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ABSTRACT In recent years, massive or large-scalemultiple-inputmultiple-output (MIMO) systems that rely
on very large antenna arrays have become a hot topic of research in the field of wireless communications. This
is in part due to the nearly optimum performance and relative simplicity of massive MIMO linear receivers
and transmitters. This paper investigates the performance of maximum-ratio combining linear receivers in
massive MIMO communication systems in terms of signal-to-interference-plus-noise ratio (SINR), bit error
rate (BER), and outage probability. The probability density function (PDF) of SINR is analytically calculated
for the first time and verified by simulation. Due to its complexity, the use of obtained analytical expression
for performance evaluation purposes is prohibitive. Hence, this PDF is approximated by a gamma distribution
and the resulting expression is used to evaluate the outage probability and the BER performance of the
receiver.

INDEX TERMS Massive MIMO systems, maximum-ratio-combining (MRC) receivers, probability density
function, signal-to-interference-plus-noise ratio.

I. INTRODUCTION
The volume of multimedia data traffic in mobile networks
have been exponentially increasing in the past decade [1]
and this trend is set to continue. As a result, the demand
for fast and reliable communication systems will never stop
increasing. One of the techniques that have been employed
to simultaneously increase a communication system’s data
throughput and reliability is the use of multiple-input
multiple-output (MIMO) communication systems that use
multiple antennas at the transmitter and/or the rec-
eiver [2]–[4]. MIMO systems are widely used in modern
communication systems such as the IEEE 802.11 Wi-Fi,
the IEEE 802.16 WiMAX, and third and fourth generations
of cellular networks [3]. In order to allow multiple users to
simultaneously access a communication network, multiuser
MIMO (MU-MIMO) systems emerged as an extension to
MIMO systems. In a cellular MU-MIMO system, multiple
users, each with either a single antenna or multiple antennas,
simultaneously communicate with a multiple-antenna base
station (BS) [4]. Although MU-MIMO systems can serve
multiple users simultaneously, their practical implementation
exhibits some drawbacks: since the users do not communi-
cate among themselves, data cannot be coded at the users’
side [1]. As a result, the BS must have perfect knowledge
of the channel state information (CSI) in order to detect the

conveyed symbols in the uplink transmission, i.e. when the
users transmit their data to the BS [5]. Furthermore, dur-
ing the downlink transmission (when the BS transmits data
towards the users), the transmitter (BS) must make sure that
each user only receives its intended symbols, which in turn
necessitates the exact knowledge of CSI at the BS [6]. As a
result, both in downlink and uplink of MU-MIMO transmis-
sion, the BS needs to have the exact channel information.
Furthermore, in order to achieve high reliability and through-
put, computationally complex techniques, such as multiuser
maximum likelihood (ML) detection for the uplink [7] and
dirty paper coding techniques for the downlink [8] should be
employed. Large-scale MU-MIMO systems, widely known
as massive MIMO systems are a special case of MU-MIMO
in which the number of users and BS antennas are very
large. Typically in a massive MIMO system, hundreds of
BS antennas serve tens of single-antenna users simultane-
ously [9]. With large antenna arrays, conventional signal
processing techniques such as ML detection become pro-
hibitively complex. However it has been shown that when
the number of BS antennas is very large compared to the
number of active users, simple linear processing techniques
achieve nearly optimal results [6]. In fact, when the number
of BS antennas grows significantly larger than the number of
users, the random channel vectors between the users and the
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BS become pairwisely orthogonal, and the effect of small-
scale fading can be averaged out [10]. As a result, even
with simple linear signal processing techniques, such as
maximum-ratio combining (MRC) in uplink or maximum-
ratio transmission (MRT) in downlink, the effects of fast
fading, intracell interference, and uncorrelated noise tend to
disappear [5]. The reduced complexity of massive MIMO
systems compared to MU-MIMO, and their maintaining of
the benefits of MU-MIMO, make massive MIMO systems a
natural choice for the future of wireless cellular communica-
tions [11].

In massive MIMO systems, simple linear detectors such
as MRC, zero forcing (ZF), or minimum mean square
error (MMSE) can achieve nearly optimal results [6]. MRC
receivers maximize the received signal power while neglect-
ing the interference from other users and is thus more suitable
for lower transmission powers. ZF receivers mitigate the
interference from other users while neglecting the effect of
random noise, which makes them more efficient for large-
power transmissions. MMSE receivers maximize the signal-
to-interference-plus-noise ratio (SINR) at the BS and can
yield nearly optimal results in both cases. MMSE and ZF
receivers necessitate the computation of the pseudo inverse
of the channel matrix, which renders them more complex
than MRC receivers. Furthermore, if the channel is not well-
conditioned, the performance of ZF receivers will signifi-
cantly degrade [5], [12]. MRC receivers, on the other hand,
use a very low-complexity algorithm, but yield poor results
in interference-limited scenarios. However, when the number
of BS antennas is at least one order of magnitude greater
than the number of users, there are sufficient degrees of
freedom to effectively mitigate the interference, even using
MRC. In such cases the most efficient choice is to use lower
transmission powers along with an MRC detector.

The analytical calculations of the probability density func-
tion (PDF) of SINR for ZF and MMSE receivers can be
found in the literature: For a massive MIMO system with M
BS antennas and K users, SINRZF is a chi-squared ran-
dom variable with 2(M − K + 1) degrees of freedom [13].
Wang et al. [14] have found a tight approximation for the dis-
tribution of SINRZF considering the channel approximation
error. They used this approximation to obtain a closed form
expression for outage probability and bit error rate (BER) of
a ZF receiver. Ping Li et al. showed that the SINR of aMMSE
receiver can be expressed as the sum of two independent ran-
dom variables SINRMMSE = SINRZF+ τ . Using the random
matrix theory, they approximated the distribution of τ and
used this approximation to obtain SINRMMSE and a closed
form expression for BER under different conditions [15].

For MRC receivers, the analytical expression for the PDF
of SINR has not been calculated. In [16], SINRMRC is
approximated, only for high powers, by a random variable
following a Fisher distribution. This approximation differs
significantly from the actual distribution of SINRMRC for
lower transmission powers; when theMRC receivers aremost
beneficial. Ngo et al. [17] derived a lower bound for the

capacity of massive MIMO systems, including the MRC
receiver. In [18] the BER performance of MRC receivers is
obtained by simulation.

In this paper, we derive an analytical expression for the
exact distribution of SINRMRC under Rayleigh flat fad-
ing conditions. Since this expression is too complicated to
be used for analytical performance evaluation of massive
MIMO systems; the obtained SINRMRC is approximated by
a gamma-distributed random variable for all transmission
power values, under the assumption of large number of users
and BS antennas. This assumption is advantageous to the
high-power assumption of [16], because: i) by definition of
massive MIMO systems, the number of BS antennas is very
large. Therefore our proposed assumption is very realistic for
all massive MIMO systems. And ii) the performance of MRC
receivers is nearly optimal for lower transmission powers and
degrades for higher powers. As a result the approximation
in [16] cannot be used forMRC receivers in the optimal range
of transmission power.

Using the proposed approximation, closed form expres-
sions are obtained for outage probability and BER. Simula-
tion results confirm the validity of derived expressions and
proposed approximations.

A. PAPER ORGANIZATION
The rest of this paper is organized as follows: Section II
presents the system model and preliminaries. Section III
covers the derivation of the exact expression for the PDF
of SINRMRC and its approximation. In Section IV the per-
formance of MRC receiver in massive MIMO systems is
evaluated by calculating closed form expressions for out-
age probability and BER. The numerical results are pro-
vided in Section V and the concluding remarks are drawn in
Section VI.

B. NOTATIONS
Throughout this paper, (.)T and (.)H respectively denote the
transposed and conjugate transposed matrices of a matrix.
‖.‖ is the L2 norm (Euclidean norm) of a vector. 0(x) ,∫
∞

0 tx−1e−tdt denotes the gamma function. E {.} is the
mathematical expectation operator. CN (µ, σ 2) represents
a Gaussian distribution with mean µ and variance σ 2.
G(α, β) ∼ 1

0(α)βα x
α−1e−

x
β and G(α, β, ζ ) ∼ 1

0(α)βα (x −

ζ )α−1e−
x−ζ
β respectively denote two-parameter and three-

parameter (shifted) gamma distributions.

II. SYSTEM MODEL
AmassiveMIMO system containing one BSwithM antennas
andK single-antenna users is considered as depicted in Fig. 1.
This paper addresses the uplink transmission where users
send their data in the same time-frequency resource towards
the BS. The signal is received by M BS antennas. The BS
will use these M signals to estimate the likeliest user sym-
bols. We assume that the transmission is subject to Rayleigh
flat fading with H ∈ CM×K denoting the channel matrix
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FIGURE 1. System model.

between the users and the BS. hmk = [H]mk is the channel
coefficient between the kth user and the mth BS antenna.
The channel coefficients are considered to be independent
and identically distributed (i.i.d.) Gaussian random variables
hmk ∼ CN (0, 1). The users simultaneously transmit their
symbols. s = [s1, s2, · · · , sK ]T is the vector of transmitted
user symbols with E

{
|sk |2

}
= 1. The received signal at

the BS, y ∈ CM×1 is given by (1).

y =
√
puHs+ n. (1)

In (1), pu and n ∈ CM×1 respectively denote average trans-
mission power and the noise vector containing i.i.d. Gaussian
random variables with zero mean and unit variance. Using
this definition, signal-to-noise ratio (SNR)will be equal to pu.
The BS can employ a multiuser ML detection to achieve

optimal performances; however the computational complex-
ity of this algorithm increases exponentially with the number
of users [17]. In massive MIMO systems, the number of BS
antennas and the number of users are large numbers and
the number of BS antennas always exceeds the number of
users. Under such conditions, linear receivers (MRC, ZF, and
MMSE) have nearly optimal performances in spite of their
simplicity [6]. Using linear receivers at the BS, the received
signal is multiplied by a detection matrixA ∈ CM×K forming
K separate streams:

r = AHy. (2)

Substituting (2) in (1) we obtain:

r =
√
puAHHs+ AHn. (3)

If the BS has the perfect CSI, the detectionmatrix for different
receivers is given by [17]. Namely for MRC receiver, where
interference from other users is neglected, we have:

A = H for MRC. (4)

If we denote the kth column of A and H respectively by
ak and hk , the kth element in the vector r can be obtained
from [5]:

rk =
√
puaHk hksk +

√
pu

K∑
i=1
i 6=k

aHk hisi + aHk n. (5)

In this equation,
√
puaHhksk is the desired signal,

√
pu
∑K

i=1,i 6=k a
H
k hisi is the interference caused by other

users, and aHk n denotes the additive noise. The SINR for the
kth user is thus given by:

γk =
pu
∣∣aHk hk ∣∣2

pu
K∑
i=1
i6=k

∣∣aHk hi∣∣2 + ‖ak‖2 . (6)

The exact expression of the distribution of SINR for MRC
receiver has not been analytically calculated. Furthermore,
the approximation given in [16] yields acceptable results
only for large pu, whereas in practice, MRC receivers are
especially interesting when pu is small, such that the bottle
neck of the system is the noise power. In the following section
we will calculate the exact distribution of the SINR for MRC
receivers. For simplicity we will denote SINRMRC by SINR
in the remainder of this paper.

III. PROBABILITY DENSITY FUNCTION OF SINR FOR
MRC RECEIVERS
In this section we will derive analytical and approximate
expressions for the PDF of the SINR of a massive MIMO
system with an MRC receiver.

A. EXACT EXPRESSION FOR DISTRIBUTION OF SINR
FOR MRC RECEIVERS
In an MRC receiver, the detection matrix A is equal to the
channel coefficients matrixH. By substituting ak = hk in (6)
and dividing the numerator and the denominator by pu‖hk‖2,
the SINR for the kth user is obtained:

γk =
‖hk‖2

K∑
i=1 ,i 6=k

∣∣hHk hi∣∣2
‖hk‖2

+
1
pu

. (7)

Let us define X , ‖hk‖2, zi,k ,
∣∣hHk hi∣∣2
‖hk‖2

, and Z ,∑K
i=1,i 6=k zi,k . Equation (7) then becomes:

γk =
X

K∑
i=1 ,i 6=k

zi,k + 1
pu

=
X

Z + 1
pu

, (8)

where X , ‖hk‖2 is the sum of M independent exponential
random variables. Thus X has a gamma distribution G(M , 1)
with probability density function given by fX (x) = xM−1

0(M ) e
−x .

Furthermore zi,k ,
∣∣hHk hi∣∣2
‖hk‖2

is an exponential ran-

dom variable independent of X with fzi,k (zi,k ) = e−zi,k .
Random variable Z is therefore the sum of K − 1 indepen-
dent exponential random variables and will follow G(K −
1, 1) gamma distribution with PDF given by fZ (z) =
zk−2

0(K−1)e
−z [16].

It results from the above discussion, that for a given
value of transmission power pu, the SINR will be a ran-
dom variable γk which is the quotient of a random variable
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X ∼ G(M , 1) divided by the sum of a random variable Z ∼
G(K − 1, 1) plus a constant 1

pu
. Choi et al. [16] neglected the

constant 1
pu

and approximated SINR as γk ≈ X
Z . It is obvious

that this approximation holds only for small values of 1
pu
,

i.e. for high values of transmission power. In this paper we
drop the large-power assumption and define the random vari-
able T , Z + 1

pu
as the sum of a two-parameter gamma

distributed random variable and a constant. Thus T has a
three-parameter (shifted) gamma distributionG(K−1, 1, 1

pu
)

with probability distribution function given by:

fT (t) =

(
t − 1

pu

)K−2
0(K − 1)

e
−

(
t− 1

pu

)
, t >

1
pu
. (9)

Thus SINR can be considered as the ratio of two indepen-
dent random variables: γk = X

T with X ∼ G(M , 1) and
T ∼ G(K − 1, 1, 1

pu
). Since the two random variables are

independent, their joint probability density function is equal
to fXT (x, t) = fX (x)fT (t):

fXT (x, t) =
xM−1e−(x+t−

1
pu

)

0(M )0(K − 1)

(
t −

1
pu

)K−2
(10)

for t > 1
pu

and x > 0. Using the variable transformations,
we can compute

fγk ,T (γ, t) = |J |fXT (tγ, t) (11)

where J is the Jacobian determinant of the transformation:
J = ∂(tγ )

∂γ
= t . This yields:

fγk ,T (γ, t) =
γM−1tMe

1
pu e−(γ+1)t

0(M )0(K − 1)

(
t −

1
pu

)K−2
(12)

for t > 1
pu

and γ > 0. By marginalizing T in (12) we obtain:

fγk (γ ) =
∫
+∞

−∞

fγk ,T (γ, t)dt

=
γM−1e

1
pu

0(M )0(K − 1)

×

∫
+∞

1
pu

tMe−(γ+1)t
(
t −

1
pu

)K−2
dt. (13)

The integral in (13) can be solved using equation (3.383-4)
in [19]:

fγk (γ ) =
e−

γ−1
2pu γM−1

0(M )p
M+K−2

2
u (γ + 1)

M+K
2

×WM−K+2
2 , 1−M−K2

(
γ + 1
pu

)
(14)

where Wλ,µ(z) denotes the Whittaker function. Considering
the relation of Whittaker function to Laguerre polynomials,
L(α)n (z) [20, eq. 13.18.17]:

W α+2n+1
2 , α2

(z) = (−1)nn!e−
z
2 z

α+1
2 L(α)n (z) , (15)

we can further simplify (14) as:

fγk (γ ) = (−1)M
Me

−γ
pu γM−1

(γ + 1)M+K−1
L(1−K−M )
M (

1+ γ
pu

). (16)

Fig. 2 shows the simulation results for the PDF of the
SINR of a MU-MIMO system for different values of pu,
as well as the theoretical result obtained by evaluation of (16).
Also included for comparison is the approximation given

FIGURE 2. PDF of the SINR in a system with a 10-antenna BS and 5 users for different values of signal strength.

VOLUME 6, 2018 53229



J. Beiranvand, H. Meghdadi: Analytical Performance Evaluation of MRC Receivers in Massive MIMO Systems

in [16]. It can be seen that the numerical results confirm
the validity of (14). However, the approximative distribution
of [16] is only valid for large pu and significantly differs from
the real distribution for smaller pu.
Since (14) and (16) are complicated expressions, they can-

not be practically used to derive analytical expressions for
the performance of the system. It is therefore useful to have
a simple approximate expression.

B. APPROXIMATION OF THE DISTRIBUTION OF
SINR IN MRC RECEIVERS
We demonstrated that in general, for a MU-MIMO system
with an MRC receiver, the probability density function is
given by (14) or equivalently (16). The problem with (14)
and (16) is that they are complicated equations and cannot be
used to obtain closed form expressions for the performance
measures of the system such as outage probability or BER.
However, the expression in (16) can be simplified under
certain conditions. For example in [16], the distribution of
SINR for high values of SNR has been approximated by a
Fisher distribution (the resulting expression can be obtained
from (14) by letting pu → ∞). However in massive MIMO
systems, MRC receivers are mostly used in lower SNRs
where the approximation in [16] no longer holds. On the other
hand, in massive MIMO systems, the number of users and
BS antennas is very large with more BS antennas than active
users.

For small values of pu, the argument of Laguerre polyno-
mial in (16) approaches infinity and the polynomial may be
replaced with its highest order term, i.e. (−1)n 1

n! z
n for n = M

and z = (1 + γ )/pu. Furthermore, under this assumption,
the PDF of SINR is nonzero only for small values of γ , that
is when 1 + γ approaches 1. Under these conditions (16)
becomes:

fγk (γ ) ≈
γM−1

0(M )pMu
e−

γ
pu , (17)

which is the PDF of a gamma distributed random variable.
This, along with the fact that when M > K � 1, the form
of SINR distribution resembles that of a gamma distribution,
motivates us to approximate the PDF of SINR with a G(α, β)
distribution:

fγk (γ ) ≈
γ α−1

βα0(α)
e−

γ
β . (18)

In order to find the parameters of the gamma distribution,
we need to calculate the mean and the variance of the random
variable γk . γk being the quotient of two independent random
variables, its mean can be obtained by:

mγk = E {X}E

{(
Z +

1
pu

)−1}
(19)

where

E {X} =
1

0(M )

∫
∞

0
xMe−xdx

=
0(M + 1)
0(M )

= M , (20)

and

E

{(
Z +

1
pu

)−1}

=
1

0(K − 1)

∫
∞

0

(
z+

1
pu

)−1
zK−2e−zdz

= e
1
pu EK−1(

1
pu

). (21)

with En(z) ,
∫
∞

1 e−zt t−ndt denoting the generalized expo-
nential integral function. The mean of SINR is then given by:

mγk = Me
1
pu EK−1(

1
pu

). (22)

We can further simplify mγk by using the following property
of the generalized exponential function [21] and exploiting
the fact that K � 1:

e−x

x + n
< En(x) ≤

e−x

x + n− 1
. (23)

mγk ≈
M

K − 2+ 1
pu

, K � 1. (24)

In order to calculate the variance of γk , using the indepen-
dence of X and Z , we can write:

σ 2
γk
= E

{
X2
}
E

{(
Z +

1
pu

)−2}
− m2

γk
. (25)

where mγk is given by (22) and:

E
{
X2
}
=

1
0(M )

∫
∞

0
x2xM−1e−xdx

=
0(M + 2)
0(M )

= M (M + 1), (26)

and

E

{(
Z +

1
pu

)−2}

=
1

0(K − 1)

∫
∞

0

(
z+

1
pu

)−2
zK−2e−zdz

=

e
1
pu

(
K − 2+ 1

pu

)
EK−2( 1

pu
)− 1

K − 2
. (27)

The variance of SINR is therefore obtained from:

σ 2
γk
= M (M + 1)

e
1
pu (K − 2+ 1

pu
)EK−2( 1

pu
)− 1

K − 2

−

(
Me

1
pu EK−1(

1
pu

)
)2

. (28)

Equation (28) can be further simplified by using the following
property of the generalized exponential function [21]:

nEn+1(x) = e−x − xEn(x). (29)

53230 VOLUME 6, 2018



J. Beiranvand, H. Meghdadi: Analytical Performance Evaluation of MRC Receivers in Massive MIMO Systems

FIGURE 3. PDF of the SINR in a system with pu = 0 dB and for different values of M and K .

Using (29), it can be demonstrated that

ex(n+ x)En(x)− 1
n

= exEn(x)− exEn+1(x)

≈
1

n+ x − 1
−

1
n+ x

. (30)

where the second line follows from (23). The variance of
SINR in (28) then becomes:

σ 2
γk
≈ M (M + 1)

(
1

K − 3+ 1
pu

−
1

K − 2+ 1
pu

)

−

(
M

K − 2+ 1
pu

)2

. (31)

Note that (24) and (31) contain only basic arithmetic oper-
ators. Using the mean and variance of SINR in (24) and (31),
we can determine the parameters of gamma distribution:

β =
σ 2
γk

mγk
, (32)

α =
m2
γk

σ 2
γk

. (33)

Thus, for all massive MIMO systems (provided that M >

K � 1), we can use a gamma distributionG(α, β) with α and
β given by (32) and (33) for the SINR, in order to evaluate
the performance of the system. Fig. 3 shows the simulated
distribution of the SINR of a MU-MIMO system with MRC
receiver with pu = 0 dB for different values ofM and K . The
figure also depicts theoretical distribution of SINR obtained
by (14) and its approximation given by (18). It can be seen

that the derived theoretical expression follows exactly the
simulation result. However the value given by approximation
in (18) differs from the simulation for smaller number of
users. For K � 1 the approximation of (18) is shown to be a
very good approximation of the real distribution of the SINR.

In the next section we will use this approximation to
evaluate some performance measures of massive MIMO
systems.

IV. PERFORMANCE EVALUATION OF MASSIVE MIMO
SYSTEMS WITH MRC RECEIVER
In this section we will use the approximate expression for
SINR given by (18) to evaluate the performance of massive
MIMO systems. Two principal performance parameters are
considered: outage probability and BER.

A. OUTAGE PROBABILITY
Outage probability is an important measure of a communi-
cation system’s performance when the system is subject to
fading. It is defined as the probability that the instantaneous
value of SINR falls under a given threshold [14]:

Poutage(γth) = Pr(γ ≤ γth) =
∫ γth

0
fγk (γ )dγ . (34)

Since the SINR follows a gamma distribution, the outage
probability is given by:

Poutage(γth) =
γ (α, γth

β
)

0(α)
, (35)

where γ (s, x) =
∫ x
0 t

s−1e−tdt is the lower incomplete gamma
function.
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B. BIT ERROR RATE
Another important measure of a communication system’s
performance is its BER. In a slow flat fading communica-
tion channel, the BER can be calculated from the following
integral [22]:

Pb =
∫
∞

0
Pb,AWGN(γ )fγ (γ )dγ , (36)

where Pb,AWGN is the BER for the additive white Gaussian
noise (AWGN) channel. We consider a quadrature amplitude
modulation (QAM), with Pb,AWGN given by [23]:

Pb,AWGN(γ ) ≈
4
(√

m− 1
)

√
m log2(m)

Q(

√
3γ

m− 1
), (37)

where m denotes the modulation order. Substituting (18)
and (37) in (36) yields:

Pb ≈
4
(√

m− 1
)

βα0(α)
√
m log2(m)

∫
∞

0
γ α−1e−

γ
β Q(

√
3γ

m− 1
)dγ.

(38)

The integral in (38) can be computed by numerical methods.
We can also use the simpler approximation of Pb,AWGN given
in [24] to obtain an approximate closed form expression for
BER:

Pb,AWGN(γ ) ≈ 0.2e−
1.5γ
m−1 . (39)

Using this simpler approximation of Pb,AWGN instead of
that given by (37), a closed form approximation for BER is

obtained:

Pb ≈
1

βα0(α)

∫
∞

0
0.2e−

1.5γ
m−1 γ α−1e−

γ
β dγ

=
0.2(

1.5β
m−1 + 1

)α . (40)

V. NUMERICAL RESULTS
In this section we provide Monte Carlo simulation results
in order to verify the proposed equations.1 Fig. 3 showed
the simulated distribution of the SINR of a massive MIMO
system with pu = 0 dB and for different values of M and K .
The figure also includes the theoretical distribution obtained
from (16) and the approximated distribution obtained
from (18) with α and β given by (32) and (33). It can be seen
that while the exact expression of (16) coincides perfectly
with simulation results, the approximated distribution of (18)
deviates from simulation results especially for smaller values
of K .

Fig. 4 depicts the same distribution, this time for a
MU-MIMO system with a 10-antenna BS serving 5 single-
antenna users using MRC detection. Transmission power
varies between−10 dB to 20 dB. Again, it can be seen that the
exact expression of (16) always yields the correct distribution
of SINR, regardless of values ofM , K , and pu. It can be seen
furthermore that even for moderate values of K , if the trans-
mission power is small enough, the approximation in (18)

1All Matlab codes to reproduce simulation results can be downloaded
from https://github.com/hmeghdadi/massive_mimo1

FIGURE 4. PDF of the SINR in a system with M = 10 and K = 5 for different values of pu.
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FIGURE 5. Outage probability for a system with M = 100 and K = 40.

FIGURE 6. BER of a system with K = 50 and M = 100, 200, 400.

is still valid. It is also worth noting that for MRC receivers
increasing the transmission power beyond a certain limit has
no effect on the distribution of the SINR and cannot enhance
the system performance. As a result, the approximation of
[16] which holds only for large values of SNR, cannot be used
to evaluate the performance of massive MIMO systems with
MRC receivers where using powerful mobile transmitters is
not practical and is inefficient. Fig. 5 shows the outage prob-
ability of a massive MIMO system with 100 BS antennas and
40 users. It can be seen that (35) is a very tight approximation
of the outage probability. In Fig. 6, the 4-QAM BER of a
massive MIMO system with 50 users is plotted for 100, 200,
and 400 BS antennas. The figure shows simulated BER as
well as the approximative expressions obtained from (38)
and (40). Both theoretical curves use the gamma distribution
of (18) for the PDF of SINR. However, while the solid-line
curve uses the tighter approximation of (37) for Pb,AWGN,
the dashed-line curve uses the less exact approximation of
(39) for Pb,AWGN. The former results in a better evaluation
of the system but necessitates the integral in (38) to be com-
puted numerically. The simpler approximation of (39) leads
to the closed-form expression of (40), but is a less accurate
prediction of the BER.

VI. CONCLUSION
In this paper, an exact expression for the PDF of SINR of an
MRC receiver for a MU-MIMO system is derived and ver-
ified by simulation. This expression is approximated for all
massive MIMO systems (i.e. when M > K � 1), resulting
in a gamma distribution with relatively simple expressions for
its parameters. The approximate PDF is used to predict the
outage probability and the BER of MRC receivers.
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