
Received August 2, 2018, accepted September 12, 2018, date of publication September 28, 2018, date of current version October 25, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2872452

Efficient Parallel Connected Component Labeling
With a Coarse-to-Fine Strategy
JUN CHEN , KEISUKE NONAKA, HIROSHI SANKOH, RYOSUKE WATANABE,
HOUARI SABIRIN, AND SEI NAITO
Ultra-realistic Communication Group, KDDI Research, Inc., Fujimino 3568502, Japan

Corresponding author: Jun Chen (ju-chen@kddi-research.jp)

ABSTRACT This paper proposes a new parallel approach to solve connected components on a 2-D binary
image. The following strategies are employed to accelerate neighborhood exploration after dividing an
input image into independent blocks: 1) in the local labeling stage, a coarse-labeling algorithm, including
row-column connection and unification, is applied first to reduce the complexity of an initialized local label
map; a refinement algorithm is then introduced to merge separated sub-regions from a single component; and
2) in the block merge stage, we scan the pixels on the block boundary instead of solving the connectivity of
all the pixels. With the proposed method, the length of label-equivalence lists in both the local labeling
stage and global labeling stage are compressed and the number of memory accesses is reduced. Thus,
the efficiency of connected component labeling is improved. The proposed strategies are illustrated using
4-neighbor connectivity, and the case of 8-neighbor connectivity is also discussed. The YACCLAB data sets,
including both synthetic and real images, are used to evaluate the new algorithm and compare it to existing
algorithms. The comparative results show that the proposed new algorithm outperforms the other approaches
in both the 4-neighbor connectivity and 8-neighbor connectivity cases.

INDEX TERMS Connected component labeling, parallel computation, real-time image processing, opti-
mization method.

I. INTRODUCTION
Connected component labeling (CCL) is a task that gives a
unique ID to each connected region in an image. It means
that the input data are clustered as separate groups where
the elements from a single group share the same ID. As a
basic data clustering method, CCL is widely used as a tool
for object detection and classification in the field of com-
puter vision and image processing [1]–[5]. Song et al. [6]
presented a motion-based skin region of interest detection
method using a real-time CCL algorithm to reduce execution
time. A fast 3D shape measurement technique using blink-
dot projection patterns has been reported [7], [8] that utilizes
a CCL algorithm to compute the size and location of each dot
on captured images. P. Guler et al. proposed a real-timemulti-
camera video analytics system [9] employing CCL to perform
noise reduction. Acting as a fundamental operation in appli-
cations, especially in real-time applications, the acceleration
of CCL is an important task [10], [11].

Numerous studies have proposed ways to speed up CCL.
The proposed solutions implemented on CPU can be sum-
marized into two classes: label propagation and label

equivalence algorithms [10]. The approaches [12], [13] based
on label propagation often find an unlabeled pixel using
raster scan and give it an unused label; the label is then
propagated to all the pixels in the same region in an irregular
approach such as tracing the object’s contour [14]. These
approaches are not suitable for parallel and hardware imple-
mentation because of the existence of the irregular scan.
The methods [15]–[18] based on label-equivalence solve the
CCL issue with multiple raster scans. A provisional label,
often associated with the pixel position in the image,
is assigned to each pixel in the first scan; the label-
equivalence lists are constructed based on pixel connectivity
and resolved with root-find algorithms in the subsequent
steps. Since the pixels are processed in a regular way, it is
feasible for these methods to be extended to parallel and
hardware implementation [19], [20].

Until recently, the use of GPUs with interfaces such
as CUDA [21] or OpenCL [22] have found countless
applications in both industry and academia. The parallel
extension and improvement of serial CCL algorithms are sig-
nificant advances toward enhancing real-time performance.

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

55731

https://orcid.org/0000-0002-9358-5559


J. Chen et al.: Efficient Parallel Connected Component Labeling With a Coarse-to-Fine Strategy

For algorithms implemented on GPUs, data parallelization
across multiple processors [23], [24] plays an important
role in computing with multiple processing elements. Gen-
erally, the different data parallelization approaches lead to
different computation algorithms. Consequently, the reported
solutions for CCL on GPUs can be classified into three
types: pixel-based algorithms, block-based algorithms, and
line-based algorithms. The first type extends label-
equivalence-based algorithms into parallel ones directly by
considering each individual pixel or the pixels in a small
group as a computation unit. The other two types first divide
the input image into independent sections, blocks or lines,
and then perform local labeling and sectionmerge to solve the
CCL issue.

In this study, we propose a block-based solution to reduce
the number of iterative operations by exploring the benefit
of two-dimensional pixel distribution. Its main contributions
are: (1), in the local labeling stage, row-column unification
is performed using shared memory to reduce the complexity
of an initialized local label map. It shortens the path to reach
the root of a pixel and thereby reduces the number of atomic
operations. (2), in the block merge stage, connectivity analy-
sis is conducted for the pixels on the block boundary, but not
for all the pixels, to reduce the number of memory accesses.
In the following sections, we will outline our method in the
case of 4-neighbor connectivity, prove the positive effects of
the coarse-to-fine strategy, and demonstrate its performance
by comparing it to existing algorithms across a range of test
datasets.

II. PREVIOUS WORK
A. PIXEL-BASED CCL ALGORITHM
Label-equivalence [25] is an algorithm that records the lowest
label that each label is equal to form label-equivalence lists
in the first pass, and resolves the equivalence in the other
scans. In many cases, the first pass of this method gener-
ates several disjoint equivalence lists for a single connected
region so that it has to scan the input iteratively to find a
final label map. Its operation model is expressed in Fig. 1.
Jung and Jeong [26] solved the CCL issue by interactively
executing six phases, comprising initialization, scan, anal-
ysis, link, label, and rescan. In the scan and link phases,
they introduce specific masks to construct label-equivalence
lists. In the analysis and label phases, they find the roots by
tracing each list. Kalentov et al. [27] improved the label-
equivalence technique in terms of memory consumption and
processing steps, which removed the reference array and
atomic operations in the scan phase. Soh et al. [28] proposed
a direction-based searching method that obtains the mini-
mum label by tracing the branches derived from a focused
pixel in four or eight directions. Block-equivalence [29] is
another extension of the label-equivalence solution. It uses
a superpixel block instead of individual pixels taking into
consideration that the pixels located in a 2 × 2 block share
the same label. It is an effective approach because it reduces
the number of candidate pixels for the connectivity test.

FIGURE 1. Operation model of [25]. (a) The label map is initialized with
the raster scan order. Each pixel examines its neighbors to obtain the
lowest label. (b) The lowest label is put into a list to form a label-
equivalent chain. (c) The label map is updated by solving the label
equivalence. It can be seen that a single connected region is divided
into several disjoint equivalence lists. Each pixel examines its
neighbors again after update. (d) The lowest label is put into
a list to form a new label-equivalent chain.

The main drawback of these pixel-based algorithms is that
a single label-equivalence list cannot be constructed for one
connected component in one scan. Consequently, the ker-
nels of these algorithms should be spawned several times to
guarantee that no disjoint equivalence lists exist for a single
region. Even though some of them reduce the number of
iterations at some level, they still need to scan the input
image multiple times. Moreover, the iterations might vary
dramatically in different images.

B. BLOCK-BASED CCL ALGORITHM
The parallel version of the union-find algorithm [31] is
presented by Oliveria and Lotufo [32]. They executed two
merges successively, local and global merges, to overcome
the drawback that a long path may need to be followed to
reach the root of a label equivalence list. Although this algo-
rithm outperforms most of the pixel-based CCL algorithms
because all the kernels are spawned only once, searching
for the root of a specific pixel is computationally heavy.
Stava and Benes [30] designed a solution in a similar manner.
In the local merge stage, they improved the label-equivalence
algorithm by implementing all iterations inside the kernel,
such that no synchronization between host and device is
required. In the global merge stage, they use the connec-
tivity of the border elements of two neighboring blocks
to merge their equivalence lists. It is necessary to perform
global merge several times to guarantee that all equivalence
lists are merged. Its operation model is expressed in Fig. 2.
Kumar et al. [33] implemented the CCL algorithm using
a divide and conquer technique [34] on CUDA, which solves

55732 VOLUME 6, 2018



J. Chen et al.: Efficient Parallel Connected Component Labeling With a Coarse-to-Fine Strategy

FIGURE 2. Operation model of [30]. (a) An input image is divided into
independent blocks. Each block is assigned to different GPU processors
to utilize shared memory to accelerate the processes of block unification.
(b) Each block is initialized individually and unified by the label-
equivalence method. (c) A local label map after block unification.
(d) The label-equivalence method is applied to boundary elements
iteratively to merge the blocks.

the local connection using the Floyd-Warshall algorithm [35]
and merges blocks by considering three different cases. Here,
the various processing approaches for the three cases lead to
thread divergence thus limiting the performance.

C. LINE-BASED CCL ALGORITHM
Chen et al. [37] proposed a two-scan approach, an extension
of the stripe-based CCL method [38], to carry out stripe
extraction and stripe union, respectively. The first scan can
run in parallel by using sharedmemory, while the second scan
is a sequential operation. ACCL [39] is another parallelization
algorithm that decomposes the image into rows. By defining
a span as a group of pixels that are located contiguously in
a row with the same intensity, it spawns two kernels, find
and merge spans, to label an input image. The involvement
of dynamic parallelism means that good performance can
be achieved. However, it is not suitable for processing large
images because there is a limitation on the number of threads
in one block [40]. Yonehara and Aizawa [36] proposed a
line-based solution that accelerates the local labeling phase
by conducting row unification using shared memory. The
absence of the union-find algorithm makes it label each
individual line efficiently in the first scan, while the global
merge follows the method of the label-equivalence approach.
Its operation model is expressed in Fig. 3.

III. ALGORITHM AND IMPLEMENTATION
We assume that a pixel in an image has three attributes,
comprising position, intensity, and label. Position means its

FIGURE 3. Operation model of [36]. (a) An input image is divided into
independent lines, each line is assigned to different GPU processors to
utilize shared memory to accelerate the processes of line unification.
(b) Each pixel examines its neighbors on the left to form horizontal
label-equivalence lists. (c) Each line is unified by a root-find algorithm,
and local labels are converted to global labels. (d) The label-equivalence
method is applied to the entire input image to merge each line.

raster scan order in row-major form, which can be expressed
by P(x, y) = x+ y∗W . Here (x, y) is its 2D coordinate in the
image. (H ,W ) is the resolution of the image. Intensity is the
color intensity of a pixel, which can be expressed by I (x, y).
In our implementation, I (x, y) = 1 when a pixel belongs
to the foreground, and I (x, y) = 0 when it is background.
Label L(x, y) is what we should find to depict each connected
region.

There are three steps in our method to solve the compo-
nent labeling of an image. In the first step, we divide the
input image into blocks and perform local labeling with a
coarse-to-fine strategy. In the second step, we examine the
connectivity of pixels on the block boundary to form global
label-equivalence lists. In the last step, the final label map is
obtained by solving equivalence using a root-find algorithm.

A. LOCAL LABELING WITH COARSE-TO-FINE STRATEGY
The first step, local labeling with a coarse-to-fine strat-
egy, consists of four phases, comprising initialization, coarse
labeling, refinement, and ID conversion.

1) INITIALIZATION
In our algorithm, each pixel should first be assigned a provi-
sional label so that a connection-list can be constructed and
solved. We define L(x, y) = P(x, y) so that the provisional
label of (x, y) corresponds to its 2D position. In this way,
the root of a label equivalence list is the element whose label
equals the raster scan order of the element itself. The process
of initialization is illustrated by Fig. 2 (a) and (b) where
(a) shows that a (H ,W ) = (16, 16) binary image is split

VOLUME 6, 2018 55733



J. Chen et al.: Efficient Parallel Connected Component Labeling With a Coarse-to-Fine Strategy

FIGURE 4. Coarse labeling. (a) Label-equivalence list after row scan.
(b) Label-equivalence list after column scan. (c) Local label map after
row-column unification.

into four sub-images with a resolution of (Hs,Ws) = (8, 8);
(b) presents an example of an initialized local label map. The
grey elements on the image, I (x, y) = 1, express foreground
pixels. In our CUDA implementation, we dispatch the sub-
images to various GPU thread blocks where the threads can
cooperate with each other using shared memory and can be
synchronized [41]. The provisional labels and pixel positions
are associated with the thread ID within a thread block.
Thread synchronization is necessary because the buffer could
not be initialized by multiple threads at the same time.

2) COARSE LABELING
In an initialized local label map, the provisional label of the
left pixel and that of the upper pixel are always smaller than
the label of a target pixel, while the upper one is always the
minimum. Based on this fact, we scan rows and columns
successively to build a coarse label-equivalence list. In the
case of a row scan, we associate two horizontal neighbor
pixels by updating the label of the right one with the label of
its left neighbor L(x, y) = L(x − 1, y) if both of them are
foreground I (x, y) = I (x − 1, y) = 1. Label-equivalence
trees are constructed for consecutive foreground pixels in
each row as presented in Fig. 4 (a). The scanning approach in
the vertical direction is performed in the same manner where
the association in the horizontal direction is replaced by the
association in the vertical direction if all three pixels are
foreground I (x, y) = I (x− 1, y) = I (x, y− 1) = 1. Fig. 4 (b)
presents a demonstration of coarse label-equivalence lists
after row-column scan. The same result can be achieved by
comparing the labels of the above-mentioned three pixels
directly at the same time. However, we find that the proposed
method is faster because it does not involve branch divergence
and boundary-related operations. Furthermore, this method
records the lowest neighbor label that the label is equivalent to
but does not attempt to record the entire equivalence. Its mem-
ory access complexity is reduced due to the utilization of
shared memory. Fig. 4 (c) illustrates the roots of each list and
the coarse local label map after solving equivalence. It should
be noted that this step can not provide a complete segmenta-
tion but splits a connected region into several groups.

3) REFINEMENT
This phase is a task that involves to merging the segments that
belong to a single region. As shown in Fig. 5 (a), three isolated

FIGURE 5. Refinement. (a) A single region segmented into three disjoint
components. (b) A label-equivalence list was constructed by another
row-scan. (c) Unified label map of a single region.

sub-regions exist in one connected region. The pixels in the
ellipse are the branch dividing points that lead connected
pixels to different label-equivalence lists. The operations in
coarse labeling define that the label of p(x, y) associates with
the label of p(x, y − 1) if pixels p(x, y), p(x − 1, y), and
p(x, y− 1) are foreground. This associativity separates three
connected pixels into two groups G(1) = {p(x − 1, y)} and
G(2) = {p(x, y), p(x − 1, y)}. It is found that the branch
dividing points are in the horizontal direction so that the sub-
regions can bemerged by performing another row unification.
New label-equivalence lists are constructed for consecutive
foreground pixels in each row.When two horizontal neighbor
pixels have different labels, we put the label into the list if it
is lower than the label currently in the list. Fig.5 (b) shows
the label-equivalence list of the example. It demonstrates that
three isolated sub-regions are associated with each other by a
list with three elements, which is a major reduction compared
to the other methods. Finally, the region is unified using a
root-find algorithm as shown in Fig. 5 (c). It should be noted
that atomic operations are necessary here because the same
equivalence list may be updated by multiple threads at the
same time.

4) ID CONVERSION
The final local labeling phase is an ID conversion process
that converts the local label to a global label and transfers the
result to global memory. The global label identifies the raster
scan order of a pixel in the entire image as shown in Fig. 6.

B. BLOCK MERGE WITH BOUNDARY ANALYSIS
In the block merge phase, we perform a connectivity test for
the pixels on the block boundary to merge a single connected
component that exists in different blocks. Assuming the block
configuration of local labeling is

{
bx , by, 1

}
, the number of

border pixels along the x−axis Nx and the number of border
pixels along the y−axis Ny can be determined as follows:

Nx =
⌊
H / by

⌋
∗W −W , (1)

Ny = bW / bxc ∗ H − H , (2)

Here, bxcmeans the largest integer smaller or equal to x. It is
found that the number of candidate pixels for the connectivity
test get reduced by H×W

Nx
times for boundary analysis along

the x−axis and H×W
Ny

times for boundary analysis along the
y−axis.

Similar to coarse labeling, we scan the vertical boundary
and the horizontal boundary successively. If two neighbor

55734 VOLUME 6, 2018



J. Chen et al.: Efficient Parallel Connected Component Labeling With a Coarse-to-Fine Strategy

FIGURE 6. Label map after local labeling.

FIGURE 7. Global label-equivalence construction. (a) A single region with
three disjoint components. (b) A global label-equivalence list created by
connecting the roots of three components.

pixels are foreground, we put the smaller label into the label
equivalence list. As shown in Fig. 6, the pixels in rectangles
are boundary pixels, and the arrows show the association
between pixels. Fig. 7 (a) presents a connected region that
is composed of three sub-regions from three blocks. It can
be seen that the boundary analysis provides the opportunity
to connect the three sub-regions together. Fig. 7 (b) gives
a global label-equivalence list by putting the root of each
sub-region into the list. Here, the depth of the list is three,
showing that the depth of the global label-equivalence list is
not related to the image resolution but is related to the num-
ber of blocks. In our implementation, max{Nx ,Ny} threads
should be invoked to integrate the boundary analysis along the
x− and y−axes into one kernel.

C. UPDATE GLOBAL LABEL MAP
The final global label map represents the complete
segmentation of an input image where every equivalence list
corresponds to an unbroken connected component. The inde-
pendent blocks are associated as an entirety after boundary

analysis, such that the roots of global label-equivalence lists
can be obtained by using a root-find algorithm.

IV. COMPARATIVE EVALUATION
In order to demonstrate the performance of our method,
we compare it to the following approaches.

- C2FL as our proposed method.
- RC2FL as a revised version of our method with coarse
labeling only along row.

- CC2FL as a revised version of our method with coarse
labeling only along column.

- NC2FL as a revised version of our method with no
coarse-to-fine strategy. It is a fact that the local merge
process of NC2FL is the same as that of UF [32].

- LE [27] as a conventional pixel-based label equivalence
solution.

- SMCCL [30] as amore recent block-basedmethod using
shared memory.

- UF [32] as a more recent block-based method using a
union-find method.

- LUF [36] as a more recent and fast representative of the
line-based method.

There are two kinds of comparative experiments. The first
is an evaluation of the effectiveness of the coarse-to-fine strat-
egy which compares C2FL to RC2FL, CC2FL, and NC2FL.
It should be noted that local labeling works correctly if
refinements along both rows and columns are applied even
without coarse labeling. When each individual pixel is con-
sidered as a sub-region of a single connected region, the third
phase, refinement, is able to generate an entire local label-
equivalence list. In fact, this is what UF [32] used in the local
labeling stage. The significance of coarse labeling is that it
allows local merge to be performed efficiently. The second
is a comparison with other existing CUDA-based algorithms.
The execution times of C2FL, LE, SMCCL, UF, and LUF for
datasets [42] are listed.

All the experiments were performed on a PC Intel(R)
Core(TM) i7-6700K CPU, 4.00 GHz & 4.00 GHz, 32.0 GB
RAM, NVIDIA Geforce GTX 1070 with Windows 7 Profes-
sional Service Pack 1. All the algorithms were implemented
in C++ language using OpenCV 2.4.13 and CUDA 8.0. For
the reported execution time, the average over 100 runs on
every image is collected to remove any fluctuations caused by
the other tasks executed by the operation system. Meanwhile,
we touched all the memory before use to avoid counting the
allocation time. All the algorithms were implemented based
on 4-neighbor connectivity.

A. EFFECTIVENESS OF COARSE-TO-FINE STRATEGY
There are two significant factors in one thread block that
affect the efficiency of local labeling, the number of itera-
tions and atomic operations. Iteration refers to the process of
iterating an operation such as tracing a label-equivalence list
to find its root. Most of the algorithms that are expressed in
C++ language take only a few lines. However, there may
be thousands of instructions that are executed on hardware.

VOLUME 6, 2018 55735



J. Chen et al.: Efficient Parallel Connected Component Labeling With a Coarse-to-Fine Strategy

FIGURE 8. Iteration and atomic operation versus image size. (a) Iteration
versus the image size. (b) Atomic operation versus the image size.

Generally, the number of iterations reflects the number of
instructions and the program execution time. Atomic opera-
tions are a kind of processing performed without interference
from any other threads. They are often essential for multi-
threaded applications to prevent race conditions, especially
when different threads attempt to modify the same memory
address. If two or more threads perform an atomic operation
at the same memory address at the same time, those oper-
ations will be serialized. This means that the more atomic
operations there are the slower the execution.

In our evaluation, the CUDA thread block was configured
as

{
bx = 16, by = 16, 1

}
. We use a set of square binary

images with various resolutions and random noise to show the
difference in the number of iterations as well as the number
of atomic operations among C2FL, RC2FL, CC2FL, and
NC2FL. There are nine different foreground densities, from
0.1 to 0.9, and eight resolutions, from a low resolution of
32×32 pixels to amaximum resolution of 4096×4096 pixels.
There are ten images for every couple of size and density.
The experiments provide us with an opportunity to evaluate
the performance of the coarse-to-fine strategy in terms of the
scalability of the number of pixels and the scalability of the
density of connected regions.

Fig. 8 shows how the iterations and atomic operations of
different algorithms change with images of increasing size.
Here, the foreground density is 0.5, which remains the same
in all the images. The reported results were the average of
all the launched thread blocks of 100 runs of each algorithm.
As presented in (a) of Fig. 8, it can be seen that the iterations
for coarse-labeling, regardless of whether it is full coarse-
labeling or partial coarse-labeling, are computationally heav-
ier than those for NC2FL when the number of pixels is
less than 65535 (256 × 256 image), while these iterations

FIGURE 9. Iteration and atomic operation versus foreground density.
(a) Iteration versus foreground density. (b) Atomic operation versus
foreground density.

FIGURE 10. Number of iterations expressed by color map. (a) NC2FL.
(b) CC2FL. (c) RC2FL. (d) C2FL.

are equal to or less than those of NC2FL when the num-
ber of pixels of an image exceeds 65535. The phenomenon
is explicable because the local label-equivalence list of a
low-resolution image is short. Under these circumstances,
compression by coarse labeling can not reduce but rather
increases the number of iterations. The linear independence
of the number of atomic operations with respect to image
size can be observed in (b) of Fig. 8. The proposed algorithm
always takes the fewest atomic operations to segment a local
image.

Fig. 9 highlights the behavior of the algorithms when the
foreground densities of a 2048×2048 image are varied. It can
be proved that both of the factors have a significant linear
correlation with the foreground densities, and our method
has the best performance among all the densities. This result
is logical because coarse labeling reduces computation com-
plexity by reducing the complexity of an initialized local label
map.

The third experiment demonstrates the efficiency of coarse
labeling using a binary Lena imagewith a size of 2048×2048.
Fig. 10 shows the color map of the maximum iterations of
each thread block of each algorithm where the darker color

55736 VOLUME 6, 2018



J. Chen et al.: Efficient Parallel Connected Component Labeling With a Coarse-to-Fine Strategy

FIGURE 11. Number of atomic operations expressed by color map.
(a) NC2FL. (b) CC2FL. (c) RC2FL. (d) C2FL.

FIGURE 12. Execution time versus foreground density and image pixels.
(a) Execution time versus image pixels. (b) Execution time versus
foreground density.

represents more numerous iterations. It indicates that our pro-
posedmethod solves the CCL issue with the fewest iterations.
Fig. 11 expresses the number of atomic operations in the same
manner. With regard to NC2FL, CC2FL, and RC2FL, we find
that most of the race conditions occur on the blocks holding
pixels from a flat foreground region. Nevertheless, there is no
risk of a race condition for the blocks in C2FL.

B. COMPARISONS WITH EXISTING ALGORITHMS
We first evaluate the algorithms using the same synthetic
images. Fig. 12 (a) shows how the algorithms work with
images of increasing size. The execution time of all algo-
rithms increases linearly with the expansion of input images.
Our method is proved to be scalable and able to outper-
form all the other methods over all the sizes. Another
experimental result, shown in Fig. 12 (b), highlights the
efficiency of the algorithms with images of various fore-
ground densities. It indicates that the computation is efficient
when the foreground density is low or high while the worst
case appears around the middle densities. Lower or higher
densities present simple connections and consequently

FIGURE 13. Sample images from the YACCLAB datasets. (a) 3DPeS.
(b) Fingerprints. (c) Hamlet. (d) Medical. (e) MIRflickr. (f) Tobacco800.

FIGURE 14. Average run-time tests on the datasets with 4-neigbor
connectivity. (a) 3DPeS. (b) Fingerprints. (c) Hamlet. (d) Medical.
(e) MIRflickr. (f) Tobacco800.

less computation, while the middle densities present complex
connections. It can be inferred that our approach has the best
performance among all the densities. It is able to label a
2048× 2048 image with arbitrary density within 1.2 ms
We also run each algorithm on theYACCLABdatasets [42]

to prove the performance of our proposed method.
YACCLAB is a connected component labeling benchmark
that contains an open source platform and a collection of
datasets. All images in YACCLAB are provided in binary
PNG format with black being background and white being
foreground. Fig. 13 presents sample images from the datasets.
The average run-times for each dataset are shown in Fig. 14.
The figure shows that the performance of LE is always the
worst and that our proposed method always outperforms the
others. CCLSM, UF, LUF, and C2FL outperform LE because
they take advantage of shared memory as an input image is
divided into small blocks. They also perform iterations inside

VOLUME 6, 2018 55737



J. Chen et al.: Efficient Parallel Connected Component Labeling With a Coarse-to-Fine Strategy

TABLE 1. Average execution time on YACCLAB datasets in millisecond for different block configurations.

the kernel and do not require synchronization between CPU
and GPU. C2FL outperforms CCLSM, UF, and LUF because
of the coarse labeling strategy that reduces the complexity of
a local block to improve the efficiency of local merge. The
experimental results also show that the proposed method can
provide consistent performance over all the dataset, while
the performances of CCLSM, UF, and LUF vary with the
different datasets.

V. DISCUSSION
A. GPU CONFIGURATION
In a CUDA program, threads are organized in blocks. The
threads in the same block can communicate with each other
because they run on the same stream processor. The number
of threads in a block is limited by the CUDA device archi-
tecture and available shared memory. Multiple blocks are
grouped into a grid to be used for computations that require a
larger number of threads. For a particular CUDA application,
the configuration on the thread block is an important factor
as this affects the execution time. To achieve the highest
efficiency, we examine the proposed algorithm using a set
of thread block configurations, specifically, thread blocks of
size (16 × 16), (16 × 32), (32 × 16), (32 × 32), (16 × 64),
and (64× 16). The average execution time of these cases on
the YACCLAB datasets are provided in Tab. 1. Comparing
these results, the first configuration (16×16) attains the high-
est performance on the Fingerprints, Hamlet, Medical, and
Tobacco800 datasets. The fastest performance on the 3dpes
and Mirflickr datasets is the third configuration (32 × 16).
These results indicate that the performance for a specific
configuration varies depending on the foreground density
and image resolution. Even though it is difficult to give a
configuration that is able to produce the best performance for
all the datasets, the first case (16 × 16) has the potential to
achieve good optimization.

B. 8-NEIGHBOR CONNECTIVITY
In a 2D image, connected components are clusters of pix-
els with the same properties, which are connected to each
other through either 4-neighbor connectivity or 8-neighbor
connectivity. The pixles of 4-neighbor connectivity groups
contact each other on either of their four faces, while the
pixels of 8-neighbor connectivity groups are connected along
a face or corner. The proposed scheme can be extended to

FIGURE 15. Average run-time tests on the datasets with 8-neighbor
connectivity. (a) 3DPeS. (b) Fingerprints. (c) Hamlet. (d) Medical.
(e) MIRflickr. (f) Tobacco800.

resolve the 8-neighbor connectivity problem with two minor
modifications. The first one is that two additional scans in the
diagonal direction should be processed at the local labeling
stage to examine the connectivity of the corner. The second
one is that, in the block merger stage, each pixel on a block
boundary scans the nearest three pixels from a neighbor block
to find a connection across the boundary. To evaluate the
performance of our proposed method with 8-neighbor con-
nectivity, we compared it with BE [29], LE8 [27], and a more
recent CPU implementation PP [43] across the YACCLAB
datasets. BE [29] is a more recent representative of the pixel-
based solution using the block equivalence technique. The
technique assumes the pixels in a 2× 2 block share the same
label. LE8 [27] is an extension of LE with 8-neighbor con-
nectivity. The performance results shown in Fig. 15 indicate
that the proposed method provides an approximately 5×,
7×, and 5× improvement in terms of speed over the BE,
LE8, andCPU implementations, respectively. The results also

55738 VOLUME 6, 2018



J. Chen et al.: Efficient Parallel Connected Component Labeling With a Coarse-to-Fine Strategy

FIGURE 16. Data transfer time between GPU and CPU.

show that the 4-neighbor connectivity case is approximately
1.5-fold faster than the 8-neighbor connectivity case. The
results prove that labeling an image with 8-neighbor connec-
tivity is intrinsicallymore time-consuming because it requires
connectivity tests in the horizontal, vertical, and diagonal
directions.

C. MEMORY CONSUMPTION AND ALLOCATION
The global memory consumption of the proposed methods
is the same as that of UF and LUF, which includes a space
for the input image and a space for the final label map.
LE and CCLSM consume more memory, which requires
another buffer for the relabeling process. The shared memory
consumption of the proposed methods is related to the thread
block configuration. It is 1KB when

{
bx , by, 1

}
is {16, 16, 1}.

The average data transfer times over 100 runs between CPU
and GPU for the YACCLAB datasets are listed in Fig. 16.

VI. CONCLUSION
In this paper, we proposed a novel parallel approach with
a coarse-to-fine strategy to solve the CCL issue in fewer
iterations. Our method first employs coarse labeling to reduce
the complexity of a local block and then applies a refine-
ment to accelerate local labeling. In the block merge stage,
we launch a low number of threads to analyze connectivity
on the block boundary. The results show that the proposed
method is capable of performing CCL with CUDA on GPU.
We evaluated the effectiveness of the coarse-to-fine strategy
and compared it with existing GPU and CPU implementa-
tions. Experimental results show that ourmethod outperforms
all existing parallel approaches. Meanwhile, it proved that
our method has good scalability for various image sizes and
stability for a range of various foreground densities.

REFERENCES
[1] K. Suzuki, S. G. Armato, III, F. Li, S. Sone, and K. Doi, ‘‘Massive training

artificial neural network (MTANN) for reduction of false positives in com-
puterized detection of lung nodules in low-dose computed tomography,’’
Med. Phys., vol. 30, no. 7, pp. 1602–1617, 2003.

[2] K. Suzuki, H. Yoshida, J. Näppi, S. G. Armato, III, and A. H. Dachman,
‘‘Mixture of expert 3D massive-training ANNs for reduction of multiple
types of false positives in CAD for detection of polyps in CT colonogra-
phy,’’ Med. Phys., vol. 35, no. 2, pp. 694–703, 2008.

[3] I. Ahmad, X. Wang, R. Li, M. Ahmed, and R. Ullah, ‘‘Line and
ligature segmentation of urdu nastaleeq text,’’ IEEE Access, vol. 5,
pp. 10924–10940, 2017.

[4] K. Wang, C. Gou, and F.-Y. Wang, ‘‘M4CD: A robust change detec-
tion method for intelligent visual surveillance,’’ IEEE Access, vol. 6,
pp. 15505–15520, 2018.

[5] T. Hirakawa et al., ‘‘Tree-wise discriminative subtree selection for texture
image labeling,’’ IEEE Access, vol. 5, pp. 13617–13634, 2017.

[6] W. Song, D. Wu, Y. Xi, Y. W. Park, and K. Cho, ‘‘Motion-based skin
region of interest detection with a real-time connected component labeling
algorithm,’’Multimedia Tools Appl., vol. 76, no. 9, pp. 11199–11214, 2017.

[7] J. Chen, Q. Gu, H. Gao, T. Aoyama, T. Takaki, and I. Ishii, ‘‘Fast 3-D
shape measurement using blink-dot projection,’’ in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst. (IROS), Nov. 2013, pp. 2683–2688.

[8] J. Chen, Q. Gu, T. Aoyama, T. Takaki, and I. Ishii, ‘‘Blink-spot projection
method for fast three-dimensional shape measurement,’’ J. Robot. Mecha-
tron., vol. 27, no. 4, pp. 430–443, 2015.

[9] P. Guler, D. Emeksiz, A. Temizel, M. Teke, and T. T. Temizel, ‘‘Real-
time multi-camera video analytics system on GPU,’’ J. Real-Time Image
Process., vol. 11, no. 3, pp. 457–472, 2016.

[10] L. He, X. Ren, Q. Gao, X. Zhao, B. Yao, and Y. Chao, ‘‘The connected-
component labeling problem: A review of state-of-the-art algorithms,’’
Pattern Recognit., vol. 70, pp. 25–43, Oct. 2017.

[11] L. Cabaret, L. Lacassagne, and L. Oudni, ‘‘A review of world’s fastest
connected component labeling algorithms: Speed and energy estimation,’’
in Proc. Conf. Design Archit. Signal Image Process. (DASIP), Oct. 2014,
pp. 1–6.

[12] L. He, Y. Chao, and K. Suzuki, ‘‘Two efficient label-equivalence-based
connected-component labeling algorithms for 3-D binary images,’’ IEEE
Trans. Image Process., vol. 20, no. 8, pp. 2122–2134, Aug. 2011.

[13] J. Martín-Herrero, ‘‘Hybrid object labelling in digital images,’’Mach. Vis.
Appl., vol. 18, no. 1, pp. 1–15, 2007.

[14] F. Chang, C.-J. Chen, and C.-J. Lu, ‘‘A linear-time component-
labeling algorithm using contour tracing technique,’’ Comput. Vis. Image
Understand., vol. 93, no. 2, pp. 206–220, 2004.

[15] L. He, Y. Chao, K. Suzuki, and K. Wu, ‘‘Fast connected-component
labeling,’’ Pattern Recognit., vol. 42, no. 9, pp. 1977–1987, Sep. 2009.

[16] L. He, Y. Chao, andK. Suzuki, ‘‘A run-based two-scan labeling algorithm,’’
IEEE Trans. Image Process., vol. 17, no. 5, pp. 749–756, May 2008.

[17] C. Grana, D. Borghesani, and R. Cucchiara, ‘‘Optimized block-based
connected components labeling with decision trees,’’ IEEE Trans. Image
Process., vol. 19, no. 6, pp. 1596–1609, Jun. 2010.

[18] L. He, X. Zhao, Y. Chao, and K. Suzuki, ‘‘Configuration-transition-based
connected-component labeling,’’ IEEE Trans. Image Process., vol. 23,
no. 2, pp. 943–951, Feb. 2014.

[19] C. T. Johnston and D. G. Bailey, ‘‘Fpga implementation of a single pass
connected components algorithm,’’ in Proc. 4th IEEE Int. Symp. Electron.
Design, Test Appl. (DELTA), Jan. 2008, pp. 228–231.

[20] Q. Gu, T. Takaki, and I. Ishii, ‘‘Fast FPGA-based multiobject feature
extraction,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 1,
pp. 30–45, Jan. 2013.

[21] M. Manohar and H. K. Ramapriyan, ‘‘Connected component labeling of
binary images on amesh connectedmassively parallel processor,’’Comput.
Vis., Graph., Image Process., vol. 45, no. 2, pp. 133–149, 1989.

[22] R. Dewar and C. K. Harris, ‘‘Parallel computation of cluster properties:
Application to 2D percolation,’’ J. Phys. A, Math. Gen., vol. 20, no. 4,
p. 985, 1987.

[23] J. Nickolls, I. Buck, M. Garland, and K. Skadron, ‘‘Scalable paral-
lel programming with CUDA,’’ Queue-GPU Comput., vol. 6, no. 2,
pp. 40–53, Mar./Apr. 2008.

[24] J. Sanders and E. Kandrot,CUDA by Example: An Introduction to General-
Purpose GPU Programming, Portable Documents. Reading, MA, USA:
Addison-Wesley, 2010.

[25] K. A. Hawick, A. Leist, and D. P. Playne, ‘‘Parallel graph component
labelling with GPUs and CUDA,’’ Parallel Comput., vol. 36, no. 12,
pp. 655–678, Dec. 2010.

[26] I.-Y. Jung and C.-S. Jeong, ‘‘Parallel connected-component labeling algo-
rithm for GPGPU applications,’’ in Proc. 10th Int. Symp. Commun. Inf.
Technol. (ISCIT), Oct. 2010, pp. 1149–1153.

[27] O. Kalentev, A. Rai, S. Kemnitz, and R. Schneider, ‘‘Connected component
labeling on a 2D grid using CUDA,’’ J. Parallel Distrib. Comput., vol. 71,
no. 4, pp. 615–620, Apr. 2011.

[28] Y. Soh, H. Ashraf, Y. Hae, and I. Kim, ‘‘Fast parallel connected component
labeling algorithms using CUDA based on 8-directional label selection,’’
Int. J. Latest Res. Sci. Technol., vol. 3, no. 2, pp. 187–190, 2014.

VOLUME 6, 2018 55739



J. Chen et al.: Efficient Parallel Connected Component Labeling With a Coarse-to-Fine Strategy

[29] S. Zavalishin, I. Safonov, Y. Bekhtin, and I. Kurilin, ‘‘Block equivalence
algorithm for labeling 2D and 3D images on GPU,’’ Electron. Imag.,
vol. 2016, no. 2, pp. 1–7, 2016.

[30] O. Štàva et al., ‘‘Connected component labeling in CUDA,’’ in GPU
Computing Gems Emerald Edition. Atlanta, GA, USA: Elsevier, 2011,
pp. 569–581.

[31] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. Cambridge, MA, USA: MIT Press, 2009.

[32] V. M. A. Oliveira and R. A. Lotufo, ‘‘A study on connected components
labeling algorithms using GPUs,’’ in Proc. SIBGRAPI, vol. 3, 2010, p. 4.

[33] P. Kumar, A. Singhal, S. Mehta, and A. Mittal, ‘‘Real-time moving object
detection algorithm on high-resolution videos using GPUs,’’ J. Real-Time
Image Process., vol. 11, no. 1, pp. 93–109, 2016.

[34] J.-M. Park, C. G. Looney, and H.-C. Chen, ‘‘Fast connected component
labeling algorithm using a divide and conquer technique,’’ Comput. Appl.,
vol. 4, pp. 4–7, Mar. 2000.

[35] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, ‘‘The floyd-warshall
algorithm,’’ in Introduction to Algorithms, vols. 558–565. Cambridge,MA,
USA: MIT Press, 1990, pp. 570–576.

[36] K. Yonehara and K. Aizawa, ‘‘A line-based connected component labeling
algorithm using GPUs,’’ inProc. 3rd Int. Symp. Comput. Netw. (CANDAR),
Dec. 2015, pp. 341–345.

[37] P. Chen, H. L. Zhao, C. Tao, and H. S. Sang, ‘‘Block-run-based connected
component labelling algorithm for GPGPU using shared memory,’’ Elec-
tron. Lett., vol. 47, no. 24, pp. 1309–1311, Nov. 2011.

[38] H. L. Zhao, Y. B. Fan, T. X. Zhang, and H. S. Sang, ‘‘Stripe-
based connected components labelling,’’ Electron. Lett., vol. 46, no. 21,
pp. 1434–1436, Oct. 2010.

[39] F. N. Paravecino and D. Kaeli, ‘‘Accelerated connected component label-
ing using cuda framework,’’ in Computer Vision and Graphics. Cham,
Switzerland: Springer, 2014, pp. 502–509.

[40] Q. Xu, H. Jeon, and M. Annavaram, ‘‘Graph processing on GPUs: Where
are the bottlenecks?’’ in Proc. IEEE Int. Symp. Workload Characteriza-
tion (IISWC), Oct. 2014, pp. 140–149.

[41] CUDA Nvidia, ‘‘Toolkit documentation v7. 0,’’ Nvidia Corp., Santa
Clara, CA, USA, Oct. 2016. [Online]. Available: http://docs.nvidia.
com/cuda/index.html

[42] C. Grana, F. Bolelli, L. Baraldi, and R. Vezzani, ‘‘YACCLAB–Yet another
connected components labeling benchmark,’’ in Proc. 23rd Int. Conf.
Pattern Recognit. (ICPR), Dec. 2016, pp. 3109–3114.

[43] C. Grana, L. Baraldi, and F. Bolelli, ‘‘Optimized connected components
labeling with pixel prediction,’’ in Advanced Concepts for Intelligent
Vision Systems. Cham, Switzerland: Springer, 2016, pp. 431–440.

JUN CHEN received the Ph.D. degree in sys-
tem cybernetics fromHiroshimaUniversity, Japan,
in 2015. From 2015 to 2016, he was a Post-
Doctoral Researcher with the Robotic Laboratory,
Hiroshima University, with a focus on high-speed
image processing and sensing techniques. In 2016,
he was a Research Engineer with KDDI Research,
Inc., where his main focus is involved in the topics
related to real-time image processing and analysis
with some applications in free viewpoint video.

KEISUKE NONAKA received the Ph.D. degree in
information processing from the Tokyo Institute
of Technology, Japan, in 2014. He joined KDDI
Research, Inc., in 2014, where he is currently a
Research Engineer involving in image process-
ing and computer vision. His research interests
include free viewpoint video, virtual reality, and
3-D model rendering.

HIROSHI SANKOH received the B.E., M.E., and
Ph.D. degrees in information science from Kyoto
University in 2006, 2008, and 2015, respectively.
He joined KDDI Research, Inc., in 2008, and since
2018, he has been engaged in the free viewpoint
video technology field. He is currently a Research
Engineer with the Ultra-Realistic Communication
Group.

RYOSUKE WATANABE received the B.E.
and M.E. degrees in information science from
Hokkaido University in 2014 and 2016, respec-
tively. He joined KDDI Research, Inc., Japan,
in 2016. He is currently a Research Engineer with
the Ultra-Realistic Communications Laboratory,
KDDI Research, Inc.

HOUARI SABIRIN received the Ph.D. degree
in information and communications engineering
from KAIST, South Korea, in 2012. He is cur-
rently a Principal Research Engineer with KDDI
Research, Inc., where his main focus is on top-
ics related to object recognition and analysis with
some applications in free viewpoint video.

SEI NAITO received the B.E., M.E., and Ph.D.
degrees from Waseda University in 1994, 1996,
and 2006, respectively. He joined KDDI Research,
Inc., in 1996, where he is currently the Senior
Manager of the Ultra-Realistic Communication
Group. His research interests include free view-
point video applications and virtual reality.

55740 VOLUME 6, 2018


	INTRODUCTION
	PREVIOUS WORK
	PIXEL-BASED CCL ALGORITHM
	BLOCK-BASED CCL ALGORITHM
	LINE-BASED CCL ALGORITHM

	ALGORITHM AND IMPLEMENTATION
	LOCAL LABELING WITH COARSE-TO-FINE STRATEGY
	INITIALIZATION
	COARSE LABELING
	REFINEMENT
	ID CONVERSION

	BLOCK MERGE WITH BOUNDARY ANALYSIS
	UPDATE GLOBAL LABEL MAP

	COMPARATIVE EVALUATION
	EFFECTIVENESS OF COARSE-TO-FINE STRATEGY
	COMPARISONS WITH EXISTING ALGORITHMS

	DISCUSSION
	GPU CONFIGURATION
	8-NEIGHBOR CONNECTIVITY
	MEMORY CONSUMPTION AND ALLOCATION

	CONCLUSION
	REFERENCES
	Biographies
	JUN CHEN
	KEISUKE NONAKA
	HIROSHI SANKOH
	RYOSUKE WATANABE
	HOUARI SABIRIN
	SEI NAITO


