gossip protocol [39], where k is a system param-
eter. While disseminating neighbors information, the hop-
distance is incremented by one each time.

FIGURE 3. Sample Neighbors Information Table (NIT) for user A in Fig. 1.

For illustrations, let the sample keywords of Fig. 1 users’
profiles beNetworks, Algorithms, Java, Database, andMusic,
as shown in Fig. 3 for user A’s NIT 0A. The number in paren-
thesis represents corresponding term frequency (tf), which is
the number of times a particular keyword occurs in a user pro-
file. If a keyword does not exist in a user’s profile (zero tf), it is
not shown. The second column represents the k-hop neigh-
bors IDs received via corresponding 1-hop neighbors in the
first column, while the third column shows the hop-distance
of each neighbor from user A. The profile keywords in the
forth column correspond to users in the second column if
exist, otherwise, to users in the first column.

The BuildNIT protocol mainly uses exchange and
update operations for building and maintaining users’ NITs
as summarized in Algorithm 1. The exchange operation is
used when information exchange takes place between two
neighbors for the first time, while update operation is used
when already exchanged information needs some modifi-
cation. Initially, each user ui maintains the following sets:
(i) S̄i contains a list of 1-hop neighbors Ni, (ii) Si contains
those 1-hop neighbors who already agreed, and exchanged
their information at least one time with user ui, and (iii)
Ri contains ui’s 1-hop black-listed neighbors who are not
interested in information exchange, as shown in line 1.

Whenever user ui goes online, ui finds online neighbors
N ∗i ⊆ {S̄i ∪ Si} with the help of the bootstrap server in
lines 2 and 3. User ui initiates the exchange operation with
neighbor uj if uj is online, i.e., uj ∈ N ∗i , and is not yet con-
tacted for information exchange, i.e., uj ∈ S̄i. User ui sends
his/her information to uj, and waits for user uj’s response in
line 5. User uj is shifted from set S̄i to set Si, if uj accepts the
exchange operation. User ui inserts a new entry in the NIT
accordingly as shown in lines 6–9. Otherwise, uj is shifted

Algorithm 1 BuildNIT Protocol (Constructing Neighbors
Information Table)
1: // Every user ui creates his/her NIT 0i, Si = �; Ri = �;

and S̄i = Ni
2: while Oi = 1 do
3: Finds N ∗i ⊆ {S̄i ∪ Si}
4: if uj ∈ N ∗i & uj ∈ S̄i then
5: ui initiates exchange operation & waits
6: if uj accepts the exchange then
7: Si = Si ∪ {uj}
8: S̄i = S̄i − {uj}
9: uj’s information is inserted in 0i
10: else Ri = Ri ∪ {uj}
11: S̄i = S̄i − {uj}

12: if uj ∈ N ∗i & uj ∈ Si then
13: ui synchronizes with uj
14: when uj initiates exchange/update operation
15: uj’s entries in 0i are updated

from set S̄i to setRi, if uj does not show interest in information
exchange after ui’s c numbers of requests time out as shown
in lines 10 and 11. However, if uj ∈ N ∗i , and uj ∈ Si then ui
first synchronizes with uj to know what has been already
exchanged. When user uj has either new neighbors’ informa-
tion to exchange or wants to modify the already exchanged
information, user uj initiates the exchange/update operation
with user ui. User ui then updates the corresponding entries
in his/her NIT 0i as shown in lines 12–15. The exchange and
update operations are performed regularly by each user ui to
build and maintain the NIT 0i.
Let r be the number of bytes required to store a neighbor’s

information. Then the space complexity at each user ui is
O(r|Mi|) bytes, where |Mi| is the total number of k-hop
neighbors of user ui. The space complexity increases linearly
as the number of k-hop neighbors |Mi| increases; however,
each SOQAS user manages it by exchanging information
with socially close neighbors only. This way, each SOQAS
user significantly reduces the complexity by keeping a limited
number of neighbors and their profile information. In our
simulation setup reported in Sec. V-B, we considered neigh-
bors socially close if their profile similarity is greater than a
particular value.Algorithm 1 also has linear time complexity
of O(|Ni|).

B. SEARCHNIT
The SearchNIT protocol serves twomain functions of find-
ing: (i) high-quality answerers and (ii) optimal relays to build
social referral chains to forward the question to. We discuss
both in detail as follows.

1) FINDING HIGH-QUALITY ANSWERERS
When a question q is initiated at the asker ua, it is represented
as a vector of keywords. To find an answerer uk for question q,
the asker ua matches the question keywords vector q with
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each neighbor uj profile keywords vector pj in NIT0a. To find
a quantitative measure of matching between question q and
a user uk ’s profile vector pk , there are several techniques,
e.g., vector space model, the Euclidean distance, and corre-
lation coefficient [40]. Similar to [9], [28], [31], we use the
vector space model to find each user’s expertise level based
on the user profile keywords. Each user ui creates a Keywords
Score Table (KST)ϒi which contains the term frequency and
inverse document frequency (tf-idf) score for each keyword
of NIT 0i [41]. The expertise level 9k,q ∈ [0, 1] of a user uk
determines how likely the question q vector matches with the
profile vector pk of the user uk . It is calculated by:

9k,q =

∑|V |
l=1 q

lplk√∑|V |
l=1(q

l)2
√∑|V |

l=1(p
l
k )

2
, (1)

where ql and plk represent the tf-idf scores of the keyword l in
question q, and in user uk ’s profile vector pk , respectively. |V |
denotes the total number of keywords in q in |V | dimensional
vector space.

FIGURE 4. Sample Keywords Score Table (KST) for user A in Fig. 1.

User A’s KST ϒA for the NIT 0A is shown in Fig. 4,
where each cell represents the tf-idf score (without log) for a
particular keyword. The high-quality answerer toA’s question
regarding Networks and Algorithms is user F who has the
highest score among all users.

Algorithm 2 SearchNIT Protocol (Finding High-Quality
Answerers)
1: // Every user ui create his/her KST ϒi, and Wi←�

2: for each q of asker ua do
3: Find 9k,q using (1)
4: if 9k,q > 9a,q then
5: Wi← uk
6: Select top-K Answerers in Wi

The pseudocode of SearchNIT protocol for finding
top-K high-quality answerers is summarized inAlgorithm 2.
First, each user ui creates KST ϒi from NIT 0i and an empty
set Wi that holds potential answerers’ expertise levels for
question q, as shown in line 1. For each question q, asker ua
finds the expertise level 9k,q for each user uk in ϒa by (1) in
lines 2–3.We consider that a potential answerer uk ’s expertise
level 9k,q should be greater than the asker ua’s expertise
level 9a,q on question q. Thus, we only consider user uk as
a potential answerer if 9k,q > 9a,q as shown in lines 4–5.

Algorithm 3 SearchNIT Protocol (Finding Optimal
Relays)
1: // Every asker ua selects optimal relays for the top-Ka

answerers
2: for each uk ∈ Ka do
3: if �k = 1 then
4: Forward q at [Osa,n,O

e
a,n) ∩ [O

s
k,n,O

e
k,n) 6= �

5: if �k 6= 1 then
6: Find all ujs for {uk | uk ∈ 0j, uj ∈ Ni}
7: if |uj| = 1 then
8: Forward q as line 4
9: if |uj|s > 2 are online with same �k then
10: Select uj with min dTk (ua, uj)

11: if |uj|s > 2 are online with diff. �k then
12: Select uj with smaller �k

13: if |uj|s > 2 are offline (same/diff. �k ) then
14: Select uj who goes online first

15: Repeat until TTL expires or uk is found

We rank all the potential answerers uk by their expertise
levels in line 6. We implement Algorithm 2 in linear time
complexity of O(|K|) [42] for selecting top-K high-quality
answerers.

2) FINDING OPTIMAL RELAYS
In a distributive question answering system, it is challenging
to find optimal relays that lead to multiple answerers, because
relays drop the question q if it has already been forwarded
to the answerer. This results in finding fewer answerers than
required. Since the NIT 0i of user ui does not keep structure
of k-hop neighbors, it becomes crucial whom to select as
a relay among the 1-hop neighbors who may lead to the
identified answerer. The naive strategy is to forward the
question to immediate online 1-hop neighbors like epidemic
routing [43]; however, it may not lead the social referral
chains to identified answerers.

We use rational strategies for choosing the optimal relays
in the 1-hop neighbors in each user ui’s NIT 0i, as described
as follows. After selecting the required number of top-K
answerers with highest expertise levels, each asker ua then
finds the answerers’ IDs in the NIT 0a. The asker ua waits
for the answerer uk to go online if the answerer uk is an 1-hop
neighbor of asker ua; otherwise, asker ua finds among the
1-hop neighbors responsible for providing the answerer uk ’s
information. If asker ua finds only one neighbor uj in the
1-hop neighbors for answerer uk , then the asker forwards the
question to neighbor uj at [Osa,n,O

e
a,n) ∩ [Osj,n,O

e
j,n) 6= �.

However, if more than one neighbors in the 1-hop neighbors
are found, the asker ua breaks the tie with the following
strategy. If all the online neighbors have the same �k to
the answerer uk , the neighbor with smaller response time
is selected. If all the online neighbors have different �k
to answerer uk , the neighbor with smaller hop-distance is
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selected. If all neighbors are offline, the neighbor who goes
online first is selected, irrespective of �k to the answerer uk .
The asker then forwards the question q and the identified
answerer uk ’s IDk to the selected relays for answering or fur-
ther forwarding. The relay finds the answerer uk ’s IDk in
his/her NIT 0j, and selects the optimal relays as described
before. This process is repeated at each relay and is termi-
nated if either the answerer uk is found or the question’s Time-
To-Live (TTL) expires. The TTL decreases by one whenever
the question is forwarded in the social referral chain. In Fig. 1,
user A finds that the answerer’s ID is F and is 2 hops away
from user A. The optimal relay to reach F is then user C .

The pseudocode of SearchNIT protocol for finding
optimal relays is summarized in Algorithm 3. If the
answerer uk ∈ Ni, i.e., �k = 1, then the question is
forwarded to the answerer uk at the online time, as shown
in lines 2–4. However, if the answerer uk ∈ 0j, uj ∈ Ni,
i.e., �k 6= 1, then ua finds the 1-hop neighbor uj ∈ Ni via
whom uk can be accessed. If there is one user uj who can reach
answerer uk , then the asker ua forwards the question to user uj
at their common online time as shown in lines 5–8. However,
if there are more than one user who can reach a particular
answerer uk , then the asker ua selects the suitable user uj as
explained before and is shown in lines 9–15. Algorithm 3
also has linear time complexity of O(|K|).

V. EVALUATIONS
In this section, we evaluate SOQAS’s performance using
trace-driven simulations.

A. DATASET COLLECTION
We consider Facebook as the representative dynamic social
network, and collect three real datasets. The datasets contain
each user’s neighbors with neighbor links and time-stamped
timeline posts. Because of privacy concerns, Facebook has
strict rules for accessing users’ data. For example, a user
can only collect his/her 1-hop neighbors’ data but not 2-hop
neighbors’ data. Therefore, data collection from Facebook
via its Application Programming Interface (API) is infeasible
to us. To circumvent this limitation, we use Octoparse [44],
which is a web crawler software, to collect data. Octoparse
models web browsing behavior of humans such as typing
texts or clicking mouses, and allows us to extract data from
its built-in web browser. After running Octoparse, we write
scripts to extract users’ information and their timeline’s posts.

We performed data collection from early August 2017 to
mid-October 2017. We recruited three university students as
the seed Facebook users for collecting their social networks
data using our developed scripts. These seed users are friends
on Facebook and thus have plenty of common neighbors.
Each user logs in to his/her Facebook and uses breadth-first
search method for collecting all neighbors’ publicly avail-
able posts from their Facebook-walls (Shen et al. [9] also
collected Facebook data using the same breadth-first search
method, but for 1000 users only). This way, each seed user
collects 1-hop neighbors’ data. Next, with similar procedure,

2-hop neighbors’ data were collected via 1-hop neighbors.
We get the complete overview of Facebook w.r.t. the seed
users by repeating the same procedure. However, the success
rate of getting k-hop neighbors’ data significantly decreases.
Each seed user collected 20,000+ users data from their social
networks which constitute our raw datasets.

The raw datasets need to be processed before being used
in simulations. The following processed data are required:
(i) individual users’ online times, (ii) individual users’ profile
keywords, and (iii) dynamic social networks based on neigh-
bor links. To collect the disjoint online times for each user,
we parse all the collected time-stamped posts. We consider a
user online at time only, if the user writes (post) something
on his/her Facebook-wall at that time. Since most of the
collected users’ posts are in Chinese, first we, therefore,
translated all the contents of collected data to English using
Microsoft Azure Service [45]. We parsed all the collected
timeline posts of each user for the keywords. We used the
keywords to represent a user profile.

To build a social network, we consider users as nodes
and connect them with users having neighbor links in the
dataset. We build three networks with small, medium, and
large size datasets, to evaluate SOQAS. We pick one seed
user’ collected data and remove users with: (i) incomplete
profile information, and (ii) 1 and 2 degrees, because they
do not have sufficient number of neighbors for answering
and forwarding questions. This dataset yields a small-sized
network of 408 users. Similarly, we pick two and three
seed users’ collected data and connect neighbors with their
neighbor links. We filter the users in the same way as the
small-sized network, which results in two more datasets of
different sizes. These datasets yield medium- and large-sized
networks of 795 and 1252 users, respectively. The statistics
of all three datasets are summarized in Table 2. We observe
that all three networks’ node degrees follow power law dis-
tribution as shown in Fig. 5. Thus, all three network users are
well connected and each user has access to a greater portion
of the network to search answerers.

TABLE 2. Statistics of all three datasets.

B. SETUP
We implement SOQAS in Network Simulator-3 (NS-3) [46]
to build: (i) NITs via information exchange and (ii) KSTs for
identifying high-quality answerers and optimal relays at each
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FIGURE 5. Degree distribution of the three considered networks: (a) small, (b) medium, and (c) large.

hop to forward the questions to, via social referral chains in
the dynamic social networks. NS-3 is a detailed event-driven
network simulator. We also implement three state-of-the-art
schemes, i.e., similarity-based scheme [9], [11] (denoted as
Similarity in figures), degree-based scheme [12] (Degree),
and random scheme [47] (Random). All the three schemes
share the same inputs; however, each scheme selects its relays
among neighbors to explore users with highest expertise lev-
els in the networks differently. The similarity scheme selects
top-k users having the highest question to profile similar-
ity among the neighbors. The degree scheme selects top-k
users having the highest degree among the neighbors. The
random scheme selects k random users among the neighbors.
Invoking each scheme gives the k social referral chains. Each
relay records the user with the highest expertise level and
then sends the question 1-hop further by selecting a relay
among the neighbors according to the scheme. This process
continues until the question’s specified TTL expires. When
the search finishes, the user with the highest expertise level
among all explored users via relays is returned to the asker.
Due to the power law characteristic of the underlying social
networks, all the schemes in comparison, including SOQAS,
explore, on average, the same number of users in the search
process. TheUpper Bound is used to show the expertise levels
of users in the entire network which may not be achievable
because the askers may have no social referral chains to the
identified answerers. We do not use Upper Bound for routing
the questions, and therefore its response rate and response
time are not shown in the figures.

We use a single bootstrap server in our implementation.
We assume all users have broadband Internet connections in
the simulator where the bandwidth distribution to network
users is adopted from a dataset of Washington DC [48].
We assume that 1/10 of the bandwidth is used for social
networks. Questions are randomly generated by the simu-
lator from the union of all k-hop users’ profile keyword
vectors. To generate a question of k-keywords, we create a
list of document frequency for each keyword and normalize
it. We then divide the normalized list in k equal size groups
where k is the number of keywords in a question. To generate

a question of k-keywords, the simulator picks one word from
each group. This way, each question contains both rare and
common keywords.

Every user joins/leaves the network according to his/her
online times. Due to privacy concerns, we did not collect the
users’ conversations in the datasets to measure their actual
response times. We adopted the response time distribution
from Shen et al. [9]. Their analysis showed that more than
60% of the questions were answered within 15 minutes,
so they adopted a constant response time of 12 minutes for all
users. Since users’ response times vary in a social network,
we slightly deviate the response times around 12 minutes.
Specifically, we assigned integer response times uniformly
distributed between 8 and 16 minutes (inclusive) with a mean
of 12 minutes for each user in our simulation. Our simulator
supports various system parameters including: (i) question
arrival rate following a Poisson process, (ii) the number
of keywords per question, (iii) the number of answerers
per question, (iv) the number of hops allowed for search-
ing high-quality answerers, and (v) predictability. The pre-
dictability is a real-valued number between 1 and 0 which is
used to introduce some randomness in users’ online/offline
times and makes our simulations more realistic. The simu-
lator matches a random number uniformly chosen between
1 and 0 against the selected value of predictability and let the
user to go online only if the random number is smaller than
the selected value of predictability. The system parameters
with default values are given in Table 3.

TABLE 3. System parameters.

To make all the schemes and SOQAS operable,
users exchange their 1-hop and k-hop profiles keywords,
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respectively, to know each other expertise. We assume that
neighbors with similar profiles are socially close and are
willing to answer or forward each other’s questions. We use
cosine similarity [42] for measuring their social closeness
which is a real number between 0 and 1. In our simulation
settings, each neighbor is willing to respond (answer/forward
a question, exchange information) if the neighbor profile
cosine similarity is greater than or equal to 0.2. We report
results after each user exchanges profile information with
sufficient number of neighbors. We measure and report the
following performance metrics:
• Expertise level, which shows the quality of an answerer
to a given question.

• Response rate, which shows the percentage of questions
that are responded.

• Response time, which is the time difference between an
asker asking a question and receiving response from an
answerer.

Each simulation is repeated 5 times for our solution and all
other three schemes. Each simulation run lasts for one week.
We report the average results with 95% confidence intervals
whenever applicable.

C. RESULTS
Unless otherwise specified, themain take-awaymessages and
simulation results for the medium-sized network are given in
this section.

1) SOQAS FINDS HIGHER-QUALITY ANSWERERS
We compare the expertise levels of each question achieved
by SOQAS and other schemes in Fig. 6. Fig. 6a reports
the cumulative distribution function (CDF) curves of the
highest-expertise levels from a sample run. Since all schemes
report answerers with highest-expertise levels from their
social referral chains, therefore, few questions have expertise
levels in the middle. The questions receiving low-expertise
levels are due to poor similarity match between questions
and users profiles. However, the figure shows that SOQAS
results in higher-expertise levels. For example, for 36% of
the questions, SOQAS achieves expertise levels of 0.2 or
higher, while Similarity, Degree, and Random achieve the
same expertise levels for only 19.6%, 20%, and 19.8% of
questions, respectively. SOQAS is only 14% away from the
upper bound. Fig. 6b shows the average expertise levels
across all questions which confirms the trend: SOQAS >
Degree > Similarity∼=Random. SOQAS achieves the average
expertise levels of 0.38, which is 44.7%, 42.1%, and 44.7%
higher than Similarity (0.21), Degree (0.22), and Random
(0.21), respectively. SOQAS achieves 75.5% of the upper
bound average expertise levels (0.503), while Similarity,
Degree and Random achieve 41.7%, 43.7%, and 41.7% of the
upper bound, respectively. This is because SOQAS leverages
the askers’ KSTs for identifying high expertise level answer-
ers while the state-of-the-art schemes search the answerers
according to their strategies in the k-hop dynamic social net-
work. Since the simulator randomly generates questions for

FIGURE 6. SOQAS finds higher-quality answerers: (a) a sample run
and (b) overall results.

every asker, on average, Random achieves almost the same
expertise levels to Similarity. By the virtue ofmore neighbors,
Degree finds answerers with slightly higher expertise levels
than Similarity and Random.

2) SOQAS PROVIDES MORE ANSWERERS
We report the response rates of individual questions in Fig. 7.
Fig. 7a reports the CDF curves of the response rate from a
sample run. This figure shows that the number of answerers
each question finds are from 0–4 (0%–100%), therefore, all
schemes curves are five-stairs. Furthermore, it shows that
SOQAS results in much higher response rate. For exam-
ple, SOQAS delivers 100% response rate for 93.4% of all
questions, while Similarity, Degree and Random achieve the
same response rates for 67.5%, 64.2%, and 68.8% of the
questions, respectively. Fig. 7b presents the average response
rate across all questions, which follows the trend: SOQAS >
Similarity∼=Random>Degree. This figure demonstrates that
SOQAS achieves 26.9%, 28.7%, and 27.0% higher response
rate on average as compared to other schemes, respectively.
This is because SOQAS leverages Algorithms 2 and 3
to forward questions to relays leading to unique answerers.
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FIGURE 7. SOQAS provides more answerers: (a) a sample run and
(b) overall results.

The other schemes often end-up on answerers who already
responded the question, resulting in fewer unique answerers
(lower response rate). Relays in Degree forward questions to
users with more neighbors and end-up on same answerers
more often as compared to Similarity and Random, resulting
into slightly lower response rate.

3) SOQAS EXPLORES ANSWERERS QUICKLY
We plot the response time of each question from all answerers
in Fig. 8. Fig. 8a gives the CDF curves of the response
time from a sample run. This figure shows that SOQAS
yields lower response time; half of the questions are answered
within 5.5 hours by SOQAS, while half questions are
answered within 9.1, 8.2, and 9.2 hours by Similarity, Degree,
and Random, respectively. The long response time of some
questions are due to relays who remain frequently offline
in the social referral chains. Fig. 8b presents the average
response time across all questions which follows the trend:
SOQAS < Degree < Similarity ∼= Random. This figure
shows that on average, SOQAS achieves 34.9%, 27.6%,
and 35.4% reduction in response time as compared to other

FIGURE 8. SOQAS explores answerers quickly: (a) a sample run and
(b) overall results.

schemes, respectively. This is because, SOQAS utilizes
Algorithms 3 to select optimal relays at each hop to reach the
answerers. The other schemes select relays according to their
strategies and then wait for them to go online. The Degree
achieves a lower response time as compared to Similarity
and Random because users with more neighbors are typically
those who are online more frequently.

4) SOQAS GENERATES MODERATE OVERHEAD
We plot the seven days traffic generated by SOQAS in Fig. 9.
Fig. 9a shows the CDFs of messages flow over all links. It can
be observed that 50% of the links carry less than 10 messages
per day that include questions and control messages. Fig. 9b
shows a medium busy link having 86 messages in seven days.
This include 46 questions (6.6 questions per day), which
is reasonable. The peak and mean traffic over the link is
46.7 and 0.02 kbps, respectively. Fig. 9c shows the CDFs of
peak traffic of all links over five runs. The figure reveals that
80% of the links have peak traffic of less than 30 kbps while
very few links have high peak traffic.
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FIGURE 9. SOQAS generates moderate overhead: (a) CDFs of messages over links, (b) a sample traffic over medium busy link, and (c) CDFs of peak traffic.

FIGURE 10. SOQAS is robust under various numbers of answerers: (a) overall results of expertise levels, (b) overall results of response rate,
and (c) overall results of response time.

FIGURE 11. SOQAS is robust under various values of predictability: (a) overall results of expertise levels, (b) overall results of response rate,
and (c) overall results of response time.

5) SOQAS IS ROBUST UNDER HIGHER LOADS
Since SOQAS supports several system parameters, we show
its performance under different number of answerer and
predictability values in Fig. 10 and Fig. 11, respectively.
We do not report the results for parameters of keywords
per question and question arrival rate, because we find that
their average expertise levels, response rate, and response
time do not change for different values of these parameters.
Fig. 10a shows the expertise levels which follows the trend:
SOQAS > Degree > Similarity ∼= Random. The expertise
levels decrease as the number of answerers increases. This is
because the expertise levels are averaged with increased num-
ber of answerers. Fig. 10b shows response rate with trend:

SOQAS > Similarity∼= Random > Degree. The figure shows
that SOQAS has 45.9%, 48.9%, and 43.9% higher response
rate than the other schemes, respectively, when the number of
answerers is eight. Fig. 10c shows the response time which
follows the trend: SOQAS < Degree < Similarity∼= Random,
for all numbers of answerers. It can be seen that SOQAS
has 41.6%, 34.9%, and 42.5% lower response time than
Similarity (14.2 hours), Degree (12.9 hours), and Random
(14.6 hours), respectively, when the number of answerers is
eight.

Fig. 11a reports the expertise levels which follows the
trend: SOQAS > Degree > Similarity ∼= Random, for all
values of predictability. Overall, the expertise levels decrease
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FIGURE 12. SOQAS performs efficiently under various number of hops: (a), (b), and (c) show overall expertise levels, (d), (e), and (f) show overall response
rate, (g), (h), and (i) show overall response time, and (j), (k), and (l) show peak overhead, for small-, medium-, and large-sized networks, respectively.

with decreased values of predictability, because predictability
affect the users online times, where social referral chains
to answerers may get disconnected, and thus the average
expertise levels decrease. However, SOQAS expertise levels
of 0.28 is still higher by 64.2%, 50%, and 64.2% than Simi-
larity (0.10), Degree (0.14), and Random (0.10), respectively,

at the lowest predictability value of 0.6. Fig. 11b shows the
response rate which follows the trend: SOQAS > Degree >
Similarity ∼= Random. The response rate decreases due
to unavailability of selected relays for the social referral
chains. However, SOQAS response rate is higher by 33.1%,
38.7%, and 33.3% than Similarity, Degree, and Random,
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FIGURE 13. SOQAS is scalable under different networks sizes: (a) over all results of expertise levels, (b) over all results of response rate, and (c) over all
results of response time.

FIGURE 14. SOQAS performance on the large-sized network under various numbers of answerers: (a) overall results of expertise levels, (b) overall results
of response rate, and (c) overall results of response time.

respectively, at lowest predictability of 0.6. Fig. 11c shows
the response time with the trend: SOQAS < Degree < Ran-
dom ∼= Similarity. SOQAS response time is lower by 29.6%,
21.9%, and 24.4% than Similarity, Degree, and Random,
respectively.

6) SOQAS PERFORMS EFFICIENTLY UNDER
VARIOUS NUMBER OF HOPS
SOQAS’ performance for different number of hops is shown
in Fig. 12. Fig. 12a–Fig. 12c show the expertise levels
against various number of hops for the three networks,
respectively. The figures show the trend: SOQAS > Degree
> Similarity ∼= Random, for the number of hops being
greater than one. When the number of hops increases,
SOQAS achieves expertise levels comparable to upper bound.
SOQAS’ expertise levels for 4 and 5-hops have very slight
difference because SOQAS covers most of the users’ infor-
mation in 4-hops. Fig. 12d–Fig. 12f show the response
rate with the trend: SOQAS > Degree > Similarity ∼=
Random, for the number of hops being greater than one.
When the number of hops is one, all schemes have the
same response rates because all select answerers among
1-hop neighbors. SOQAS’s response rate increases with the
number of hops because of k-hop neighbors availability.
The slight decrease observed in the large-sized network is

because of unavailability of answerers with nonzero expertise
levels.

Fig. 12g–Fig. 12i show the response time for small-,
medium-, and large-sized networks, respectively, that follow
the trend: SOQAS < Degree < Random ∼= Similarity, for
all number of hops. When the number of hops is one, all
schemes have the same average response time because all
schemes select answerers among the 1-hop neighbors. The
response time increases with an increase in the number of
hops, because each question has to go to k hops along the
social referral chain. The slight increase in large-sized net-
work’s response time is attributed to low average online time
as compared to other two networks. Fig. 12j–Fig. 12l show
the CDF of peak traffic for SOQAS for small-, medium-,
and large-sized networks, respectively. It can be seen that
most links have low peak traffic for all networks. However,
the peak traffic slightly increases when the number of hops
increases.

7) SOQAS SCALES WELL UNDER DIFFERENT
NETWORKS SIZES
SOQAS’s potentials under different network sizes is shown
in Fig. 13. Fig. 13a shows the expertise levels which fol-
lows the trend: SOQAS > Degree > Similarity ∼= Random,
for all three networks. A close inspection reveals that most
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FIGURE 15. SOQAS performance on the large-sized network under various values of predictability: (a) overall results of expertise levels, (b) overall results
of response rate, and (c) overall results of response time.

of the users’ information in small-sized network is covered
by SOQAS in 3-hops, while as the network size increases,
large fractions of users are not covered. This explains why
the average expertise levels decrease when the network size
increases. Fig. 13b shows the response rate with the trend:
SOQAS > Similarity∼= Random > Degree. The response rate
is not affected much with different network sizes because the
answerers are still searched within 3-hop networks. Fig. 13c
shows the response time which follows the trend: SOQAS <
Degree < Similarity ∼= Random. The slight increase in
large-sized network response time is due to the user average
online time being slightly smaller than that in small and
medium-sized networks.

To see how SOQAS performs on the large-sized net-
work of 1252 users, we show its parametric results.
Fig. 14 and Fig. 15 reveal that the trends in the number of
answerers and predictability parameters for the large-sized
network are similar to Fig. 10 and Fig. 11 for the
medium-sized network, respectively. Our extensive experi-
ments on the small-sized network show similar trends in all
parametric results as in medium- and large-sized networks,
and therefore are not reported.

VI. CONCLUSION
In this article, we present SOQAS, which is a distributed
question answering system for finding high-quality answer-
ers. SOQAS leverages the properties of dynamic social
networks to relay a question via neighbors to answerers.
To find high-quality answerers and forward the question to
them, SOQAS uses two protocols that allow social network
users to exchange information so as to know each other’s
expertise levels which are disseminated to k-hop neigh-
bors with a moderate overhead. SOQAS efficiently finds
high-quality answerers among the k-hop neighbors. To for-
ward the question to the identified high-quality answerers
via social referral chains, SOQAS selects optimal relays at
each hop. Our extensive trace-driven experiments show that
SOQAS outperforms other state-of-the-art schemes. In par-
ticular, SOQAS achieves: (i) higher average expertise lev-
els by more than 42%, (ii) higher average response rate by
more than 26%, and (iii) lower response time as high as

27% reduction. Furthermore, the results show that under
diverse system parameters such as question arrival rate,
keywords per question, answerers per question, number of
hops, and predictability, SOQAS consistently outperforms
the state-of-the-art schemes.

Future work includes incorporating a privacy-preserving
mechanism to ensure user privacy during exchanges of infor-
mation, conducting experiments via graduate students to
evaluate the accuracy of answerers’ expertise levels, devel-
oping an incentive mechanism to motivate users in for-
warding or answering questions, and ultimately testing and
releasing a real-world SOQAS.

REFERENCES
[1] M. R. Bouadjenek, H. Hacid, and M. Bouzeghoub, ‘‘Social networks and

information retrieval, how are they converging? A survey, a taxonomy and
an analysis of social information retrieval approaches and platforms,’’ Inf.
Syst., vol. 56, pp. 1–18, Aug. 2016.

[2] G. Dror, Y. Koren, Y. Maarek, and I. Szpektor, ‘‘I want to answer; who
has a question?: Yahoo! Answers recommender system,’’ in Proc. ACM
SIGKDD, Aug. 2011, pp. 1109–1117.

[3] Yahoo!Answers. Accessed: Feb. 2017. [Online]. Available: https://answers.
yahoo.com/

[4] Qoura. Accessed: Feb. 2017. [Online]. Available: https://www.quora.com/
[5] Answers.com. Accessed: Feb. 2017. [Online]. Available: http://www.

answers.com/
[6] Stack Overflow. Accessed: Feb. 2017. [Online]. Available: https://

stackoverflow.com/
[7] M. R. Morris, J. Teevan, and K. Panovich, ‘‘A comparison of information

seeking using search engines and social networks,’’ in Proc. ICWSM,
May 2010, pp. 23–26.

[8] D. Horowitz and S. D. Kamvar, ‘‘The anatomy of a large-scale social search
engine,’’ in Proc. 19th Int. Conf. World Wide Web, Apr. 2010, pp. 431–440.

[9] H. Shen, Z. Li, G. Liu, and J. Li, ‘‘SOS: A distributed mobile Q&A system
based on social networks,’’ IEEE Trans. Parallel Distrib. Syst., vol. 25,
no. 4, pp. 1066–1077, Apr. 2014.

[10] E. Pennisi, ‘‘How did cooperative behavior evolve?’’ Science, vol. 309,
no. 5731, p. 93, Jul. 2005.

[11] G. Liu and H. Shen, ‘‘iASK: A distributed Q&A system incorporating
social community and global collective intelligence,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 5, pp. 1–14, May 2016.

[12] L. Zhang, X.-Y. Li, J. Lei, J. Sun, and Y. Liu, ‘‘Mechanism design
for finding experts using locally constructed social referral Web,’’
IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 8, pp. 2316–2326,
Aug. 2015.

[13] I. Ali, R. Y. Chang, J.-C. Chuang, C.-H. Hsu, and C. M. Yetis, ‘‘Optimal
question answering routing in dynamic online social networks,’’ in Proc.
IEEE VTC, Sep. 2017, pp. 1–7.

VOLUME 6, 2018 55087



I. Ali et al.: SOQAS: Distributively Finding High-Quality Answerers in Dynamic Social Networks

[14] Z. Zhao, L. Zhang, X. He, and W. Ng, ‘‘Expert finding for question
answering via graph regularized matrix completion,’’ IEEE Trans. Knowl.
Data Eng., vol. 27, no. 4, pp. 993–1004, Apr. 2015.

[15] L. Nie, X. Wei, D. Zhang, X. Wang, Z. Gao, and Y. Yang, ‘‘Data-driven
answer selection in community QA systems,’’ IEEE Trans. Knowl. Data
Eng., vol. 29, no. 6, pp. 1186–1198, Jun. 2017.

[16] Z. Zhao, H. Lu, V. W. Zheng, D. Cai, X. He, and Y. Zhuang, ‘‘Community-
based question answering via asymmetric multi-faceted ranking network
learning,’’ in Proc. AAAI, Feb. 2017, pp. 3532–3539.

[17] I. Srba and M. Bielikova, ‘‘A comprehensive survey and classification of
approaches for community question answering,’’ ACMTrans. Web, vol. 10,
no. 3, pp. 1–63, Aug. 2016.

[18] S. A. Paul, L. Hong, and E. H. Chi, ‘‘Is Twitter a good place for ask-
ing questions? A characterization study,’’ in Proc. ICWSM, Jul. 2011,
pp. 578–581.

[19] R. W. White, M. Richardson, and Y. Liu, ‘‘Effects of community size
and contact rate in synchronous social Q&A,’’ in Proc. ACM SIGCHI,
May 2011, pp. 2837–2846.

[20] L. Soulier, L. Tamine, and G.-H. Nguyen, ‘‘Answering Twitter questions:
A model for recommending answerers through social collaboration,’’ in
Proc. ACM CIKM, Oct. 2016, pp. 267–276.

[21] B. J. Hecht, J. Teevan, M. R. Morris, and D. J. Liebling, ‘‘SearchBud-
dies: Bringing search engines into the conversation,’’ in Proc. ICWSM,
Jun. 2012, pp. 138–145.

[22] T. Lappas, K. Liu, and E. Terzi, ‘‘Finding a team of experts in social
networks,’’ in Proc. ACM SIGKDD, Jun. 2009, pp. 467–476.

[23] S. Jiang, L. Guo, X. Zhang, and H. Wang, ‘‘LightFlood: Minimizing
redundant messages and maximizing scope of peer-to-peer search,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 19, no. 5, pp. 601–614, May 2008.

[24] G. Kukla, P. Kazienko, P. Bródka, and T. Filipowski, ‘‘SocLaKE: Social
latent knowledge explorator,’’ Comput. J., vol. 55, no. 3, pp. 258–276,
Sep. 2011.

[25] Y. Lin and H. Shen, ‘‘SmartQ: A question and answer system for supplying
high-quality and trustworthy answers,’’ in Proc. IEEE Trans. Big Data,
Aug. 2017, pp. 744–751.

[26] H. Amintoosi and S. S. Kanhere, ‘‘A trust-based recruitment framework for
multi-hop social participatory sensing,’’ in Proc. IEEE Int. Conf. Distrib.
Comput. Sensor Syst. (DCOSS), May 2013, pp. 266–273.

[27] L. Guo, C. Zhang, and Y. Fang, ‘‘A trust-based privacy-preserving
friend recommendation scheme for online social networks,’’ IEEE Trans.
Dependable Secure Comput., vol. 12, no. 4, pp. 413–427, Jul. 2015.

[28] H. Shen, G. Liu, H. Wang, and N. Vithlani, ‘‘SocialQ&A: An online social
network based question and answer system,’’ IEEE Trans. Big Data, vol. 3,
no. 1, pp. 91–106, Mar. 2017.

[29] C.-Y. Lin, K. Ehrlich, V. Griffiths-Fisher, and C. Desforges, ‘‘SmallBlue:
People mining for expertise search,’’ IEEEMultimediaMag., vol. 15, no. 1,
pp. 78–84, Jan. 2008.

[30] G. Chen, C. P. Low, and Z. Yang, ‘‘Enhancing search performance in
unstructured P2P networks based on users’ common interest,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 19, no. 6, pp. 821–836, Jun. 2008.

[31] K. C.-J. Lin, C.-P. Wang, C.-F. Chou, and L. Golubchik, ‘‘SocioNet:
A social-based multimedia access system for unstructured P2P networks,’’
IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 7, pp. 1027–1041, Jul. 2010.

[32] H. Shen, Z. Li, and K. Chen, ‘‘Social-P2P: An online social network based
P2P file sharing system,’’ IEEE Trans. Parallel Distrib. Syst., vol. 26,
no. 10, pp. 2874–2889, Oct. 2015.

[33] E. Tan, L. Guo, S. Chen, X. Zhang, and Y. Zhao, ‘‘Spammer behavior
analysis and detection in user generated content on social networks,’’ in
Proc. IEEE 32nd Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2012,
pp. 305–314.

[34] X. Liu, W. B. Croft, and M. Koll, ‘‘Finding experts in community-
based question-answering services,’’ in Proc. ACM CIKM, Oct. 2005,
pp. 315–316.

[35] L. Chen and R. Nayak, ‘‘Expertise analysis in a question answer portal for
author ranking,’’ in Proc. IEEE/WIC/ACM WI, Dec. 2008, pp. 134–140.

[36] O. Rottenstreich, Y. Kanizo, and I. Keslassy, ‘‘The variable-increment
counting bloom filter,’’ IEEE/ACM Trans. Netw., vol. 22, no. 4,
pp. 1092–1105, Aug. 2014.

[37] L. Zhang, X.-Y. Li, K. Liu, T. Jung, and Y. Liu, ‘‘Message in a sealed
bottle: Privacy preserving friending in mobile social networks,’’ IEEE
Trans. Mobile Comput., vol. 14, no. 9, pp. 1888–1902, Sep. 2015.

[38] M. Li, S. Yu, N. Cao, and W. Lou, ‘‘Privacy-preserving distributed profile
matching in proximity-based mobile social networks,’’ IEEE Trans. Wire-
less Commun., vol. 12, no. 5, pp. 2024–2033, May 2013.

[39] R. Zhou, K. Hwang, and M. Cai, ‘‘GossipTrust for fast reputation aggre-
gation in peer-to-peer networks,’’ IEEE Trans. Knowl. Data Eng., vol. 20,
no. 9, pp. 1282–1295, Sep. 2008.

[40] A. Huang, ‘‘Similarity measures for text document clustering,’’ in Proc.
NZCSRSC, Apr. 2008, pp. 49–56.

[41] D. M. Christopher, R. Prabhakar, and S. Hinrich, Introduction to Informa-
tion Retrieval. New York, NY, USA: Cambridge Univ. Press, 2008, p. 504.

[42] S. Zhu, J. Wu, H. Xiong, and G. Xia, ‘‘Scaling up top-K cosine similarity
search,’’ Data Knowl. Eng., vol. 70, no. 1, pp. 60–83, Jan. 2011.

[43] A. Vahdat and D. Becker, ‘‘Epidemic routing for partially connected ad
hoc networks,’’ Dept. Comput. Sci., Duke Univ., Durham, NC, USA,
Tech. Rep. CS-200006, Apr. 2000.

[44] Octoparse Home Page. Accessed: Feb. 2017. [Online]. Available:
http://www.octoparse.com

[45] Microsoft Azure Service Home Page. Accessed: Feb. 2017. [Online]. Avail-
able: https://azure.microsoft.com

[46] NS-3: Network Simulator 3. Accessed: Feb. 2017. [Online]. Available:
https://www.nsnam.org/

[47] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, ‘‘Search and replication
in unstructured peer-to-peer networks,’’ in Proc. ACM ICS, Apr. 2002,
pp. 84–95.

[48] Akamai: State of the Internet. Accessed: Feb. 2017. [Online]. Available:
https://www.akamai.com/fr/fr/multimedia/documents/state-of-the-
internet/q1-2017-state-of-the-internet-connectivity-report.pdf

IMAD ALI received the B.S. degree in telecom-
munication engineering from the University of
Engineering and Technology, Mardan Campus,
Pakistan, in 2008, and the M.S. degree in elec-
trical engineering from the CECOS University of
Information Technology and Emerging Sciences,
Peshawar, Pakistan, in 2011. He is currently pur-
suing the Ph.D. degree with the Taiwan Interna-
tional Graduate Program in Social Networks and
Human-Centered Computing, Institute of Infor-

mation Science, Academia Sinica, Taipei, Taiwan, and the Institute of Infor-
mation Systems and Applications, National Tsing Hua University, Hsinchu,
Taiwan. His research interests include question answering systems and social
network analysis.

RONALD Y. CHANG (M’12) received the B.S.
degree in electrical engineering from National
Tsing Hua University, Hsinchu, Taiwan, in 2000,
the M.S. degree in electronics engineering from
National Chiao Tung University, Hsinchu, Taiwan,
in 2002, and the Ph.D. degree in electrical
engineering from the University of Southern
California, Los Angeles, CA, USA, in 2008.
From 2002 to 2003, he was with the Industrial
Technology Research Institute, Hsinchu. In 2008,

he was a Research Intern at the Mitsubishi Electric Research Laboratories,
Cambridge, MA, USA. In 2009, he was involved in the NASA Small
Business Innovation Research projects. Since 2010, he has been with the
Research Center for Information Technology Innovation, Academia Sinica,
Taipei, Taiwan, where he is currently an Associate Research Fellow (Asso-
ciate Professor). His research interests include wireless communications and
networking. He was a Visiting Scholar with the Department of Electrical
and Computer Engineering, Virginia Tech, Blacksburg, VA, USA, in 2018.
He was a recipient of the Best Paper Award from the IEEE Wireless
Communications and Networking Conference in 2012 and the Outstanding
Young Scholar Award from theMinistry of Science and Technology, Taiwan,
in 2015 and 2017, respectively. He was an Exemplary Reviewer of the IEEE
COMMUNICATIONSLETTERS in 2012, the IEEETRANSACTIONSONCOMMUNICATIONS

in 2015, and the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS in 2017.

55088 VOLUME 6, 2018



I. Ali et al.: SOQAS: Distributively Finding High-Quality Answerers in Dynamic Social Networks

CHENG-HSIN HSU (S’09–M’10–SM’16) rece-
ived B.S. and M.S. degrees from National Chung-
Cheng University, the M.Eng. degree from the
University of Maryland, and the Ph.D. degree
from Simon Fraser University. In 2011, he joined
the Department of Computer Science, National
TsingHuaUniversity as anAssistant Professor and
was promoted to an Associate Professor in 2014.
Before accepting the teaching position, he was
with the Deutsche Telekom Laboratory, CA, USA,

Motorola Inc., IL, USA, and Lucent Technologies, MD, USA, for over six
years. He has been a Visiting Scholar with the University of California
Irvine (Summer 2013 and Summer 2018–Summer 2019), the Qatar Com-
puting Research Institute (Summer 2014), and the University of Illinois
Urbana–Champaign (Spring 2016).

His research interests are in the broad area of multimedia network-
ing, mobile computing, broadcast/wireless networks, Internet-of-Things,
networked games, cloud/fog computing, and computer networks. He and
his colleagues received the Best Paper Award at the IEEE CloudCom’17,
APNOMS’16, IEEE RTAS’12, and the IEEE Innovation’08, and the TAOS
Best Paper Award at the IEEE GLOBECOM’12, and the Best Demo Award
from ACMMultimedia’08. He was selected as one of the Multimedia Rising
Stars by the ACMSIGMM in 2015, and he received the Best Associate Editor
Award from the ACM Transactions on Multimedia Computing, Communica-
tions, and Applications (TOMM) in 2016. He helped organizing international
conferences in various capacities, such as the Area Co-Chair at ACM Mul-
timedia’17, the TPC Co-Chair at ACM MMSys’17, the Poster Co-Chair at
the IEEENOMS’18, and the Publicity Co-Chair at ACMMMSys’18. He has
been an Associate Editor of TOMM since 2014. He was the IEEE MMTC
E-Letter between 2012 and 2014.

VOLUME 6, 2018 55089


	INTRODUCTION
	RELATED WORK
	CENTRALIZED QUESTION ANSWERING SYSTEMS
	DISTRIBUTED QUESTION ANSWERING SYSTEMS

	SYSTEM MODEL
	DISTRIBUTED DYNAMIC SOCIAL NETWORK MODEL
	PROBLEM STATEMENT

	PROPOSED SOLUTION
	BUILDNIT
	SEARCHNIT
	FINDING HIGH-QUALITY ANSWERERS
	FINDING OPTIMAL RELAYS


	EVALUATIONS
	DATASET COLLECTION
	SETUP
	RESULTS
	SOQAS FINDS HIGHER-QUALITY ANSWERERS
	SOQAS PROVIDES MORE ANSWERERS
	SOQAS EXPLORES ANSWERERS QUICKLY
	SOQAS GENERATES MODERATE OVERHEAD
	SOQAS IS ROBUST UNDER HIGHER LOADS
	SOQAS PERFORMS EFFICIENTLY UNDER VARIOUS NUMBER OF HOPS
	SOQAS SCALES WELL UNDER DIFFERENT NETWORKS SIZES


	CONCLUSION
	REFERENCES
	Biographies
	IMAD ALI
	RONALD Y. CHANG
	CHENG-HSIN HSU
	 


