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ABSTRACT In a cone-beam computed tomography (CT) system, the Feldkamp, Davis, and Kress (FDK)
algorithm produces cone-beam artifacts due to insufficient object sampling in the missing cone region of
frequency space. While total variation minimization-based iterative reconstruction (TV-IR) may reduce
cone-beam artifacts by filling in the missing cone region, it introduces image blurring or noise increase
depending on the regularization parameter. In this paper, we propose a method to reduce cone-beam
artifacts through an optimal combination of FDK and TV-IR images. The method utilizes FDK (TV-IR)
data outside (inside) the missing cone region, which enables to keep the original image quality of the FDK
image and preserve the advantages of the TV-IR image for cone-beam artifact reduction. To validate the
proposed method, we used numerical phantoms composed of Defrise disks, vertical plates, and star objects
and assessed the image quality of FDK, TV-IR, and the proposed method using the mean squared error,
contrast to noise ratio, and structural similarity with different TV-IR regularization parameters. Experimental
validation was also conducted using a spine phantom with a bench-top cone-beam CT system. The results
showed that the performance of the cone-beam artifacts reduction in TV-IR depended on the value of
the regularization parameter, which often produced suboptimal image quality for different imaging tasks.
However, the proposed method provided good image quality regardless of the regularization parameter
values.

INDEX TERMS Artifact correction, computed tomography, cone-beam artifacts, reconstruction algorithms,
total variation regularization.

I. INTRODUCTION
During the past few decades, technical developments in com-
puted tomography (CT) systems have focused on reducing
the scan time, which was achieved by increasing the gantry
rotation speed and the number of detector rows [1]. Although
more detector rows increase the volume coverage in a single
gantry rotation, the subsequent increase in cone angle results
in missing data in the frequency space. According to the cen-
tral slice theorem [2], cone-beam CT acquires fully sampled
data for an iso-centered object but produces a missing cone
region in the frequency space for an off-centered object [3],
as shown in Fig. 1. As a result, the Feldkamp, Davis, and

Kress (FDK) algorithm produces cone-beam artifacts which
become severer as the cone angle increases [4].

Two approaches have been predominantly investigated
to reduce cone-beam artifacts: modifying the data acquisi-
tion geometry and improving the reconstruction algorithm.
Changing the data acquisition trajectory (such as circle and
line, and saddle and helical orbits) helps to reduce the miss-
ing data samples [5]–[9], and modifying the data acquisition
geometry such as inverse geometry CT (IGCT) is effective
for reducing cone-beam artifacts [10]–[15]. However, these
approaches require a long scan time or significant modifica-
tion of the conventional CT system.
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FIGURE 1. (a) The geometry of the cone-beam CT system and the
sampled data (b) for an iso-centered object and (c) for an off-centered
object in the frequency space.

FIGURE 2. A sample coronal image of TV-IR for the two tasks. TV-IR had
optimal λ values of 0.004 and 0.03 in tasks 1 and 2, respectively. The
display window is [0.18 to 0.26 cm−1].

In contrast, algorithmic approaches can be easily adapted
to a conventional CT system, and thus several modified
FDKs (e.g., parallel-FDK, tent-FDK, and weighted-FDK)
have been developed [16], [17]. While they are effective in
cone-beam artifacts reduction with a moderate cone angle
(i.e., less than 5◦), noise amplification and limited perfor-
mance in cone-beam artifacts reduction with a large cone
angle are issues that need to be solved [18], [19]. For a
large cone angle, total variation minimization-based iter-
ative reconstruction (TV-IR) is an effective approach for
cone-beam artifacts reduction [20]–[23]. However, TV-IR
may produce either over-smoothed or noise-enhanced images
depending on the regularization parameter (i.e., λ). The
appropriate selection of λ is important for image quality
optimization in TV-IR, but an optimal λ for a specific task
might not be optimal for other tasks. Fig. 2 shows the sample
coronal images of TV-IR with two regularization parameters
for different tasks, demonstrating that an optimal λ value is
task dependent.

In this paper, we propose an algorithm to reduce the
cone-beam artifacts in FDK through an optimal combination
of the FDK and TV-IR images where the original image
quality of the FDK and the performance of the cone-beam
artifacts reduction in TV-IR are preserved in the combined
image regardless of the λ in TV-IR method. The proposed
method was validated using numerical phantoms including

various object structures and quantitatively evaluated using
the mean squared error (MSE), contrast to noise ratio (CNR),
and structural similarity (SSIM) [24]. Experimental results
using a spine phantom are also presented for a qualitative
evaluation.

II. METHODS
A. A BRIEF REVIEW OF TOTAL VARIATION
MINIMIZATION-BASED ITERATIVE RECONSTRUCTION
The constrained optimization problem for TV-IR is as
follows:

min
f
p(f ) = ‖Mf-g‖22 + λR(f ) (1)

where f is the cone-beamCT volume image,M is the forward
projection operator, g is the projection data, λ is a regular-
ization parameter, and R is a regularization term with total
variation.

Here, R is defined as

cR(fi,j,k ) =
∑
i,j,k

√√√√√ (fi+1,j,k − fi,j,k )2

+ (fi,j+1,k − fi,j,k )2

+ (fi,j,k+1 − fi,j,k )2
(2)

where the cone-beam CT image f is discretized on a 3-D
grid with indices i, j, and k along the x, y, and z directions,
respectively. Eq. (1) is solved using the Gradient Projection
Barzilai-Borwen (GPBB) algorithm [25], [26]. We used the
forward projector proposed by Gao [27], which was imple-
mented with GPU hardware (NVIDIA Tesla S2050) using
parallel computing to minimize the calculation time.

B. THE PROPOSED METHOD
The basic idea of the proposed method is to fill in the missing
cone region of the FDK image using data reconstructed by
the TV-IR method. Since the missing cone region increases
as the cone angle increases, the region filled in by the TV-IR
image is taken differently depending on the cone angle. As a
result, the combined image retains the data for the FDK image
outside the missing cone region and preserves the estimated
data from the TV-IR method in the missing cone region.

The proposed method is as follows:
Step 1: Perform 3D FDK reconstruction fFDK and

TV-IR fTV .
Step 2: Apply a window function to the reconstructed

image to generate subvolumes:

fFDK ,n = wnfFDK (3)

fTV ,n = wnfTV (4)

where wn is a window function to divide the reconstructed
volumes into n subvolumes (n = 1, 2, ...,m). Here, m is the
number of mask sets as described later. The window function
is defined as

wn(z) =

{
0 if |z| < zn−1, |z| > zn
1 if zn−1 ≤ |z| ≤ zn

(5)
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FIGURE 3. A schematic of the proposed method. In each step, the y-z plane in the image domain and the fy -fz plane in the frequency domain are
displayed.

where z0 = 0 and zn determines the boundary of the window
function along the z direction for the subvolumes.
Step 3: Take the 3D Fourier transform (FFT) of the FDK

and TV-IR subvolumes:

FFDK ,n = FFT (fFDK ,n) (6)

FTV ,n = FFT (fTV ,n) (7)

Step 4: For the nth subvolume, construct a mask set based
on the maximum cone angle θmax,n of each subvolume in the
frequency space and perform a masking process:

F ′FDK ,n = Mask1,nFFDK ,n (8)

F ′TV ,n = Mask2,nFTV ,n (9)

where Mask1,n (Mask2,n) is the mask to preserve data out-
side (inside) the missing cone region.
Step 5: For the nth subvolume, add Eqs. 8 and 9 and take

the 3D inverse Fourier transform (IFFT):

fmask,n = IFFT (F ′FDK ,n + F
′
TV ,n) (10)

Step 6: Add all of the subvolumes to produce the final
image volume:

fnew =
m∑
n=1

fmask,n (11)

The overall scheme for the proposed method is illustrated
in Fig. 3 in which three subvolumes are selected to describe
the proposed method.

C. MASK GENERATION
For optimal combination of the FDK and TV-IR images, mask
sets were generated based on the maximum cone angle for
each subvolume.

The maximum cone angle for the nth subvolume is defined
as

θmax,n = tan−1
(

zn
SID− D

)
(12)
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FIGURE 4. (a) The nth subvolume and the corresponding mask set for (b)
FDK and (c) TV-IR images.

where SID represents the source to iso-center distance and D
is half of the reconstructed volume size in the x direction.
Since the FDK algorithm produces the exact dataset out-

side the missing cone region, we define the mask sets as
follows:

Mask1,n =


1 if fr > fr3
2/3 if fr2 < fr ≤ fr3
1/3 if fr1 < fr ≤ fr2
0 if fr ≤ fr1

(13a)

Mask2,n = 1−Mask1,n (13b)

fr1 = fz tan(θmax,n) (14a)

fr2 = fz tan(θmax,n + 1◦) (14b)

fr3 = fz tan(θmax,n + 2◦) (14c)

where fr =
√
f 2x + f 2y . The masks are designed to have a

smooth transition at the boundary of the missing cone region
to avoid artifacts caused by sharp transitions in the frequency
space. Fig. 4 depicts a mask set for the nth subvolume.
To determine the number of mask sets (i.e., m), we track
the value of structural dissimilarity (DSSIM) as a function
of m between the FDK image and the image by the pro-
posed method, and select the m producing the largest DSSIM
defined as

DSSIM (Ifdk , Icombined ) =
1− SSIM (Ifdk , Icombined )

2
(15)

where Ifdk is the FDK image and Icombined is the image
reconstructed by the proposed method for the coronal image
of the subvolume which contains the most severe cone-beam
artifacts.

FIGURE 5. Illustrations of the phantoms: the axial (x-y plane), coronal
(y-z plane), and sagittal (x-z plane) images of (a) the entire phantom,
(b) Phantom 1, (c) Phantom 2, and (d) Phantom 3. The display window is
[0 to 0.35 cm−1].

D. SIMULATIONS
To validate the proposed method, we used a phantom com-
posed of a cylinder, Defrise disks, vertical plates, and star
objects with a maximum cone angle of 13.29◦, as shown
in Fig. 5. The Defrise disk phantom is widely used to examine
the effect of cone-beam artifacts becausemost of the energy is
concentrated within the missing cone region in the frequency
space. The vertical plate phantom has a constant value along
the z direction, and so all energy is distributed within the
fx-fy plane in the frequency space. The star-shaped phantom is
selected since its energy is spread over all frequency regions.
Fig. 6 shows the magnitude of each phantom in the frequency
space.

To generate projection datasets, a numerical phantom was
constructed using 1024 × 1024 × 2048 voxels and voxel
binning was performed into 256 × 256 × 512 voxels to
avoid discretization errors during the forward projection [28].
The geometry of each phantom is described in Table 1. The
finite X-ray focal spot and detector cell size were modeled
with 5 × 5 source and detector lets [29]. The projection
data were calculated using Gao’s method [27] and uniform
Poisson noisewith 2500 photons per detector cell were added.
For the FDK reconstruction, the projection data were fil-
tered with an unweighted ramp filter and voxel-driven back-
projection using linear interpolation was performed. With
the TV-IR method, the iteration was terminated when TV-IR
yielded a steady convergence solution in terms of the mean
squared error measurements. The image was reconstructed
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TABLE 1. Phantom geometry characteristics.

FIGURE 6. Magnitude of (a) the entire phantom, (b) Phantom 1,
(c) Phantom 2, and (d) Phantom 3 in the frequency space. The display
window is [0 to 500 cm2].

using 256 × 256 × 512 voxels with the central 256 ×
256×384 voxels extracted to remove longitudinal truncation.
To improve the computational speed of the TV-IR method,
we used a 1.552 × 1.552 mm2 detector cell size, which was
relatively larger than the pixel size of the clinical cone-beam
CT detector. The simulation parameters are summarized
in Table 2.

To apply the proposed method, the reconstructed image
was segmented into six subvolumes (i.e., maximum DSSIM
withm = 6) using the window function in Eq. 5, where zn was
16.8, 50.4, 84, 117.6, 151.3, and 189.8 mm with maximum
cone angles of 1.20◦, 3.59◦, 5.97◦, 8.33◦, 10.66◦, and 13.29◦,
respectively. Figs. 7 and 8 show the window function and
the mask images generated for each subvolume using the
maximum cone angle. The generated window function and
mask sets were applied to the reconstructed FDK and TV-IR
images to obtain a final image.

FIGURE 7. The plots of window function for the nth subvolume in the
z direction.

TABLE 2. Simulation parameters used in the study.

E. EXPERIMENTS
The bench-top cone-beam CT system included a generator
(Indico 100, CPI Communication & Medical Products Divi-
sion, Georgetown Ontario, Canada), a tungsten target X-ray
source (Varian G-1592, Varian X-ray Product, Salt Lake City,
UT) with a 0.6× 0.6 mm2 focal spot, and a 400× 300 mm2

flat-panel detector (PaxScan 4030CB, Varian Medical Sys-
tems, Salt Lake City, UT) with an anti-scatter grid (Philips
Medical Systems, Best, the Netherlands), as shown in Fig. 9.
To improve the computational speed of the TV-IR method,
the projection data were acquired with 8 × 8 binning
mode, which produced 1.552 × 1.552 mm2 pixel size. The
experimental parameters are summarized in Table 3. The
spine phantom (PR 130, Quart, Zorneding, Germany) shown
in Fig. 9 was scanned and the proposed method was applied.
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FIGURE 8. The fy -fz plane of (a) Mask1,n and (b) Mask2,n for each
subvolume.

FIGURE 9. The bench-top cone-beam CT system with an anti-scatter grid
and a spine phantom.

TABLE 3. Experimental parameters used in the study.

Due to the presence of the anti-scatter grid, the detector center
was aligned to the X-ray source, and thus the maximum cone
angle (8.46◦) was relatively smaller than our simulation set-
ting. For the experimental data, the number of mask sets was
selected as four (i.e., m = 4) since DSSIM was maximized
with m = 4.

FIGURE 10. Sample images and MSE and SSIM values reconstructed by
FDK, TV-IR, and the proposed method from the results of Phantom 1. The
display window of the sample images is [0.2 to 0.3 cm−1].

F. IMAGE QUALITY ASSESSMENT
To analyze the image quality of FDK, TV-IR, and the pro-
posed method, we selected a region of interest for each phan-
tom, as shown in Fig. 5(a) (indicated by the red, yellow, and
green boxes). The quality of the final image was influenced
by the estimation performance of the TV-IR within the miss-
ing cone region, which was controlled by λ. Note that using
a larger λ value reduced the image noise but increased image
blurring.

Thus, the effect of the TV-IR method on cone-beam
artifacts reduction and image blurring was analyzed using
reconstructed images of noiseless projection data. The noise
effect was analyzed further using reconstructed images of
noisy projection data. For each phantom, the image quality
was assessed usingMSE, CNR, and SSIM. The image quality
was calculated from 30 independent noise realizations and the
averaged values were reported.

MSE is defined as

MSE =
1
L

L∑
l=1

(f (l)− fref (l))2 (16)

where f is the intensity value of the reconstructed volume at
pixel l, fref is the intensity value of the reference volume at
pixel l, and L denotes the number of image pixels.

CNR is defined as

CNR =

∣∣µobj − µbg∣∣
σnoise

(17)
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FIGURE 11. Sample images reconstructed by FDK, TV-IR, and the
proposed method from the noisy projection data of Phantom 1. The
display window of the sample images is [0.2 to 0.3 cm−1]. The MSE, CNR,
and SSIM results are reported with 95% confidence intervals.

where µobj and µbg are the mean intensity of the object and
the background regions of each phantom, respectively, and
σnoise is the standard deviation of the noise in the background
region.

SSIM is defined as

SSIM(a, b) =
(2µaµb + c1)(2σab + c2)

(µ2
a + µ

2
b + c1)(σ

2
a + σ

2
b + c2)

(18)

where µa and σa are the mean intensity and standard devi-
ation of reconstructed image a, respectively; µb and σb are
the mean intensity and standard deviation of reference image
b; σab is the covariance between reconstructed image a and
reference image b; and c1 and c2 are constant values. In our
calculation, we used c1 = 6.5× 10−4 and c2 = 2.6× 10−3.

III. RESULTS
For the visual inspection of the image quality improvement
by TV-IR and the proposed method in the numerical phantom
study, we show the sample images with three λ values (i.e.,
0.002, 0.006, and 0.03). Note that the image noise variance of

FIGURE 12. Sample images, and MSE and SSIM values reconstructed by
FDK, TV-IR, and the proposed method from the noiseless results of
Phantom 2. The display window of the sample images is
[0.2 to 0.27 cm−1].

the TV-IR was similar to that of FDK in the axial plane with
a λ value of 0.006. We performed a quantitative evaluation
using three regions for each numerical phantom. Regions 1,
2, and 3 of Phantoms 1 and 3 had maximum cone angles
of 4.29◦, 9.98◦, and 13.29◦, respectively.
Fig. 10 depicts a comparison of the reconstructed noiseless

image of Phantom 1 using FDK, TV-IR with three λ values,
and the proposed method. The MSE and SSIM for each
region are plotted for different λ values. It is evident that
the TV-IR method introduces more blurring as the λ value
increased. It can also be seen that the cone-beam artifacts
are reduced by the TV-IR method. The MSE of FDK is the
highest among the methods and increases as the cone angle
increased. In contrast, TV-IR shows reduced MSE due to its
ability to fill in the missing cone region. It is also apparent
that using a larger λ value increases the MSE of TV-IR due
to the increased image blurring effect despite its contribution
to cone-beam artifacts reduction. This phenomenon is clearly
visible in theMSE plot of Region 3. TheMSE of the proposed
method follows that of the TV-IR method in all regions and
its SSIM shows a similar trend to its MSE.

When the image is reconstructed using noisy projection
data, TV-IR with a small λ value produces higher image noise
than that of the FDK image, as shown in Fig. 11. As a result,
the MSE of the proposed method is lower than that of the
TV-IR method with λ values of less than 0.006 because the
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FIGURE 13. Sample images reconstructed by FDK, TV-IR, and the
proposed method from the noisy projection data of Phantom 2. The
display window of the sample images is [0.2 to 0.27 cm−1]. The MSE,
CNR, and SSIM results are reported with 95% confidence intervals.

increased noise of TV-IR is only reflected in the missing cone
region for the proposed method. As the λ value increases,
the image noise is reduced, and thus TV-IR and the proposed
method show similar MSE values. While the SSIM of TV-IR
displays a similar trend to its MSE, its CNR increases as the λ
value increases and becomes higher than that of the proposed
method when the λ value is larger than 0.006. This result
mainly stems from the reduced noise effect of TV-IR with
larger λ values.

Fig. 12 shows a comparison of the reconstructed noiseless
image of Phantom 2 using FDK, TV-IR with three λ values,
and the proposedmethod. TheMSE and SSIM for each region
are plotted as well. FDK produces an exact reconstructed
image since the energy of Phantom 2 is distributed within the
fx fy plane. In contrast, TV-IR results in image blurring, which
becomes severer as the λ value increases. As a result, theMSE
of TV-IR is higher than that of FDK for Regions 1 and 2 when
λ is greater than 0.006 and for Region 3 at all λ values. It is
evident that the proposed method follows the performance of

FIGURE 14. Sample images, and MSE and SSIM values reconstructed by
FDK, TV-IR, and the proposed method from the noiseless results of
Phantom 3. The display window of the sample images is
[0.18 to 0.23 cm−1].

FDK due to the selective usage of data from FDK and TV-IR.
Furthermore, the SSIM shows a similar trend to the MSE.

When noise is added, the MSE of TV-IR remains higher
than that of FDK and the proposed method in all regions,
as shown in Fig. 13. While the MSE of TV-IR with noiseless
data increases as the λ value increases, the MSE of TV-IR
with noisy data follows a parabolic shape as the λ value
increases, because the effects of noise reduction and image
blurring on image quality compete with each other. Like
Phantom 1, the CNR of TV-IR increases as the λ value
increases. Note that using a large λ value is not the right
choice for the vertical plate phantom in Region 3 due to the
significant image blurring of TV-IR. Overall, the SSIM shows
a similar trend to the MSE for noisy data.

The reconstructed noiseless images of Phantom 3 along
with MSE and SSIM plots are shown in Fig. 14. Since
the proposed method reduces the cone-beam artifact while
retaining the sharpness of the objects, the performance of the
proposed method is suboptimal when λ is less than 0.008.
However, the image blurring of TV-IR with a λ value larger
than 0.008 introducesmore errors in themissing cone regions,
and thus the MSE and SSIM of the proposed method are
better than those of TV-IR. However, when noise is added,
the optimal λ values of the proposed method are changed,
as shown in Fig. 15, and the MSE and SSIM of the proposed
method are better with λ values of less than 0.006 or larger
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FIGURE 15. Sample images reconstructed by FDK, TV-IR, and the
proposed method from the noisy projection data of Phantom 3. The
display window of the sample images is [0.18 to 0.23 cm−1]. The MSE,
CNR, and SSIM results are reported with 95% confidence interval.

than 0.02. Since the signal energy of the star-shaped phantom
is spread over all frequency regions, the positive (i.e., noise
reduction and filling in the missing cone region) and negative
(i.e., image blurring) effects of TV-IR contribute differently
to the final image quality for different λ values. Note that
the CNR of TV-IR increases as the λ value increases due to
reduced image noise.

The results in Figs. 10-15 indicate that the optimal λ
value depends on the imaging task, which would have been
more significant when the object contains various structures.
To assess the overall image quality of the entire phantom,
we calculated the averaged SSIM of Phantoms 1, 2, and
3 since SSIM provided a normalized image quality metric for
different tasks. As shown in Fig. 16, the proposed method
provides the highest averaged SSIM values for all λ values
except for 0.002 with noiseless data, and it has the highest
averaged SSIM values for all λ values with noisy data. Fig. 17
shows examples of the coronal images of the subvolumes
containing all three phantoms reconstructed by FDK, TV-IR,

FIGURE 16. Averaged SSIM values of (a) noiseless and (b) noisy results.

FIGURE 17. (a) A reference coronal image and the corresponding
fy -fz plane. The coronal image examples contained three phantoms and
the corresponding fy -fz plane of the subvolume with a maximum cone
angle of (b) 4.29◦ and (c) 13.29◦ from FDK, TV-IR, and the proposed
method. The display windows of the coronal images and frequency
responses are [0.15 to 0.35 cm−1] and [0 to 150 cm2], respectively. The
red dotted line indicates the missing cone region.

and the proposed method for cone angles of 4.29◦ and 13.29◦,
and the corresponding fy-fz plane of the subvolumes. It can
be seen that FDK produces the missing cone region with
the subvolume of 13.29◦ cone angle, but TV-IR fills in the
missing cone region. The proposed method selectively takes
the data of FDK and TV-IR, thereby achieving the highest
averaged SSIM value.

To examine the image quality of the combined image of the
experimental spine phantom, FDK was performed using two
different interpolation methods during the backprojection:
linear (i.e., FDK (linear)) and four-fold Fourier interpolation
(i.e., FDK (Fourier)) [29]. Note that FDK (Fourier) produces
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FIGURE 18. Coronal images reconstructed by (a) FDK using linear
interpolation and four-fold Fourier interpolation, (b) TV-IR, and the
proposed method with FDK using (c) linear interpolation and (d) four-fold
Fourier interpolation. The upper left corner of each image shows a
magnified view of the yellow circled region. The green arrow indicates the
region of the cone-beam artifacts present in the FDK image. The display
window is [0.1 to 0.4 cm−1].

a much sharper image than FDK (linear) due to the sinc
interpolation during the backprojection. Fig. 18 shows the
reconstructed coronal images of the spine phantom using
FDK (linear), FDK (Fourier), TV-IR with three λ values
(0.0001, 0.004, and 0.06), and the proposed method. Note
that the image noise variance of TV-IR with a λ value
of 0.004 was similar to that of FDK (linear) in the axial
plane. FDK (linear) and FDK (Fourier) produce cone-beam
artifacts whereas TV-IR and the proposed method reduce
them effectively, as shown by the green arrow in Fig. 18.
While the coronal images of TV-IR show higher noise with a
λ value of 0.0001 and image blurring with a λ value of 0.06,
the proposed method preserves the original image quality of
the FDK images for all λ values, as shown by the yellow circle
in Fig. 18. Overall, the proposed method provides equivalent
image quality to the FDK image with reduced cone-beam
artifacts.

IV. DISCUSSION AND CONCLUSIONS
A new method to reduce cone-beam artifacts by the optimal
combination of FDK and TV-IR images was proposed. The
proposed method utilizes FDK and TV-IR images selectively
in the frequency space, which enables to retain the original
image quality of FDK and preserve the advantages of TV-IR

in cone-beam artifact reduction. As demonstrated by our
results, it is important to optimize the regularization parame-
ters of TV-IR because its image quality is determined by the
balance between the image blurring effect and noise suppres-
sion. However, it is not feasible to optimize the image quality
of TV-IR using a single regularization parameter for objects
with complex structures. On the other hand, the proposed
method is less influenced by the regularization parameter than
TV-IR and shows overall good image quality.

The proposed method constructs mask sets for filtering
FDK and TV-IR images. We used six (four) mask sets when
attaining the simulation (experimental) data, but the choice of
the number of masks is task dependent. In this work, the mask
sets were defined using a step function in the frequency tran-
sition region. Another alternative is to use a smooth function
(e.g., the cosine function) to obtain a smoother transition
in the frequency region. Since the number of pixels within
the frequency transition region was small (i.e., less than 5),
the performance of the proposed method is similar regardless
of the mask transition type. If the frequency transition region
becomes larger, using a smooth function would be desirable
to avoid residual artifacts caused by the data combination in
the frequency space.

In our results, the image quality of the combined image
used in the proposed method followed that of FDK because
the maximum cone angle was about 13◦, which was only 7%
of the entire dataset. However, if the cone angle is very large
(e.g., in an industrial CT system with a cone angle of more
than 30◦), a more sophisticated technique in data combina-
tion would be necessary to provide similar texture and noise
property to that of the FDK image. One possible solution
is to conduct modulation transfer function (MTF) matching
between the FDK and TV-IR images using the MTF of the
FDK at the iso-center. For a specific cone angle, the MTF
of the TV-IR can be calculated, and the MTF ratio can be
calculated by dividing the MTF of the FDK at the iso-center
by that of TV-IR. Subsequently, this ratio is applied to the
combined volume in the missing cone region, which might
be helpful for providing similar texture and noise property of
the combined image to those of the FDK image.

In TV-IR, the data fidelity term is more important than
the regularization term in reducing cone-beam artifacts,
and unregularized IR may provide the best performance
in cone-beam artifacts reduction [20]. However, noise is
inevitable in real data measurement, and thus the regulariza-
tion term is beneficial for achieving optimal image quality.
In this work, we used the TV-IR method with a regularization
parameter range from 0.002∼0.03. Although not presented
in this paper, we evaluated the image quality of the com-
bined image by the proposed method using a much larger
parameter space (i.e., 0.002∼0.3). The results showed that
the performance of TV-IR varied significantly for different
regularization parameter values, but the proposed method
still provided stable performance for the extended parame-
ter space. Using images reconstructed with more advanced
algorithms such as model-based iterative reconstruction and

54604 VOLUME 6, 2018



S. Choi et al.: Hybrid Approach to Reduce Cone-Beam Artifacts

deep-learning based reconstruction [31], [32] could be used
to improve the performance of the proposed method.

In our simulation, the forward projector was designed
without considering the characteristics of the X-ray source.
Polychromatic X-ray spectra and scattered X-ray photons
degraded the image quality due to beam-hardening and scatter
artifacts. In our experiment, we used an anti-scatter grid to
reduce the scattered photons. However, a small number of
scattered photons were present in the real data measurements,
which seemed to hinder the visualization of the cone-beam
artifacts. This effect would be more significant for scanning
much larger phantoms, and thus appropriate scatter correction
techniques (e.g., beam-absorber array method [33], primary
modulationmethod [34], and scatter kernel models [35], [36])
would be necessary before applying the proposed method.

In conclusion, we proposed a new method that combines
FDK and TV-IR images to retain the data of the FDK
images and to reduce cone-beam artifacts. We observed that
the proposed method obtained good image quality overall
with various object structures regardless of the regularization
parameters.
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