
SPECIAL SECTION ON TOWARDS SERVICE-CENTRIC INTERNET
OF THINGS (IOT): FROM MODELING TO PRACTICE

Received August 1, 2018, accepted September 6, 2018, date of publication September 28, 2018, date of current version October 25, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2872744

MultiCuckoo: Multi-Cloud Service Composition
Using a Cuckoo-Inspired Algorithm for the
Internet of Things Applications
HEBA KURDI1,2, (Member, IEEE), FADWA EZZAT1, LINA ALTOAIMY3, (Member, IEEE),
SYED HASSAN AHMED 4, (Senior Member, IEEE), AND
KAMAL YOUCEF-TOUMI2, (Senior Member, IEEE)
1Computer Science Department, King Saud University, Riyadh 11495, Saudi Arabia
2Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3Information Technology Department, King Saud University, Riyadh 11495, Saudi Arabia
4Department of Computer Science, Georgia Southern University, Statesboro, GA 30460, USA

Corresponding author: Heba Kurdi (hkurdi@ksu.edu.sa)

This work was supported by the King Saud UniversityŠs Deanship of Scientific Research through Research Group no RG-1438-002.

ABSTRACT Internet of things (IoT) applications aim to provide access to widespread interconnected
networks of smart devices, services, and information. This can be achieved by integrating IoT and cloud
computing (CC). By using cloud computing service composition (SC), multiple services from various
providers can be combined to meet users’ requirements. However, SC is known for its complexity and
is classified as an NP-hard problem; such problems are usually approached using heuristics, such as bio-
inspired algorithms. This paper aims at developing a bio-inspired algorithm that mimics the behavior
of cuckoo birds (which examine the nests of other birds to find eggs similar to their own) to find a
composite service that fulfills a user’s request in a multi-cloud environment (MCE). Previous work on
cuckoo-inspired algorithms has generally utilized metaheuristics, which try to fit a ‘‘good’’ solution to
a general optimization problem. In contrast, we propose a problem-dependent heuristic that considers
the SC problem and its particularities in MCE. The proposed algorithm, MultiCuckoo, was thoroughly
evaluated based on a well-controlled experimental framework that benchmarks the performance of the new
algorithm to other outstanding SC algorithms, including the all clouds combination algorithm, base cloud
combination algorithm, and combinatorial optimization algorithm for multiple cloud service Composition.
The results show that our algorithm is more efficient in terms of decreasing the number of examined services,
the composed clouds, and the running time in comparison to the benchmark algorithms.

INDEX TERMS Cloud computing, cuckoo-inspired algorithm, service composition, Internet of things, IoT.

I. INTRODUCTION
The internet of things (IoT) is an evolving technology
that connects physical devices and allows them to share
and exchange information about the surrounding physical
world [1]. The use of a sensor network (SN) plays a major
role in the success of IoT applications [2]. However, SNs
have limited resources and capabilities, specifically in terms
of power consumption, storage capacity, and bandwidth;
therefore, effective SNs require some type of efficient com-
munication mechanism to overcome these constraints [3].
In addition, the vast amount of data generated by devices
and sensing activities must be effectively collected, analyzed,
and stored [4]. This can be achieved by utilizing cloud
computing (CC) [5].

Providing ubiquitous services is the ultimate goal of any
IoT application [1]. For instance, end users should have
access to an unlimited number of services and information
that is specific to their time, location, and needs. However,
due to the nature of IoT devices and applications, some
challenges remain to be addressed. Integration of IoT and
cloud computing can help overcome these challenges. This
solution takes advantage of the cloud, allowing IoT devices
to be accessed as services via the cloud [6].

Cloud computing aims at providing users with services
regardless of geographical constraints. In addition, it supports
easy collection and distribution of services at a low cost over
dissimilar environments [7]. However, users’ cloud service
requests are sometimes complicated and cannot be fulfilled

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

56737

https://orcid.org/0000-0002-1381-5095

H. Kurdi et al.: MultiCuckoo: Multi-Cloud Service Composition Using a Cuckoo-Inspired Algorithm for the IoT Applications

using one service; rather, they may require multiple cloud
services integrated from different clouds. To this end, some
cloud service providers may form a federation of multiple
clouds to fulfill users’ requests while providing high quality
of service (QoS) according to the service level agreement
(SLA) [8]. Such a system of cloud services requires a mech-
anism for locating the required services within the multi-
cloud environment (MCE), as well as finding the best way to
collect and provide them together in an efficientmanner while
remaining within performance parameters. Such integration
of multiple services into one service is a complex combi-
natorial problem known as service composition (SC) [9].
Most previous work on SC has focused on single clouds
[9], [10]. However, because–as just noted–users’ needs usu-
ally cannot be met from within a single cloud, some attempts
have been made to study SC in multiple clouds. Because
this is an NP-hard optimization problem, one solution is
to apply bio-inspired algorithms to the service composition
process [11]–[16].

This paper proposes a new bio-inspired algorithm for cloud
SC in MCE. This is achieved via the following steps:
• First, we carefully study past and existing SC methods
for single- and multi-cloud environments;

• Then we study bio-inspired methods and attempt to
understand how they could be applied to the cloud;

• We then point out any shortcomings in existing work to
find areas for improvement;

• Next, we design and implement a bio-inspired system
for multi-cloud SC; and

• Finally, we test the proposed system and evaluate its
performance.

The main contributions of this paper include a cuckoo-
inspired problem-dependent heuristic designed specifically
for the SC problem in MCE, benchmarked against existing
algorithms, as well as a comparative analysis between the
main studies related to the SC problem.

This paper is organized as follows: Section II presents
background information. Section III reviews related work in
SC in single- and multi-cloud environments. The design of
the proposed algorithm is introduced in Section IV, while the
methodology used to evaluate the algorithm and the results of
the evaluation are presented in Section V. Finally, the paper
concludes with a summary in Section VI.

II. BACKGROUND
This section briefly presents a general overview of cloud and
web services. It also presents the history of our approach and
other related topics.

A. WEB SERVICES AND CLOUD COMPUTING
Web services (WS) are software components with features
that provide new ways to develop applications that meet the
needs of internet users, thus making the web more dynamic.
WS are designed to support inter-operable machine-to-
machine communications over the internet [17]. QoS
attributes are the non-functional requirements of services

that are either measurable, such as response time, or non-
measurable, such as security [14]. CC is becoming the trend-
ing platform for providing web services [15], [18]. CC is a
general term for offering a convenient pool of resources on
demand, delivered as a service over the internet [19]. The
desire for reliable access to affordable and trustworthy on-
line resources has encouraged companies to move to CC. The
resulting increases in CC usage have led to the release of even
more cloud services. However, it is difficult to anticipate all
the possible services thatmight be needed by cloud users [20].
In many real-world cases, complex and diverse services are
needed and a single simple service cannot satisfy all the
functional requirements of the case. To obtain a complex
service, it is important to have a batch of atomic simple
services working together; hence, there is a strong need to
embed an SC system in CC environments [8]. Unfortunately,
the optimum single services that are provided by the selected
service providers have diverse quality in terms of their system
attributes. This means that bringing them together to form
the necessary complicated service must also be optimal [21].
The idea of composing business processes by determining
and running the most suitable services rather than building
new applications to satisfy a business requirement led to the
initiation of SC [22].

B. SERVICE COMPOSITION (SC)
If the implementation of a service invokes additional services,
then it is necessary to combine the functionalities of existing
services. This is referred to as a composite service as it is
developed through SC. Composite services are defined as
an aggregation of elementary services; it is not simply a
matter of putting together a set of WS [23]. Network QoS
is an important metric in the web service composite (WSC)
problem; it is also important to avoid violating the contract
between users and providers with regard to the guaranteed
QoS criteria–or service-level agreement (SLA)–during the
SC process [19].

Cloud computing service composition (CCSC) is a opti-
mization problem [24]withmany potential solutions. SC is an
NP-hard problem [12], [25] in an n-dimensional hyperspace,
as the QoS can be large, with non-linear effects on the SC
objective function; hence, the solution space is too large
to be searched in polynomial time. For data in the cloud
environment, existing algorithms cannot reach a reasonable
outcome within a reasonable amount of time. Most existing
studies focus on applying intelligent optimization algorithms
to find the optimal solution of the nonlinear integer pro-
gramming problem, but the slow speed of convergence and
the tendency to fall into the local optima are bottlenecks of
these intelligent optimization algorithms [26]. The significant
problems in SC that need to be solved include the discovery
and selection of available services while still considering
the necessary functionalities and the concepts used by the
services. The most important thing is that the composition
process should be fully automated so that the user is not
included in any of the machine tasks. However, SC it is

56738 VOLUME 6, 2018

H. Kurdi et al.: MultiCuckoo: Multi-Cloud Service Composition Using a Cuckoo-Inspired Algorithm for the IoT Applications

essential to choose WS according to the users’ preferences
and the QoS with the same functionality and not just accord-
ing to the functionality of the services [11]. At present,
despite the automation of composition, WSC operational
problems include issues like not selecting the optimal compo-
sition, performance reduction with an increase in the number
of WS, increases response time to requests, etc.; these prob-
lems are not yet fully resolved [13].

The dynamic nature of the cloud environment combined
with changes exposes SC to a set of challenges such as
describing and measuring QoS attributes of network services.
Furthermore, the presence of dependencies and conflicts
between services further complicates the SC problem [27].

Network management is easy in a single-cloud environ-
ment, but if any one cloud server fails, the whole system
fails. However, in multi-cloud environments, the real-time
use of more than one cloud service decreases the possibility
of interruptions due to a defect in the environment [28]. Due
to the high cost of communication when using WS from dif-
ferent clouds, SC should effectively and efficiently minimize
the number of clouds involved in the composition sequence.
In a multiple-cloud-based (MCB) environment, the ser-
vice composer contains a number of related components,
such as the cloud combiner, composition converter, service
ontologies. For a specific request, a service requester provides
its initial and goal descriptions using the service ontologies.
Following that, the cloud combiner chooses a suitable cloud
combination from the MCB. The composition domain and
a composition problem are then formed by the composition
converter based on the received request and the selected cloud
combination. Finally, an optimization algorithm is used to
find the solution that satisfies the requester’s goal. The role
of the cloud combiner is to try to choose the most appropriate
clouds for the service conversion and generate an SC scheme.

Today, WSC is done semantically through ontological
descriptions of the WS. Ontologies include the set of
concepts, their properties and any relationships between
them [13]. WSC can be represented as an inter-connected
network (graph) in which each node represents a semantic
WS with standard OWL-S and with the connecting edge
labeled by the similarity between the two services [29].

SC is a multi-objective optimization problem (MOP) as it
involves optimizing two or more objectives subject to certain
constraints which may conflict with each other, for instance,
maximizing availability and minimizing cost or maximizing
reliability and minimizing total response time [16]. This phe-
nomenon is referred to as pareto optimality. The goal is to
find such a solution and quantify how much better it is than
other such solutions, of which there are usually many, given
a measurement standard (utility function) [16], [30].

SC involves the selection of the optimal composition solu-
tion so that the non-functional requirements like response
time can be satisfied. This involves searching through a large
number of services to choose the best combination that meets
several objectives. To avoid processing the whole search
space and thus reduce search time, heuristic methods can be

used. Bio-inspired metaheuristics is a subclass of heuristic
methods inspired by the behaviors of living beings that allow
them to find solutions to survival problems. It is designed to
find an approximate solution to a wide range of hard opti-
mization problems without needing to adapt to each problem.
The Greek prefix ‘‘meta’’ indicates that these algorithms are
‘‘higher level’’ heuristics, in contrast with problem-specific
heuristics [31]. Research has demonstrated that bio-inspired
principles can be successfully applied to solving optimization
problems [19].

C. CUCKOO-INSPIRED ALGORITHMS
The survival of living things in the dynamic natural envi-
ronment is determined by their ability to adapt to environ-
mental changes, to self-organize in the absence of a central
coordinator, and to self-optimize within their daily activities.
Researchers noticed that principles inspired by the behavior
of living organisms could be applied to many complex prob-
lems from computer science to solve them more efficiently
[23], [25], [32].

Cuckoos follow an aggressive parenting strategy; they lay
their eggs in the nests of host birds. To do so, they search
for nests containing eggs highly similar to their own eggs,
enough so that the host bird cannot distinguish between its
own eggs and the eggs of the cuckoo. As time passes and the
baby cuckoo hatches from its egg, it tries to get rid of the host
bird eggs in the nest [25], [33].

Cuckoo search (CS) is a metaheuristic population-based
algorithm inspired by the parenting behavior of cuckoo birds,
developed in 2009 by Xin-She Yang of Cambridge University
and Suash Deb of C. V. Raman College of Engineering [34].
Subsequent studies proved that CS is simple and efficient
in solving global optimization problems and that it is much
more efficient than particle swarm optimization and genetic
algorithms. This is partly because the number of parameters
is smaller, allowing better adaptation to a wider class of
optimization problems. Also, it has been proven that CS
satisfies global convergence requirements and hence usually
converges to a globally optimal solution, as it ensures a bal-
ance between exploration and exploitation. Although various
applications of CS exist, there are few theoretical studies of
this algorithm [35]–[39].

All of the previous cuckoo-inspired work involves meta-
heuristics, i.e., problem-independent algorithms, which begin
with a random (or simple) solution and iteratively optimize it.
Metaheuristics are extremely computationally expensive,
with steep exponential running times. Therefore, the present
project instead develops a problem-dependent heuristic
(PDH). A PDH is strongly connected to a specific problem
domain and takes into account the particularities of that prob-
lem. It works similarly to best-effort protocols, attempting to
find a good guess (solution) from the first try without sub-
sequent optimization iterations. Therefore, PDH’s are more
efficient than metaheuristics in terms of time and space,
despite being more difficult to implement [31], [40].

VOLUME 6, 2018 56739

H. Kurdi et al.: MultiCuckoo: Multi-Cloud Service Composition Using a Cuckoo-Inspired Algorithm for the IoT Applications

III. RELATED WORK
Given recent trends, some solutions have been proposed to
solve the SC problem in web services and cloud environ-
ments. SC is evolving as a widespread skill allowing mix-
ing of distributed and unrelated services so as to combine
and merge cloud services. It focuses on the innovation of a
new service that includes current services in order to reduce
cost and time and increase efficiency. Cloud SC methods
can be divided into three popular categories: framework-
based, agent-based, and heuristic-based [41]. Because com-
position is an NP-hard optimization problem [12], studies
have shown that using heuristic-based methods like bio-
inspired algorithms yields good results. This section focuses
on the heuristic category and discusses several works in the
field of bio-inspired SC for both single- and multi-cloud
environments.

A. SINGLE CLOUDS SERVICE COMPOSITION
Zhang et al. [16] devised a divide-and-conquer control strat-
egy involving the decomposition of a composite service into
parallel execution paths and modeling a dynamic SC for each
execution path as a multi-objective optimization problem.
Using Visual Basic, they presented a new version of the ACO
algorithm that treated the dynamic selection problem on the
WS candidate graph as an ant system. The ant pheromone
was updated and evaporated according to formulas taking into
account the weight of each QoS attribute. Services are repre-
sented as nodes and any likely data dependency is represented
by a directed acyclic graph; therefore, the service selection
problem turns into a path selection problem. Zhang et al.
simulated the services as four tuples: response time, cost,
availability, and reliability, where the objective is to minimize
the first two and maximize the last two. Their approach can
find near-optimal solutions on the fly for multi-objective
problems in huge search spaces and is scalable to support
composition of very complex web services.

Xia et al. [11] built an improvedACO–OAWSCP–whereby
the SC graph is generated dynamically. In the graph, each
path represents a complete SC and nodes denote a match
between services while arches represent an abstract service
(services with the same function), where each abstract ser-
vice has many concrete candidate services. This approach
is dynamic in the sense that it can react to flow change
of SC and can detect whether it is converging to the local
optima, change the operating direction of the flow, and
seek global optimization. The dynamic semantics of services
could be applied at runtime, and ontologies were created to
describe service capabilities, inputs, outputs, and execution
semantics. The ontologies were built by using Web Ontology
Language (OWL) and OWL-S technologies (which are XML
based and hence platform independent and easily transferred
and manipulated). The success ratio in seeking global opti-
mization was used as their performance measure. They built
a simulation application system using Visual C++.

Chifu et al. in [25] and [42] devised a cuckoo-inspired
method for finding optimal or near-optimal solutions encoded
in the enhanced planning graph (EPG). Construction of the
search space does not start from a predefined work flow but
is dynamically built based on the user request. The fitness
functionwas an equation depending on theQoS score, seman-
tic quality score, and weights corresponding to the relevance
of QoS. They performed a set of experiments to adjust the
parameters to provide optimal compositions in few iterations,
without processing the entire search space. To measure the
performance of their approach, they used percent of explored
search space, simulation time, and number of cases in which
the optimal solution was obtained. They carried out an analy-
sis of how the values of four adjustable parameters influence
the number of solutions processed, execution time, optimal
fitness, and standard deviation from the global optimal solu-
tion provided through exhaustive search. This involved two
steps: the first was an exhaustive search of the composition
model to identify the optimal solution score, which was used
to verify whether the average fitness obtained is close to
the optimal. The second step involved iteratively fine-tuning
parameters to identify their optimal values; the fitness of the
optimal solution returned by the algorithm is compared to the
fitness of the solution obtained by an exhaustive search.

Azari et al. [20] simulated three designs with good fit-
ness and low response time in a single-cloud environment.
The first design was of a bee colony algorithm for WS
ranking based on a fitness function whose output is sent
to the cuckoo algorithm for SC. The second design used
K-means clustering of the dataset data before sending it to
the bee colony algorithm. The last design was similar to
the second but also used K-means clustering of the bee colony
output (cuckoo algorithm input). Their fitness function was
optimized when (response time + latency) / (availability +
success + reliability + throughput) was minimized. When
work is completed or new work is presented, the fitness
function is re-calculated because the total size of the entrusted
works to the service changes. They indirectly combined
statistical information collected from the services in order
to balance the load on the services close to the optimal
solution and hence minimize network traffic. Moreover, they
considered important aspects of the cloud environment such
as self-adaptation of SC and SC based on customer demand.
However, their simulation was for a small number of tasks.

Boussalia et al. [21] proposed an approach to determining
the best WSC that uses semantic descriptions of WS and QoS
as the criteria for optimization. Four QoS parameters were
used: time, cost, availability, and reputation. The values of
these four parameters were aggregated into a single real value
to estimate the QoS solution. The sum was then computed
of all the semantic distances between the inputs and outputs
of each pair of WS belonging to the sequence of potential
WSC, where the output of the first is the input to the second
and so on. The best composition solution was gradually built
starting from the user request without enumerating all pos-
sible solutions. Two optimization criteria were considered,

56740 VOLUME 6, 2018

H. Kurdi et al.: MultiCuckoo: Multi-Cloud Service Composition Using a Cuckoo-Inspired Algorithm for the IoT Applications

QoS and semantic similarity (distance), by considering the
pareto front. The performance was assessed using two met-
rics: contribution and entropy. The problem was formulated
in terms of equations and their prototype was applied to a text
translation case study using a Java-based prototype.

Ghobaei-Arani et al. [18] presented CSA-WSC, which was
developed step by step based on the structure of the CS algo-
rithm. Their solution to the cloudWSC problem is a sequence
of WS ordered by usage and therefore the composite service
is the process of selecting a subset of the provided WS.
The fitness function was formulated as the maximum of a
double summation of the quality of the qualitative parameters
for a subset of WS multiplied by the weight of the quali-
tative parameters, where quality is less than or equal to the
SLA. To measure the performance, they used response time,
cost, reliability, and availability and to evaluate their sys-
tem, they compared it with three effective WSC algorithms:
a genetic-based generic algorithm, a genetic Particle Swarm
Optimization (PSO) algorithm, and a greedy-based algorithm
for WSC. Their algorithm showed a better fitness than the
other three, i.e., it reduced both costs and response time.
Moreover, they were able to prove that the convergence speed
of the cuckoo algorithm is effective for finding near-optimal
solutions and provides better fitness among the three different
tested scenarios. They reached the conclusion that with regard
to response time and resource costs, CSA-WSC is a more
suitable algorithm for solving theWSC problem in geograph-
ically distributed cloud environments. They considered the
QoS of the WS and network QoS using the Cloudsim toolkit.
Results of the simulation indicate that they can achieve close
to optimal result in terms of QoS criteria.

B. MULTI CLOUDS SERVICE COMPOSITION
Rostami et al. [13] presented an algorithm based on both
clustering and the ant colony optimization (ACO) method.
At design time, related services are hierarchically clustered
(tree) and a semantic network is created to reduce time and
complexity. After finding the WS using clustering, the ant
colony algorithm is applied to find the best set of WS with
the most composition capability. To measure the performance
of their algorithm, they used precision, that is, the probability
that the returned services are relevant to the user or the prob-
ability that the successfully retrieved services are relevant
to the query. They evaluated the system by comparing the
response time, accuracy, and composition optimality with
other systems and found that they achieved better results.
OWL-S language was used to semantically express descrip-
tions of web services.

Kurdi et al. [7] proposed a combinatorial optimization
algorithm for cloud SC (COM2) to compose services with
a small number of examined services and combined clouds.
They ensured that the cloud with the maximum number of
service files is chosen before other clouds and assumed that
clouds are sorted in descending order by number of service
files. The clouds were repeatedly checked to see whether
their services satisfied the user’s request until the request was

fulfilled. They measured the performance of their approach
by using number of combined clouds |B| in the combiner list,
and number of services examined by the composer |N| was
used to compute execution time. COM2 challenges the avail-
able multi-cloud SC algorithms studied in [10] by achieving
superior trade-off between the number of combined clouds
and the number of examined services.

Yu et al. [15] also studied the WSC problem in MCE
and presented two algorithms. The first–greedy WSC–uses
a three-level tree and repeatedly selects the cloud that can
provide the most services from among those requested until
the selected clouds encompass all the requirements. The sec-
ond algorithm–ACO-WSC–used artificial ants traveling on a
logical digraph to construct cloud combinations. Each node
represents a cloud base and edges connect each pair of nodes.
Ants choose their path based on the pheromone and heuristic
information of the edges. At first, each ant randomly selects
a node (cloud) from the required service files and adds it
to the solution it is constructing according to a probability
based on the pheromone, heuristic information, and the gain
for selecting that particular cloud. The bigger the difference
between files in the clouds, the greater the probability that the
ant chooses the edge. Yu et al. compared their results in a set
of cases against four other algorithms, and their ACO found
the optimal cloud combination with the minimum number
of clouds among all cases and required less computation
time. Their method was not a general optimization that finds
random solutions and then chooses the best among these;
rather, it tries to solve a specific problem. However, they used
many parameters and their complexity was exponential.

This brief review of the literature shows that most research
has been done on single clouds and many of the multi-
cloud cases used high-cost metaheuristics. Therefore, we put
forward a new approach for multi-cloud SC that combines
the advantages of using guided and CS algorithms. Table 1
summarizes the different characteristics of the presented
SC systems.

IV. SYSTEM DESIGN
This section describes the design of the MultiCuckoo system,
which uses the similarity scaler (SS) algorithm for efficient
SC in multi-cloud environments.

A. SYSTEM MODEL
The multi-cloud model that we consider in this work is
illustrated in Fig. 1. It is comprised of the following main
components:
• A set of clouds (MCE) = {C1,C2, . . . ,Cm},
where each cloud has a set of service files F =

{F1,F2, . . . ,Ff } and each file is composed of a set of
services S = {S1,S2, . . . ,Ss};

• A service requester, which is a user interface that accepts
a user’s request and then displays the SC sequence
formed;

• A similarity scaler to measure how similar the received
request is to previously received requests;

VOLUME 6, 2018 56741

H. Kurdi et al.: MultiCuckoo: Multi-Cloud Service Composition Using a Cuckoo-Inspired Algorithm for the IoT Applications

TABLE 1. Comparison of different cloud service composition systems.

• A cloud combiner to select suitable clouds (those with
the highest number of matching services that fulfill the
request) and then generate the combination list based on
the suitable clouds; and

• A composer to receive the combination list of clouds
from the combiner and then select the services that best
fulfill the request from each cloud. Then, the composer
produces the SC sequence.

B. SIMILARITY SCALER
The similarity scaler checks whether a similar request was
previously received and if so, retrieves the fulfilled com-
posed sequence for that request. It displays this sequence
directly (hence eliminating the need to go through the

FIGURE 1. System overview.

time-consuming selection and composition process).
However, if no similar request can be found, the requester
sends the request to the cloud combiner, which in turn chooses
the most appropriate set of clouds from the multiple-cloud
environment according to the suggestions of the algorithm
and sends it to the composer. Following that, the com-
poser checks whether the sequence of services meets the
request, generates a composition sequence, and sends it to the
requester. In Algorithm 1 (which is invoked by Algorithm 2),
we iterate on all the saved requests and their services. If the
services of one of the saved requests happen to be similar to
the newly requested services, the similarity ratio is higher.
The proportion of these services to the total services in
this saved request is therefore added to the similarity ratio,
as seen in lines 18 and 19 of the algorithm. Upon termination,
we have the maximum possible similarity ratio of all the
saved requests in the list. We check whether this ratio is
larger than the similarity threshold and if it is, the saved com-
posed service belonging to this request with the maximum
(and hence best) ratio is directly retrieved. This alleviates
the complication and time of running through the complex
service composition process. A demonstration of the flow of
Algorithm 1 is seen in Fig. 2.

C. CLOUD COMBINER
The problem of searching for a composite service that best
matches a client request in MCE can be viewed from the
cuckoo perspective. In this scenario, the cuckoo egg repre-
sents the service request, the bird eggs represent the cloud
services, and the birds’ nests represent the multiple clouds.
With this analogy in mind, we built our MultiCuckoo algo-
rithm to mimic real cuckoo behavior at a finer level of detail.
The details of the MultiCuckoo algorithm are explained
in Algorithm 2. It uses a saved list (CSL) containing all
previously received requests and their composed services.

56742 VOLUME 6, 2018

H. Kurdi et al.: MultiCuckoo: Multi-Cloud Service Composition Using a Cuckoo-Inspired Algorithm for the IoT Applications

Algorithm 1 Similarity Measure Algorithm
Input: newRequest(R), listRequests(LS), similarity
Threshold
Output: composed services in LS for request similar to R
initialization:
1: ratio = 0

START: // to iterate over listRequests
2: maxRatio = 0
3: currentRequest = getNext(listRequests)
4: if (currentRequest is NULL) then // finished listRequests
5: goto LAST
6: requestSize = currentRequest.length
7: composedSequence (CSL) = currentRequest.getComposed
8: if (ratio > maxRatio) then
9: maxRatio = ratio

LABEL1: // to iterate over services of currentRequest
10: s1 = getNextServ(currentRequest)
11: if (s1 is NULL) then
12: goto START // check next request in list
13: else

LABEL2: // to iterate over services of newRequest
14: s2 = getNextServ(newRequest)
15: if (s2 is NULL) then // finished services in new request
16: goto LABEL1
17: else
18: if (s1 == s2) then // currentRequest contributes to
ratio
19: ratio += (1 / requestSize)
20: goto LABEL1
21: else
22: goto LABEL2

LAST:
23: if (maxRatio >= similarityThreshold) then
24: return composedSequence

First (line 1), we checkwhether the new request is sufficiently
similar to any of the requests in the saved list according
to a threshold clarified in Algorithm 1. If the new request
is similar to a previous request, the previously composed
service saved in CSL is instantaneously retrieved; otherwise,
the composition process starts. Available clouds are accessed
using Levy flight, which passes over the existing clouds and
determines whether the current cloud service files can fulfill
the user’s request. If they cannot, the next cloud is checked
until an appropriate cloud is found; otherwise, the algorithm
will terminate after reaching the last cloud (lines 13-15). Once
an appropriate cloud is located, it and its service files are
added to CSL (line 9). If the user request is still not satisfied,
the next cloud that contains new services that can partially
fulfill the user’s request is selected. Furthermore, to ensure

Algorithm 2 MultiCuckoo Service Composition Algorithm
Input: user request (R), number of clouds (n), clouds and
their service files, saved list that is regularly updated (LS) =
<R, service composition sequence CSL>

Output: composed sequence (CSL) for R (if any) and
updated LS
Initialization:
1: CSL = Execute similarity measure (R,LS)
2: if (CSL NOT NULL) then
3: goto STOP
4: else

BEGIN:
5: Current_Cloud(Cm) = levy_flight(clouds)
6: if ((Cm services ∩ R) - CSL == ϕ) then
7: goto NEXT_CLOUD
8: else
9: CSL = CSL + <(Cm services ∩ R) - CSL, Cm>

10: if (CSL service list == R needed services) then
11: add CSL to LS as <R, CSL>

12: goto STOP

NEXT_CLOUD:
13: n = n - 1
14: if (n > 0) then
15: goto BEGIN

STOP:
16: periodically delete expired services from LS
18: return CSL

that the current cloud Cm contains services that are not
already included in CSL, the algorithm subtracts the content
of CSL from the new services in Cm (Cm ∩ R), as shown
in line 9. If new services are unavailable, the selected cloud
is disregarded (line 7), and the next cloud is considered.
To cope with the dynamic nature of cloud environments,
line 17 deletes any expired services in LS. The composed
services make up a set of <cloud, service> that is updated
upon receiving a new request. Periodically, this list is re-
initiated to simulate the dynamic nature of clouds. The algo-
rithm terminates if either the received request is successfully
met or there are no more clouds to be checked. A flowchart
of the algorithm is shown in Fig. 3.

V. EVALUATION METHODOLOGY
A. MATERIAL LIST
The materials used to implement and evaluate the Multi-
Cuckoo algorithm, including both hardware and software
components is as follows:
• Hardware: Windows OS with 2.5 GHz Intel core i7
processor and 8 GB of RAM.

• Software: Java SE 10.0.1 [43] and Eclipse Oxygen
4.7.3 [44].

VOLUME 6, 2018 56743

H. Kurdi et al.: MultiCuckoo: Multi-Cloud Service Composition Using a Cuckoo-Inspired Algorithm for the IoT Applications

FIGURE 2. Similarity measure flowchart.

B. HYPOTHESIS AND PARAMETERS
The factors that affect the running time of SC algorithms in
MCE include the average number of services per cloud and
the total number of combined clouds in the system. To com-
pare the performance of MultiCuckoo to the benchmarks
and to build a robust evaluation framework, all algorithms
were implemented in the same environment and under sim-
ilar conditions. Our hypothesis is that using MultiCuckoo
for SC in an MCE will decrease the time needed to fulfill
users’ requests compared to the benchmark algorithms under
variable environmental conditions of number of clouds and
average number of services per cloud. For each experiment,
we measured the following performance indicators:
• Number of combined clouds: the total number of
clouds involved in the composite service.

• Number of examined services: the number of services
that an algorithm needs to check while composing the
required services.

• Algorithm execution time: the total time from the
moment when a client enters his request until the system

FIGURE 3. MultiCuckoo service composition algorithm flowchart.

generates the corresponding composite service fulfilling
the request.

As benchmarks, we used three well-established SC
algorithms:
• Combinatorial optimization algorithm for multiple
cloud service composition (COM2) [7]: This algorithm
was developed to efficiently consider multiple clouds
and was aimed at short execution time for the service
composition process while reviewing a minimal number
of clouds to reduce communication costs and hence the
financial costs.

• All clouds combination algorithm (ACC) [10]: The
ACC method can find a service composition sequence
quickly but does not minimize the number of clouds in
the final service composition sequence. This is prob-
lematic because utilizing web services distributed in
different clouds greatly increase the communication cost
and hence the financial costs.

• Base cloud combination algorithm (BCC) [10]: The
BCCmethod has a very high time complexity (exponen-
tial in the number of clouds) as it needs to enumerate all
possible cloud combinations in the worst case.

56744 VOLUME 6, 2018

H. Kurdi et al.: MultiCuckoo: Multi-Cloud Service Composition Using a Cuckoo-Inspired Algorithm for the IoT Applications

C. MCE SIMULATOR
To simulate the dynamic nature of an MCE and its compo-
nents, we tried following a similar approach to [7] and [10]
which used the OWL-S XPlan package [45]. This package
is an open-source service composition planner with a default
web service test set that models different factors affecting the
SC process in MCEs. Unfortunately, this tool has a very lim-
ited and fixed package with only four clouds and a maximum
number of eight services. As a result, we had to implement
the cloud environment from scratch as well as all of the
benchmark algorithms. The main objective is to evaluate our
MultiCuckoo algorithm and test its performance thoroughly
in larger environments composed of a larger number of clouds
and services. Our MCE simulator is implemented in a Java-
based tool that uses client/server programming based on sock-
ets to model the interactions in an MCE at different scales.
Fig. 4 shows the main components of the simulator:

• Generator: The generator tool is responsible for the
production of the configuration file, which stores the
number of clouds in the MCE, their properties, and
the available services.

• Configuration editor: The configuration editor is a
thread that periodically changes the configuration file to
reflect the dynamic nature of the cloud environment.

• Emulator: The emulator reads the configuration file and
uses threading to produce the clouds needed on their
corresponding IP address and port. The produced clouds
are accessed by the service client through a TCP connec-
tion that retrieves a list of the cloud’s services or calls a
specific service in order to view its contents.

FIGURE 4. MCE simulator.

• Service client: The service client is a library used for
service requests by our MultiCuckoo algorithm and all
the other benchmark algorithms we implemented.

D. PERFORMANCE EVALUATION
The following steps were performed as part of the evaluation
framework:

1) Building a Java-based multi-cloud environment
simulator, as described in Section V-C.

2) Implementing the proposed algorithm as well as the
benchmark algorithms in Java.

3) Simulating an MCE at different scales by:
4) Varying the number of clouds (NoC) in the environ-

ment at 10, 15, and 20 clouds. Due to limitations of
the capabilities of our hardware, we were not able to
experiment with a larger number of clouds.

5) Varying the average number of services per cloud
(NoS) at 15, 25, and 35 services.

6) For each scenario, randomly generating user’s requests
for combined services to ensure representative samples
of the possible number of combined services and clouds
per request.

7) Running each algorithm with different user requests of
different lengths.

8) Running the MultiCuckoo algorithm with different
similarity thresholds and finding the most appropriate
threshold.

9) Measuring the performance of the MultiCuckoo algo-
rithm using:
a) total number of examined services,
b) number of combined clouds, and
c) running time.

10) Comparing the results and analyzing the algorithms’
performance.

11) Summarizing the different settings for the experiments,
as given in Table 2.

TABLE 2. Experimental settings.

E. RESULTS AND DISCUSSION
An important QoS attribute that should not be overlooked is
the time taken to search for and compose the needed services
[7], [10]. In an attempt to decrease this time, received requests
and their composed services are saved in a list, as described
in Section V-D. Upon receiving a new request, this list is first
searched for any similar requests according to a similarity
threshold and matching composed services are immediately
retrieved. To examine the algorithms, we ran different ser-
vice requests in which each set of services had a similarity

VOLUME 6, 2018 56745

H. Kurdi et al.: MultiCuckoo: Multi-Cloud Service Composition Using a Cuckoo-Inspired Algorithm for the IoT Applications

FIGURE 5. Average number of examined services when NoS = 15.

threshold of 80% compared to the other service requests.
In one set of test cases, the number of services was fixed at
15 and the number of clouds was varied as 10, 15, and 20
(Set 1). In th another set of test cases, the number of clouds
was fixed at 10 while the number of services varied as 15,
25, and 35 (Set 2), as described in Table 2. Each scenario
run was charted to enable observation and comparison of
the algorithms’ behavior. The following sections present the
performance measures for all scenarios.

1) NUMBER OF EXAMINED SERVICES
The performance of the first scenario (fixed maximum ser-
vices per cloud, 15; varied number of clouds) is shown
in Fig. 5.We found that theMultiCuckoo algorithm examined
a steadily increasing number of services as the number of
clouds increased, but it always examined the lowest number
of services compared to the other algorithms. COM2 and
ACC showed similar behavior to one another. Importantly,
we found that the number of services examined in the BCC
algorithm increased much more than the increase in the num-
ber of clouds. BCC gives the maximum (and a very high
average number of examined services) compared with the
other approaches in this scenario.

The average number of services examined by each algo-
rithm in the second scenario (fixed number of clouds, 10;
varied number of services) is shown in Fig. 6. Interestingly,
again, BCC showed the worst performance, with a rapidly
growing number of examined services. For the remaining
algorithms, MultiCuckoo started off with the lowest num-
ber of examined services but concluded with the highest.
COM2 and ACC showed similar performance: although they
started off higher than MultiCuckoo, they both finished with
a lower value.

2) NUMBER OF COMBINED CLOUDS
Fig. 7 shows the average number of combined clouds for all
the algorithms in the first scenario (fixed maximum services
per cloud, 15). For the MultiCuckoo algorithm, the num-
ber of combined clouds never exceeded three, whereas for

FIGURE 6. Average number of examined services when NoC = 10.

FIGURE 7. Average number of combined clouds when NoS = 15.

the remaining algorithms there were never fewer than three
clouds. For all the algorithms, no matter how many clouds
were in the environment, the clouds included in the composed
service was not greatly affected.

In the second scenario, illustrated in Fig. 8, our
MultiCuckoo algorithm again never exceeded three clouds,
while the other algorithms were never lower than three
clouds. Increasing the average number of services per cloud
did not greatly affect the number of combined clouds in the
composed service.

3) AVERAGE RUNNING TIME
In Fig. 9, it can be seen that the running time for COM2 and
BCC increases by around 5 seconds upon increasing the num-
ber of clouds by 5. Interestingly, the MultiCuckoo algorithm
and ACC algorithm show only a slight increase in running
time upon the same increase in cloud count. As expected,
the MultiCuckoo algorithm showed a much lower time than
the other algorithms, at almost half the running time of the
second best algorithm (ACC). BCC and COM2 showed the
worst running times among the algorithms.

For COM2 and BCC in Fig. 10, the difference in run-
ning time upon increasing the number of services is negli-
gible. However, for the MultiCuckoo algorithm and ACC,

56746 VOLUME 6, 2018

H. Kurdi et al.: MultiCuckoo: Multi-Cloud Service Composition Using a Cuckoo-Inspired Algorithm for the IoT Applications

FIGURE 8. Average number of combined clouds when NoC = 10.

FIGURE 9. Average running time when NoS = 15.

FIGURE 10. Average running time when NoC = 10.

increasing the number of services resulted in increased run-
ning time, but the increase is small. Again, as expected,
our MultiCuckoo algorithm shows the smallest running time
among all the algorithms (almost half of the second fastest).

VI. CONCLUSION
As the IoT service composition in multi-cloud environments
is known for its complexity and is classified among the
NP-hard problems, our approach used a bio-inspired algo-
rithm that imitates the behavior of cuckoo birds (which exam-
ine the nests of other birds to find eggs similar to their own)

to find existing composite services that can be used to effi-
ciently fulfill a user’s request. To the best of our knowledge,
all previously proposed cuckoo-inspired algorithms are meta-
heuristic and have exponential running times that consume
system resources and are slow to find a good SC sequence.
However, our proposed algorithm consumes less time and
fewer resources than metaheuristic algorithms. To evalu-
ate the proposed algorithm–MultiCuckoo–a well-controlled
experimental framework was used to benchmark the algo-
rithm’s performance against that of other outstanding service
composition algorithms. The simulations showed that the
MultiCuckoo examined a lower number of services and found
a solution utilizing a smaller number of combined clouds than
the other algorithms, which indicates that we accomplished
our main goal. Furthermore, the results show a much shorter
average running time for our algorithm compared to the other
algorithms used in our experiments. These findings add to
the growing body of literature on using bio-inspired behav-
ior algorithms to solve complex problems. As future work,
we intend to test the MultiCuckoo algorithm with other QoS
performance measurements. Moreover, we plan to apply our
proposed cuckoo-inspired algorithm in other areas to assess
its applicability to other fields and compare its performance
to existing systems in those areas.

REFERENCES

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,
‘‘Internet of Things: A survey on enabling technologies, protocols, and
applications,’’ IEEECommun. Surveys Tuts., vol. 17, no. 4, pp. 2347–2376,
4th Quart., 2015.

[2] S. S. Iyengar and R. R. Brooks, Distributed Sensor Networks: Sensor
Networking and Applications. Boca Raton, FL, USA: CRC press,
2016.

[3] L. Altoaimy, A. Alromih, S. Al-Megren, G. Al-Hudhud, H. Kurdi, and
K. Youcef-Toumi, ‘‘Context-aware gossip-based protocol for Internet of
Things applications,’’ Sensors, vol. 18, no. 7, p. 2233, 2018.

[4] M. Barcelo, A. Correa, J. Llorca, A. M. Tulino, J. L. Vicario, and
A. Morell, ‘‘IoT-cloud service optimization in next generation smart envi-
ronments,’’ IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 4077–4090,
Dec. 2016.

[5] M. M. E. Mahmoud et al., ‘‘Enabling technologies on cloud of things for
smart healthcare,’’ IEEE Access, vol. 6, pp. 31950–31967, 2018.

[6] M. Aazam, I. Khan, A. A. Alsaffar, and E.-N. Huh, ‘‘Cloud of things: Inte-
grating Internet of Things and cloud computing and the issues involved,’’
in Proc. 11th Int. Bhurban Conf. Appl. Sci. Technol. (IBCAST), Jan. 2014,
pp. 414–419.

[7] H. Kurdi, A. Al-Anazi, C. Campbell, and A. Al Faries, ‘‘A combinatorial
optimization algorithm for multiple cloud service composition,’’ Comput.
Electr. Eng., vol. 42, pp. 107–113, Feb. 2015.

[8] H. Mezni and M. Sellami, ‘‘Multi-cloud service composition using formal
concept analysis,’’ J. Syst. Softw., vol. 134, pp. 138–152, Dec. 2017.

[9] X.-L. Wang, Z. Jing, and H.-Z. Yang, ‘‘Service selection constraint model
and optimization algorithm for web service composition,’’ Inf. Technol. J.,
vol. 10, no. 5, pp. 1024–1030, 2011.

[10] G. Zou, Y. Chen, Y. Xiang, R. Huang, and Y. Xu, ‘‘AI planning and com-
binatorial optimization for Web service composition in cloud computing,’’
in Proc. CCV Conf., 2010, pp. 1–8.

[11] Y. Xia, C. Liu, Z. Yang, and J. Xiu, ‘‘The ant colony optimization algorithm
for Web services composition on preference ontology,’’ in Proc. Int. Conf.
Adv. Intell. Awareness Internet (AIAI), Oct. 2011, pp. 193–198.

[12] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani, ‘‘An approach for
QoS-aware service composition based on genetic algorithms,’’ in Proc. 7th
Annu. Conf. Genet. Evol. Comput., 2005, pp. 1069–1075.

VOLUME 6, 2018 56747

H. Kurdi et al.: MultiCuckoo: Multi-Cloud Service Composition Using a Cuckoo-Inspired Algorithm for the IoT Applications

[13] N. H. Rostami, E. Kheirkhah, and M. Jalali, ‘‘An optimized semantic
Web service composition method based on clustering and ant
colony algorithm,’’ Int. J. Web Semant. Technol., vol. 5, pp. 1–8,
Feb. 2014.

[14] Y. Huo, Y. Zhuang, J. Gu, S. Ni, and Y. Xue, ‘‘Discrete gbest-guided arti-
ficial bee colony algorithm for cloud service composition,’’ Appl. Intell.,
vol. 42, no. 4, pp. 661–678, 2015.

[15] Q. Yu, L. Chen, and B. Li, ‘‘Ant colony optimization applied to Web
service compositions in cloud computing,’’ Comput. Electr. Eng., vol. 41,
pp. 18–27, Jan. 2015.

[16] W. Zhang, C. K. Chang, T. Feng, and H.-Y. Jiang, ‘‘QoS-based
dynamic web service composition with ant colony optimization,’’
in Proc. IEEE 34th Annu. Comput. Softw. Appl. Conf., Jul. 2010,
pp. 493–502.

[17] S. R. Boussalia and A. Chaoui, ‘‘Optimizing QoS-based Web services
composition by using quantum inspired cuckoo search algorithm,’’ inProc.
Int. Conf. Mobile Web Inf. Syst., 2014, pp. 41–55.

[18] M. Ghobaei-Arani, A. A. Rahmanian, M. S. Aslanpour, and S. E. Dashti,
‘‘CSA-WSC: Cuckoo search algorithm for Web service composition in
cloud environments,’’ Soft Comput., pp. 1–26, Aug. 2017.

[19] L. Wang, ‘‘Bio-inspired cost-aware optimization for data-intensive service
provision,’’ M.S. thesis, Iran Univ. Sci. Technol.,ăTehran, Iran, 2014.

[20] M. S. Azari, A. Bouyer, and N. F. Zadeh, ‘‘Service composition with
knowledge of quality in the cloud environment using the cuckoo optimiza-
tion and artificial bee colony algorithms,’’ in Proc. 2nd Int. Conf. Knowl.-
Based Eng. Innov. (KBEI), 2016, pp. 539–545.

[21] S. R. Boussalia, A. Chaoui, A. Hurault, M. Ouederni, and P. Queinnec,
‘‘Multi-objective quantum inspired cuckoo search algorithm and multi-
objective bat inspired algorithm for the Web service composition prob-
lem,’’ Int. J. Intell. Syst. Technol. Appl., vol. 15, no. 2, pp. 95–126,
2016.

[22] F. Dahan, K. El Hindi, and A. Ghoneim, ‘‘An adapted ant-inspired algo-
rithm for enhancing Web service composition,’’ Int. J. Semantic Web Inf.
Syst., vol. 13, no. 4, p. 17, 2017.

[23] I. Salomie, V. R. Chifu, and C. B. Pop, ‘‘Hybridization of cuckoo search
and firefly algorithms for selecting the optimal solution in semantic
Web service composition,’’ in Cuckoo Search and Firefly Algorithm.
Cham,ăSwitzerland: Springer, 2014.

[24] A. Jula, E. Sundararajan, and Z. Othman, ‘‘Cloud computing service
composition: A systematic literature review,’’ Expert Syst. Appl., vol. 41,
no. 8, pp. 3809–3824, 2014.

[25] V. R. Chifu, C. B. Pop, I. Salomie, D. S. Suia, andA. N. Niculici, ‘‘Optimiz-
ing the semantic Web service composition process using cuckoo search,’’
in Intelligent Distributed Computing V. Berlin, Germany: Springer, 2012.

[26] J. Zhou and X. Yao, ‘‘Multi-objective hybrid artificial bee colony algo-
rithm enhanced with Lévy flight and self-adaption for cloud manufac-
turing service composition,’’ Appl. Intell., vol. 47, no. 3, pp. 721–742,
2017.

[27] J. O. Gutierrez-Garcia and K. M. Sim, ‘‘Agent-based cloud service com-
position,’’ Appl. Intell., vol. 38, no. 3, pp. 436–464, 2013.

[28] S. Asghari and N. J. Navimipour, ‘‘Service composition mechanisms in the
multi-cloud environments: A survey,’’ Int. J. New Comput. Archit. Appl.,
vol. 6, no. 2, pp. 40–48, 2016.

[29] A. S. da Silva, E. Moshi, H. Ma, and S. Hartmann, ‘‘A QoS-aware
Web service composition approach based on genetic programming and
graph databases,’’ in Proc. Int. Conf. Database Expert Syst. Appl., 2017,
pp. 37–44.

[30] B. Huang, C. Li, and F. Tao, ‘‘A chaos control optimal algorithm for
QoS-based service composition selection in cloud manufacturing system,’’
Enterprise Inf. Syst., vol. 8, no. 4, pp. 445–463, 2014.

[31] I. Boussaïd, J. Lepagnot, and P. Siarry, ‘‘A survey on optimization meta-
heuristics,’’ Inf. Sci., vol. 237, pp. 82–117, Jul. 2013.

[32] Q. Yu, L. Chen, and B. Li, ‘‘Ant colony optimization applied to web service
compositions in cloud computing,’’ Comput. Electr. Eng., vol. 41, no. 4,
pp. 18–27, Jan. 2015.

[33] X.-S. Yang and S. Deb, ‘‘Cuckoo search via Lévy flights,’’ in
Proc. World Congr. Nat. Biol. Inspired Comput. (NABIC), Dec. 2009,
pp. 210–214.

[34] X.-S. Yang and M. Karamanoglu, Swarm Intelligence and Bio-Inspired
Computation: an Overview. Amsterdam, The Netherlands: Elsevier,
2013.

[35] M. Jamil and H.-J. Zepernick, ‘‘Multimodal function optimisation with
cuckoo search algorithm,’’ Int. J. Bio-Inspired Comput., vol. 5, no. 2, p. 73,
2013.

[36] X.-S. Yang, ‘‘Bat algorithm and cuckoo search: A tutorial,’’ in Artifi-
cial Intelligence, Evolutionary Computing and Metaheuristics (Studies in
Computational Intelligence), vol. 427. Berlin, Germany: Springer, 2013,
pp. 421–434.

[37] I. Fister, Jr., X.-S. Yang, D. Fister, and I. Fister, ‘‘Cuckoo search:
A brief literature review,’’ in Cuckoo Search and Firefly Algorithm.
Cham,ăSwitzerland: Springer, 2014.

[38] M. Tian, K. Hou, Z. Wang, and Z. Wan, ‘‘An improved Cuckoo search
algorithm for multi-objective optimization,’’ Wuhan Univ. J. Natural Sci.,
vol. 22, no. 4, pp. 289–294, 2017.

[39] X.-S. Yang and S. Deb, ‘‘Cuckoo search: Recent advances and applica-
tions,’’ Neural Comput. Appl., vol. 24, no. 1, pp. 169–174, 2013.

[40] N. Siddique and H. Adeli, ‘‘Nature inspired computing: An overview and
some future directions,’’Cognit. Comput., vol. 7, no. 6, pp. 706–714, 2015.

[41] A. Vakili and N. J. Navimipour, ‘‘Comprehensive and systematic review of
the service composition mechanisms in the cloud environments,’’ J. Netw.
Comput. Appl., vol. 81, pp. 24–36, Mar. 2017.

[42] V. R. Chifu et al., ‘‘Optimising the semantic web service composition
process using bio-inspired methods,’’ Int. J. Bio-Inspired Comput., vol. 5,
no. 4, pp. 226–238, 2013.

[43] (2017). Java SE Development Kit 10. [Online]. Available: http://www.
oracle.com/technetwork/java/

[44] (2017). Eclipse Oxygen. [Online]. Available: https://www.eclipse.
org/oxygen/

[45] (2017). OWLS-Xplan Service Composition Planner. [Online]. Available:
http://www-ags.dfki.uni-sb.de/ klusch/owls-xplan/

HEBA KURDI received the Ph.D. degree from
the School of Engineering and Design, Brunel
University, U.K. She is currently a Research
Fellow with the Mechanical Engineering Depart-
ment, Massachusetts Institute of Technology. She
is also an Associate Professor of wireless net-
works and communications engineering with King
Saud University. She has published many arti-
cles internationally. Her research interests include
distributed systems, bio-inspired engineering, and
wireless and P2P networks.

FADWA EZZAT received the master’s degree in computer science from King
Saud University. Her research interests include bio-inspired engineering and
cloud computing.

LINA ALTOAIMY received the B.Sc. degree in
computer applications in 2002 and the M.Sc.
degree in computer science from King Saud Uni-
versity, Saudi Arabia, in 2006, and the Ph.D.
degree in computer science from Florida Atlantic
University, Boca Raton, FL, USA, in 2016. He is
currently an Assistant Professor with the Infor-
mation Technology Department, King Saud Uni-
versity. Her research interests include vehicular
networks, wireless sensor network, cloud
computing, IoT, and trust managements.

56748 VOLUME 6, 2018

H. Kurdi et al.: MultiCuckoo: Multi-Cloud Service Composition Using a Cuckoo-Inspired Algorithm for the IoT Applications

SYED HASSAN AHMED (S’13–M’17–SM’18)
received the bachelor’s degree in computer sci-
ence from the Kohat University of Science and
Technology, Pakistan, and the combined master’s
and Ph.D. degrees from the School of Computer
Science and Engineering, Kyungpook National
University (KNU), South Korea. He is currently
an Assistant Professor with the Department of
Computer Science, Georgia Southern University,
Statesboro Campus, USA. Previously, he was a

Post-Doctoral Fellow with the Department of Electrical and Computer
Engineering, University of Central Florida, Orlando, FL, USA. In summer
2015, he was also a Visiting Researcher at the Georgia Tech, Atlanta, GA,
USA. Collectively, he has authored/co-authored over 130 international pub-
lications, including journal articles, conference proceedings, book chapters,
and three books. In 2016, his work on robust content retrieval in future vehic-
ular networks lead him to win the Qualcomm Innovation Award at KNU,
South Korea. His research interests include sensor and ad hoc networks,
cyber-physical systems, vehicular communications, and future internet.

KAMAL YOUCEF-TOUMI received the B.S.
degree inmechanical engineering from theUniver-
sity of Cincinnati, Cincinnati, OH, USA, and the
M.S. and Sc.D. degrees in mechanical engineer-
ing from the Massachusetts Institute of Technol-
ogy (MIT), Cambridge, MA, USA, in 1981 and
1985, respectively. He joined the Mechanical
Engineering Department Faculty, MIT, in 1986,
as an Assistant Professor. Prior to Faculty appoint-
ment, he was a Research Associate and a Lecturer

with the Department. His research interests include modeling, design, instru-
mentation, and control systems theory and their applications to dynamic
systems. In the control systems area, his research has focused more on
controller design for systems with unknown dynamics, and in particu-
lar, the development of control techniques with fast adaptation capability.
Modeling and simulation of engineering dynamic systems, especially those
with multidisciplinary nature, has also been of a prime interest. The main
applications have included manufacturing, robotics, automation, metrology,
smart grids, and some in the nano/biotechnology areas. He has taught courses
in the areas of modeling and controls of dynamic systems; robotics, automa-
tion, mechatronics, and precision machine design.

VOLUME 6, 2018 56749

	INTRODUCTION
	BACKGROUND
	WEB SERVICES AND CLOUD COMPUTING
	SERVICE COMPOSITION (SC)
	CUCKOO-INSPIRED ALGORITHMS

	RELATED WORK
	SINGLE CLOUDS SERVICE COMPOSITION
	MULTI CLOUDS SERVICE COMPOSITION

	SYSTEM DESIGN
	SYSTEM MODEL
	SIMILARITY SCALER
	CLOUD COMBINER

	EVALUATION METHODOLOGY
	MATERIAL LIST
	HYPOTHESIS AND PARAMETERS
	MCE SIMULATOR
	PERFORMANCE EVALUATION
	RESULTS AND DISCUSSION
	NUMBER OF EXAMINED SERVICES
	NUMBER OF COMBINED CLOUDS
	AVERAGE RUNNING TIME

	CONCLUSION
	REFERENCES
	Biographies
	HEBA KURDI
	FADWA EZZAT
	LINA ALTOAIMY
	SYED HASSAN AHMED
	KAMAL YOUCEF-TOUMI

