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ABSTRACT Hilbert–Schmidt independence criterion (HSIC) is typically used to measure the statistical
dependence between two sets of data. HSIC first transforms these two sets of data into two reproducing
Kernel Hilbert spaces (RKHS), respectively, and then measures the statistical dependence between them
using the Hilbert–Schmidt (HS) operator. This paper proposes a dimension reduction method that is based
on HSIC maximization between the high dimensional data and dimension-reduced data, and it is denoted as
HSIC-NDR. In the proposedmethod, the linear kernel is chosen as the kernel function of the RKHS of the low
dimensional data after reduction, due to the reason that it can express dimensionality reduction data explicitly
from the kernel matrix, thus facilitating the construction of the objective function of the data dimension
reduction algorithm. And the kernel function of the RKHS of the original data set can be appropriately
chosen according to the specific application. Therefore, the dimension reduction algorithm proposed in this
paper can be widely applicable. The experiments are conducted in ten commonly used synthetic and real
data sets in the machine learning area. And five representative data dimension reduction algorithms with
different properties (linear, nonlinear global, nonlinear local, and nonlinear global + local) are used in the
experiment for comparison. The experimental results show that the HSIC-NDR algorithm outperforms those
representative algorithmswithout increasing computational complexity. The proposedHSIC-NDR algorithm
and those representative algorithms are all attributed to Rayleigh’s calculations.

INDEX TERMS Hilbert-Schmidt independence criterion, nonlinear dimensionality reduction; reproducing
Kernel Hilbert spaces.

I. INTRODUCTION
Dimension reduction of data is an important part of machine
learning. With the advent of the era of big data, the prob-
lem of dimensionality disaster is becoming more and more
serious. Therefore, the algorithm of dimension reduction
has also been paid more and more attention. In general,
the data reduction algorithm is divided into two cate-
gories of linear and nonlinear. Some of famous linear data
reduction algorithms include PCA [1], MDS [2], LDA [3],
MAF [4], SFA [5], SDR [6], ICA [7], DML [8], etc. For
nonlinear algorithms, Kernel PCA [9], Kernel LDA [10],
ISOMAP [11], LTSA [12], LPP [13], LE [14], LLE [15],
HLLE [16], Diffusion MAP [17], Sammon Mapping [18],
SNE [19] are prominent. There are many thorough and
comparative reviews on dimensionality reduction such
as [20]–[22] that are all long articles. The first two are

from machine learning theory magazine named ‘‘Journal
of Machine Learning Research’’, while the last one is
from statistics and probability mathematics magazine named
‘‘Statistical Science’’.

Dimensionality reduction can also be regarded as a way
to extract features from data. For example, in [23]–[26],
dimensionality reduction is applied to extract features from
Hyper Spectral Imagery (HSI) data. In [23] and [24], Sep-
NMF(Separate Nonnegative Matrix Fraction) and sparse
matrix fraction are used respectively to extract the most rep-
resentative hyperspectral bands of HSI. In [25], the subspace
methods are exploited to reduce the dimension of HSI. The
original subspace method without any constraint is exactly
the same as the PCA method. In practice, subspace methods
are used with various constraints. In [25], the subspace matrix
is optimized under near-isometric, low-rank and sparse
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constraints. In dimensionality reduction, the high dimen-
sional data are often assumed to lie in a low dimensional sub-
space or submanifold of a high dimensional Euclidean space.
Although these high dimensional data are represented with
high dimensional vectors, they are essentially low dimen-
sional and can be dimensionally reduced. However, in prac-
tice, these high dimensional data are often polluted by noise
and located outside their subspaces or submanifolds. In [26],
the matrix of high dimensional data is first decomposed as
a sum of a low-rank matrix and a sparse matrix. The data
represented by the low-rank matrix are to be dimensionally
reduced. The subspace method and manifold regularization
are then exploited for the dimensionality reduction.

According to the classification of [20], the algorithms of
nonlinear dimension reduction can be divided into three
categories: global property preserving, local property pre-
serving, and global and local properties preserving simulta-
neously. The HSIC-NDR algorithm proposed in this paper
is a nonlinear data reduction algorithm with global property
preserving. In particular, because HSIC involves kernel func-
tions, theHSIC-NDRbelongs to the nonlinear data dimension
reduction algorithm based on kernel according to [20], such
as Kernel PCA, Kernel LDA and so on. However, the data
reduction algorithm based on HSIC maximization between
the high dimensional original data and low dimensional data
after reduction proposed in this paper has not been reported
in any similar way, and there is no literature review of it
on any dimensionality reduction. The experimental results
provided in this paper shows that HSIC-NDR algorithm on
the ten commonly used synthetic and real datasets in machine
learning research outperform other data reduction algorithms
include PCA [1](linear), ISOMAP [11]( global nonlinear),
LTSA [12] ( locally nonlinear), and LPP [13] (globally and
locally nonlinear). In particular, the proposed HSIC-NDR
algorithm does not increase computational complexity. Like
most data reduction algorithms, the objective function of
HSIC-NDR proposed in this paper is also reduced to the
form of Rayleigh quotient which can be calculated by the
decomposition of eigenvalues and eigenvectors of a symmet-
ric positive definite matrix.

Hilbert-Schmidt Independence Criterion (HSIC) is used
to measure the statistical dependence between two random
vectors. However, instead of directly measuring the statistical
dependence, HSIC first transforms the two random vectors
into two reproducing kernel Hilbert spaces (RKHS), and
then uses the Hilbert-Schmidt (HS) operator of these two
RKHS to measure the statistical dependence of them [27].
The theory of HSIC may seem a bit complicated and may
affect the widely apply of HSIC to a certain extent. However,
the calculation formula of HSIC (empiric HSIC) is relatively
simple and sometimes triggers many generalizations. This
paper indicates the meaning and formulas of HSIC through
making the definition and derivation of HSIC. Further, this
paper applies HSIC to data dimension reduction and pro-
poses a data dimension reduction algorithm based on global
HSIC maximization. The theoretical proofs and experimental

results provided in this paper show the effectiveness of the
proposed algorithm.

To sum up, the proposed HSIC-NDR algorithm has three
contributions to dimensionality reduction. First, the proposed
HSIC-NDR algorithm is a new algorithm and enriches the
library of dimensionality reduction algorithms. Second, there
are two kernel functions involved in the proposed HSIC-NDR
algorithm. The kernel functions are open and can be cho-
sen according to the specific applications. The existence of
kernel functions increases the flexibility and applicability
of the proposed HSIC-NDR algorithm. Third, the proposed
HSIC-NDR algorithm introduces HSIC into dimensionality
reduction for the first time and achieves better performance.
This may inspire more attempts in this respect.

The rest of the paper is organized as follows: In the second
section, the related works on HSIC are reviewed. In the third
section, relevant knowledge is given such as the concept of
RKHS. And in particular, the relationship between RKHS
and the kernel function are detailed. In the fourth section,
the theoretical origins of HSIC are described, and the calcu-
lation formula of HSIC in data analysis are derived. A global
HSIC-based nonlinear data dimensionality reduction algo-
rithm is proposed in the fifth section. The experimental results
are shown in the sixth section to prove the effectiveness of
the proposed algorithm. And finally, simple conclusions are
made in the last section.

II. LITERATURE REVIEW ON HSIC
TheHSICmathematical theory belongs to functional analysis
and it has been studied for a long time [28]. However, from
a data analysis point of view, the HSIC received its atten-
tion after a series of papers [27], [29], [30] published around
2005. As methodological research, although the history is
not long, there are many achievements. In this section, some
research advances of HSIC related to the work of this paper
in recent years will be elaborated.

From a data analysis perspective, HSIC calculates the sta-
tistical dependence of the two sets of data. In general, HSIC
requires that the two sets of data contain the same size of
data. For example, let X = [x1, ..., xN ] ∈ RD×N and Z =
[z1, ..., zN ] ∈ RC×N be the two datasets, and the definition of
HSIC between these two datasets is

HSIC(X ,Z ) = tr(KXCNKZCN ) (1)

where

KX =

kX (x1, x1) . . . kX (x1, xN )
...

. . .
...

kX (xN , x1) . . . kX (xN , xN )

 ∈ RN×N

KZ =

kZ (z1, z1) . . . kZ (z1, zN )
...

. . .
...

kZ (zN , z1) . . . kZ (zN , zN )

 ∈ RN×N

CN = IN −
1
N
0N0

T
N ∈ R

N×N , 0N =

1...
1

 ∈ RN
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where kX and kZ are two kernel functions, and they can be
different. And CN is the centralization matrix.
If X and Z contain different numbers of data (e.g. let

X = [x1, ..., xN ] ∈ RD×N and Z = [z1, ..., zM ] ∈
RC×M ,N 6= M ), their HSIC cannot be calculated directly.
To solve this problem, [31], [32] proposed the surrogate ker-
nel which is defined as follows.

KXZ =

kX (x1, z1) . . . kX (x1, zM )
...

. . .
...

kX (xN , z1) . . . kX (xN , zM )

 ∈ RN×M

KZX =

 kZ (z1, x1) . . . kZ (z1, xN )
...

. . .
...

kZ (zM , x1) . . . kZ (zM , xN )

 ∈ RM×N
KX←Z = KXZK

−1
Z KZX ∈ RN×N ,

KZ←X = KZXK
−1
X KXZ ∈ RM×M

Therefore, two HSIC results are generated:

HSIC(X ,Y ) = tr(KXCNKX←YCN ),

HSIC(Y ,X ) = tr(KYCMKY←XCM )

In supervised learning, since each category may contain a
different number of samples, [31], [32] uses the surrogate
kernel to calculate the HSIC between each category sample:

H =

HSIC(X
1,X1) . . . HSIC(X1,XC )
...

. . .
...

HSIC(XC ,X1) . . . HSIC(XC ,XC )

 ∈ RC×C
where X c (c = 1, . . . ,C) represents the samples contained
in the c-th category, and C is the number of categories. The
objective function of the algorithm in [31] is constructed
by using the diagonally dominant matrix as the learning
criterion.

In recent years, HSIC has often been applied to supervised
feature selection. Let X = [x1, . . . , xN ] ∈ RD×N be the
dataset and let Z = [z1, . . . , zN ] ∈ RC×N be the label of
X . The label of xn is represented by zn in which the c-th
(1 ≤ c ≤ C) element is 1 and the other elements are 0, if xn
(n = 1, . . . , N) belongs to the c-th category. The purpose of
supervised feature selection is to select features in xn that are
the most statistically depended on its label zn.
For the convenience of description, it is assumed that each

component of the data is one of its features. The problem
of the supervised feature selection is to select some com-
ponents that are the most statistically depended on the label
from the data. Reference [33] proposed a supervised sparse
learning feature selection algorithm. Let s ∈ RD, the objective
function of the HSIC-based sparse-learning feature selection
algorithm is:

HSIC(XT s,Z )+ λ‖s‖1 −→
choose s

min (2)

where ‖◦‖1 represents the 1-norm. If we denotes

u = XT s =

x
T
1 s
...

xTN s

 =
6

D
j=1x1jsj
...

6D
j=1xNjsj

 =
 u

l

...

uN

 ∈ RN ,
then

HSIC(XT s,Z ) = HSIC(u,Z ) = HSIC(KuCNKZCN ) (3)

where

Ku =

ku(u
1, u1) . . . ku(u1, uN )
...

. . .
...

ku(uN , u1) . . . ku(uN , uN )


and ‖s‖1 is called a sparse regularization term. The addition
of the sparse regularization term means finding the solution
with the least number of s nonzero components [34]. The
position of a non-zero component of s above a certain thresh-
old is the position of the selected data feature.

Reference [35] proposed two supervised data feature selec-
tion methods using forward and backward HSIC, denoted
as FOHSIC and BAHSIC respectively. FOHSIC sorts the
data’s features in ascending order according to their statistical
dependence to the label using HSIC, while BAHSIC sorts
the data’s features in descending order according to their
statistical dependence to the label. FOHSIC and BAHSIC
have many developments and varieties in recent years, such
as [36].

References [37] and [38] apply HSIC to supervised dic-
tionary learning. The problem of dictionary learning is
expressed as follows:

‖X −WY‖2 −→
choose W ,Y

min (4)

Here W ∈ RD×d is called a dictionary, Y ∈ Rd×N is
called dictionary coefficients of X . The essence of dictionary
learning is the subspace approach in machine learning [39],
where WY is the projection of X on subspace spanW which
represents the subspace spanned from the column vector
of W . If the column vectors of W are orthonormal, then
according to the projection theorem of function analysis [28],
the dictionary coefficient Y of X is the Fourier coefficient
of X on W , which is Y = W TX . Therefore the problem of
dictionary learning becomes:

‖X −WY‖2 =
∥∥∥X −WW TX

∥∥∥2 −→
choose W

min (5)

which is equal to :

tr
(
W TXXTW

)
−→

choose W
max (6)

This is actually the same as PCA [1]. Further, let
kY
(
y, y′

)
= yT y′, it has

KY =

kY (y1, y1) . . . kY (y1, yN )
...

. . .
...

kY (yN , y1) . . . kY (yN , yN )


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=

y
T
1 y1 . . . yT1 yN
...

. . .
...

yTN y1 . . . yTN y
T
N


=

x
T
1 WW

T x1 . . . xT1 WW
T xN

...
. . .

...

xT1 WW
T xN . . . xTNWW

T xN

 = XTWW TX

Thus, the problem of supervised dictionary learning based on
HSIC is expressed as:

HSIC (Y ,Z ) = tr (KYCNKZCN )

= tr
(
XTWW TXCNKZCN

)
= tr

(
W TXCNKZCNXTW

)
−→

chosse W
max (7)

In [40], HSIC is applied to supervised subspace learning.
As mentioned earlier, dictionary learning is subspace learn-
ing. Therefore, the method in [40] is the same as the method
in [37] and [38], and the objective function is the same.

Although HSIC has been found in many applications in
machine learning since it was proposed around 2005, it seems
not to have been directly applied to dimensionality reduction.
The HSIC-NDR proposed in this paper may be the first try in
this respect.

III. RELEVANT KNOWLEDGE
HSIC involves two kernel functions and therefore the appli-
cations of HSIC belongs to the category of kernel methods in
machine learning. The theory of Reproducing Kernel Hilbert
Spaces (RKHS) provides a common mathematical platform
for all kernel methods in machine learning.

A. RKHS DEFINITION
Let S (�) =

{
f
∣∣f : �→ R,

∫
�
|f (x)|2 < +∞

}
be a square

integrable function space, the inner product can be defined
on S (�), making H = (S (�) , 〈•, •〉) a complete inner
product space, which is Hilbert space [28]. For example,
the inner product can be defined as follows (but not limited
to this definition):

〈f , g〉 =
∫
�

f (x) g (x) dx (8)

Definition: Let H = (S (�) , 〈•, •〉) be a Hilbert space,
if there is a function k : �×�→ R meets:
• For any x ∈ �, kx = k (•, x) ∈ H ;
• For any f ∈ H , f (x) = 〈f , k (•, x)〉;

then H is a reproducing kernel Hilbert space (RKHS), and k
is called the reproducing kernel of H .
If H is a RKHS and k is the reproducing kernel of H , then

a mapping ϕ : �→ H can be defined for any x ∈ �,
ϕ (x) = k (•, x) = kx ∈ H (9)

Thus, by using the property of the reproducing kernel,
the inner product of two elements in H can be expressed as
follows.

〈ϕ (x) , ϕ (y)〉 = 〈kx , k (•, y)〉=kx (y)=k (y, x) = k (x, y)

(10)

equation (10) is a common formula in machine learning ker-
nel methods such as kPCA [9], kLDA [10], kSVM [41] and
so on. However, many articles seem to reverse the order. They
define ϕ first, and then use ϕ to define k . The correct order
should define RKHS and a reproducing kernel k first, and
then it will get ϕ. And eventually the formula equation (10)
can be derived from the property of the reproducing kernel.

B. GENERATING RKHS BY KERNEL FUNCTION
RKHS can be generated by a kernel function. The definition
of kernel function is as follows:
Definition [42]: Let k : �×�→ R, if k meets:

• Symmetry: For any x, y ∈ �, k (x, y) = k (y, x)
• Square Integrable: For any x ∈ �, kx = k (•, x) is square
integrable.

• Positive Definite: For any finite number of data,
x1, · · · , xN ∈ �, the matrix k (x1, x1) · · · k (x1, xN )

...
. . .

...

k (xN , x1) · · · k (xN , xN )


is a positive definite matrix.

Then, k is a kernel function.
Note: Kernel functions and reproducing kernel are not the

same concepts. The kernel function is a separately defined
function, while the reproducing kernel is a function that
depends on the definition of Hilbert Space.
Theorem:A kernel function may generate a unique RKHS,

such that the kernel function is a reproducing kernel of this
RKHS.

According to this theorem, as long as a kernel function is
defined, the RKHS and the reproducing kernel of the RKHS
are defined. Therefore, the kernel function is used to represent
RKHS and its reproducing kernel in this paper.

IV. HILBERT-SCHMIDT INDEPENDENCE
CRITERION (HSIC)
A. HS OPERATOR
Definition: Let HX and HY be two separable Hilbert spaces,
and

{
eXi |i ∈ I

}
is the standard orthonormal basis of HX . Let

T : HX → HY is a compact operator and if
∑

i∈I

∥∥TeXi ∥∥2Y <
+∞, T is a Hilbert-Schmidt (HS) operator [43].
Note 1: In this paper, 〈•, •〉X denotes the inner product of

HX , and ‖•‖X =
√
〈•, •〉X denotes the norm of HX . Simi-

larly, 〈•, •〉Y denotes the inner product of HY , and ‖•‖Y =√
〈•, •〉Y denotes the norm of HY
Note 2: Compact operators are the operators that map

bounded set into the compact set and are one form of bounded
operators. The separable Hilbert spaces guarantee the exis-
tence of standard orthonormal basis [44].
Theorem: Let HS (HX → HY ) denote the linear space

consist of all HS operators from HX to HY . If for any
T , S ∈ HS (HX → HY ),

∑
i∈I

∣∣〈TeXi , SeXi 〉Y ∣∣ < +∞, then
(HS (HX → HY ) , 〈•, •〉HS) is a Hilbert space in which the
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inner product 〈•, •〉HS is defined as follows:

〈T , S〉HS =
∑
i∈I

〈
TeXi , Se

X
i

〉
Y

(11)

Theorem [27]: Let HX and HY be two separable Hilbert
spaces, and f0 ∈ HX ,g0 ∈ HX , define f0 ⊗ g0 : HX → HY as
follows: If for any f ∈ HX ,f0 ⊗ g0 (f ) = 〈f0, f 〉X g0 ∈ HY ,
then f0 ⊗ g0 ∈ HS (HX → HY ).
Note: f0 ⊗ g0 is called the tensor product of f0 and g0, and

the theorem shows that f0⊗ g0 is a type of compact operator.

B. CROSS-COVARIANCE OPERATOR AND
MEAN FUNCTION
Let HX= (S (�X ) , 〈•, •〉X ) be an RKHS and kX : �X ×

�X → R be the reproducing kernel of HX . ϕ : �X →

HX is defined as follows: For any x ∈ �X , ϕ (x) =
kX (•, x) ∈ HX . As mentioned earlier, for any x ′, x ′′ ∈ �X ,〈
ϕ
(
x ′
)
, ϕ
(
x ′′
)〉
X = kX

(
x ′, x ′′

)
.

Similarly, let HY= (S (�Y ) , 〈•, •〉Y ) be an RKHS and
kY : �Y × �Y → R be the reproducing kernel of HY .
ξ : �Y → HY is defined as follows: For any y ∈ �Y ,
ξ (y) = kY (•, y) ∈ HY . As mentioned earlier, for any
y′, y′′ ∈ �Y ,

〈
ξ
(
y′
)
, ξ
(
y′′
)〉
Y = kY

(
y′, y′′

)
.

Let X be a random vector valued at�X and Y be a random
vector valued at �Y , the Cross-covariance operator between
X and Y is defined as follows.
Theorem [27]: Let 8 : HS (HX → HY ) → R, for any

T ∈ HS (HX → HY )

8 (T ) = EXY
[
〈ϕ (X)⊗ ξ (Y ) ,T 〉HS

]
(12)

If EXY
[
‖ϕ (X)⊗ ξ (Y )‖HS

]
< +∞, then 8 is a continuous

linear function on HS (HX → HY )
Proof: The rationale for the definition of8 is illustrated

first here. For any x ∈ �X and y ∈ �Y , it has ϕ (x) ∈ HX
and ξ (y) ∈ HY . Hence, the tensor product of ϕ (x) and
ξ (y) is expressed as ϕ (x) ⊗ ξ (y) ∈ HS (HX → HY ), and
〈ϕ (x)⊗ ξ (y) ,T 〉HS is a numerical value. When X and Y are
random vectors, 〈ϕ (X)⊗ ξ (Y ) ,T 〉HS becomes a function of
random vectors X and Y . Therefore, 〈ϕ (X)⊗ ξ (Y ) ,T 〉HS
becomes a randome vector, and EXY

[
〈ϕ (X)⊗ ξ (Y ) ,T 〉HS

]
is a numerical value and is used to express the mathematical
expectation (statistical mean) of this random variable.

The proof of the linearity and continuity of8 is as follows:

8(αT + βS) = EXY
[
〈ϕ (X)⊗ ξ (Y ) , αT + βS〉HS

]
= αEXY

[
〈ϕ (X)⊗ ξ (Y ) ,T 〉HS

]
+βEXY

[
〈ϕ (X)⊗ ξ (Y ) , S〉HS

]
(13)

= α8 (T )+ β8 (S)

|8(T )| =
∣∣EXY [〈ϕ (X)⊗ ξ (Y ) ,T 〉HS]∣∣

≤ EXY
[∣∣〈ϕ (X)⊗ ξ (Y ) ,T 〉HS ∣∣]

≤ EXY
[
‖ϕ (X)⊗ ξ (Y )‖HS ‖T‖HS

]
= ‖T‖HS EXY

[
‖ϕ (X)⊗ ξ (Y )‖HS

]
(14)

The above equation shows that 8 is a bounded operator,
which is also a continuous operator if it is a linear operator.

According to the representation theorem of continuous
linear function (Riesz theorem), there exists a unique HS
operator T8 ∈ HS (HX → HY ) such that for any HS operator
T ∈ HS (HX → HY ), there is

8(T ) = EXY
[
〈ϕ (X)⊗ ξ (Y ) ,T 〉HS

]
= 〈T ,T8〉HS (15)

T8 is called cross-covariance operator, which is often denoted
as CXY .
The definition of the mean function of X in HX is detailed

in the rest of this section.
Theorem: Let HX= (S (�X ) , 〈•, •〉X ) be an RKHS, and

kX : �X ×�X → R be a reproducing kernel function of HX .
And let ϕ : �X → HX , for any x ∈ �X , ϕ (x) = kX (•, x).
And let 8 : HX → R, for any f ∈ HX ,

8(f ) = EX
[
〈ϕ (X) , f 〉X

]
= EX

[
〈k (•,X) , f 〉X

]
= EX [f (X)] (16)

then 8 is a continuous linear function on HX .
Proof: The rationale for the definition of8 is illustrated

first here. For any x ∈ �X and ϕ (x) ∈ HX , 〈ϕ (x) , f 〉X is
a numeric value. When X is a random vector, 〈ϕ (x) , f 〉X
becomes the function of the random vector X . Hence,
〈ϕ (x) , f 〉X becomes a random vector and EX

[
〈ϕ (X) , f 〉X

]
is used to denote the mathematical expectation (statistical
mean) of this random vector. The proof of the linearity and
continuity of 8 is as follows:

8(αf + βg) = EX
[
〈ϕ (X) , αf + βg〉X

]
= αEX

[
〈ϕ (X) , f 〉X

]
+ βEX

[
〈ϕ (X) , g〉X

]
= α8 (f )+ β8 (g) (17)

|8(f )| =
∣∣EX [〈f , ϕ (X)〉X ]∣∣ ≤ EX [∣∣〈f , ϕ (X)〉X ∣∣]

≤ EX
[
‖f ‖X ‖ϕ (X)‖X

]
=‖f ‖X EX

[
‖ϕ (X)‖X

]
(18)

The above equation shows that 8 is a bounded operator,
which is also a continuous operator if it is a linear operator.

Similarly, according to the representation theorem of con-
tinuous linear functional (Riesz theorem), there exists a
unique function f8 ∈ HX such that for any function HS
operator f ∈ HX , there is

8(f ) = EX
[
〈ϕ (X) , f 〉X

]
= 〈f , f8〉X (19)

where f8 is called the mean function of X in HX , and it is
denoted as µX . Similarly, the mean function of Y in HY is
denoted as µY .

The relationship between the cross-covariance operator
CXY and the mean functions µX and µY can be represented
by Fig.1.

C. HSIC
1) HSIC DEFINITION AND SIGNIFICANCE
Definition: The HSIC definition of two random vectors X and
Y is

HSIC (X ,Y )= EXY
[
‖(ϕ (X)− µX )⊗ (ξ (Y )− µY )‖2HS

]
(20)
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FIGURE 1. Schematic diagram of the cross-covariance operator CXY and
the averaging functions µX and µY .

HSIC (X ,Y ) does not directly measure the covariance
EXY [(X − EX [X ]) (Y − EY [Y ])] of two random vector X
and Y . Instead, by using mappings ϕ and ξ ,X and Y are
mapped to two RKHS spaces HX and HY respectively. And
the covariance between ϕ (X) and ξ (Y ) is then measured.
Proper selection of mappings ϕ and ξ show some of the
intrinsic features of X and Y . HSIC measures the covariance
of these intrinsic features.

Since mapping ϕ and mapping ξ are defined by the repro-
ducing kernels of HX and HY in RKHS space, and the RKHS
and their reproducing kernels are uniquely defined by the
kernel function, choosing mappings ϕ and ξ is to choose two
kernel functions kX and kY . It can be adapted to different
applications by selecting different kernel functions.

In probability theory [45], if the covariance is normalized,
it is the correlation coefficient. The correlation coefficient
measures the degree of linear dependence between two ran-
dom vectors. Therefore, HSIC is essentially a measure of the
degree of linear dependence between ϕ (X) and ξ (Y ).

D. HSIC CALCULATION
1) STATISTICAL MEAN CALCULATION FORMULA
The calculation steps ofHSIC (X ,Y ) is shown in this section.
If the joint probability distribution of random vectors X and
Y is known, HSIC (X ,Y ) can be calculated according to the
following formula:

HSIC (X ,Y ) = EXY
[
‖(ϕ (X)− µX )⊗ (ξ (Y )− µY )‖2HS

]
= ‖CXY − µX ⊗ µY ‖2HS
= 〈CXY ,CXY 〉HS − 2 〈CXY , µX ⊗ µY 〉HS
+ 〈µX ⊗ µY , µX ⊗ µY 〉HS (21)

where

〈CXY ,CXY 〉HS
= EXYEX ′Y ′

[
kX
(
X ,X ′

)
kY
(
Y ,Y ′

)]
(22)

〈CXY , µX ⊗ µY 〉HS
= EXY

[
EX ′

[
kX
(
X ,X ′

)]
EY ′

[
kY
(
Y ,Y ′

)]]
(23)

〈µX ⊗ µY , µX ⊗ µY 〉HS

= 〈µX , µX 〉X 〈µY , µY 〉Y (24)

2) THE COMPUTATION FORMULA FOR THE
MEAN OF SAMPLES
In general, the joint probability distribution between random
vectors X and Y is unknown, and only some sample values of

the random vectors X and Y are given. In this case, the mean
of samples is used to represent the statistical mean to calculate
HSIC (X ,Y ).

Given two sets of data {x1, · · · , xN } ⊆ �X and
{y1, · · · , yN } ⊆ �Y , which are treated as samples of the
random vectors X and Y , and assuming that the proba-
bility of the random event

{
X = xi;Y = yj

}
is zero, ie.

P
{
X = xi;Y = yj

}
= 0 when i 6= j, the following equation

holds.

CXY ≈
1
N

N∑
n=1

ϕ (xn)⊗ ξ (yn) ,

µX ≈
1
N

N∑
n=1

ϕ (xn) , µY ≈
1
N

N∑
n=1

ξ (yn) (25)

Substituting the above results into equations (22)-(24), there
are

〈CXY ,CXY 〉HS ≈
1
N 2 tr (KXKY ) (26)

〈CXY , µX ⊗ µY 〉HS ≈
1
N 30

T
NKXKY0N (27)

〈µX ⊗ µY , µX ⊗ µY 〉HS ≈
1
N 40

T
NKX0N0

T
NKY0N (28)

where 0N =

 1
...

1

 ∈ RN is an all-1 vector of N dimensions,

and

KX =

 kX (x1, x1) · · · kX (x1, xN )
...

. . .
...

kX (xN , x1) · · · kX (xN , xN )

,
KY =

 kY (y1, y1) · · · kY (y1, yN )
...

. . .
...

kY (yN , y1) · · · kY (yN , yN )


Then, substituting equations (26)-(28) into (21), we get:

HSIC (X ,Y ) = ‖CXY − µX ⊗ µY ‖2

=
1
N 2 tr (KYCNKXCN )=

1
N 2 tr

(
K̂Y K̂X

)
(29)

where CN = IN − 1
N 0N0

T
N is the centralization matrix,

and K̂X = KXCN , K̂Y = KYCN . K̂X and K̂Y are called the
centralization matrix of KX and KY respectively.

E. SUMMARY
1) HSIC essentially calculates the covariance of two ran-

dom vectors. If covariance is normalized, is the corre-
lation coefficient. The correlation coefficient measures
the degree of linear dependence between two random
vectors. Only when the random vectors obey the Gaus-
sian distribution, the linear independence is equal to
the statistical independence. Therefore, instead of mea-
suring the degree of statistical independence of two
random vectors as the name implies, HSIC measures
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the degree of linear dependence between two random
vectors.

2) Instead of directly measuring the degree of linear
dependence between two random vectors X and Y ,
HSIC measures the degree of linear dependence
between their transformations ϕ (X) and ξ (Y ), where
ϕ and ξ are defined by the kernel functions kX and kY ,
respectively. ϕ and ξ denote a certain degree of pre-
processing of the data, revealing some properties and
features in RKHS (HX and HY ) that does not exhibit in
the original data space (�X and �Y ).

3) The calculation of HSIC is simple and clear. If the data
is regarded as a specific implementation of a random
vector (sample), then HSIC is the trace of the product
of the two (centralization) kernel matrix. The kernel
matrix is composed of the values of the kernel function
on the data sample. The calculation formula of HSIC
also shows that HSIC is not only related to the data but
also related to the kernel function.

V. NONLINEAR DIMENSIONALITY REDUCTION BASED
ON HSIC MAXIMIZATION (HSIC-NDR ALGORITHM)
The problem of data dimension reduction can be described as
follows: Given a set of data X =

[
x1 · · · xN

]
∈ RD×N in a

high-dimensional Euclidean space RD, it is required to find
a set of data Y =

[
y1 · · · yN

]
∈ Rd×N in a low-dimensional

Euclidean space Rd as the dimension reduction result accord-
ing to certain criteria. Y is the dimension reduction result of X
and d << D.

A. DIMENSIONALITY REDUCTION CRITERION: HSIC
MAXIMIZATION
In this paper, the maximization of HSIC (X ,Y ) is used as the
criterion for data dimension reduction. That is

HSIC (X ,Y )=
1
N 2 tr (KYCNKXCN ) −→

choose Y∈Rd×N
max (30)

In other words, the goal is to find a set of data Y in a low
dimensional Euclidean space Rd , which is as far as possible
linearly dependent (statistical dependence) to the data X in
a high dimensional Euclidean space RD using the HSIC.
And Y is referred to as the reduced dimension result of X .
To facilitate the narrative, in the following part of this article,
the algorithm proposed here is referred to as HSIC-NDR.

Compared with other dimensionality reduction algorithms
with linearly dependent requirements (such as PCA where
Y = W TX and W in the linear transformation matrix),
the HSIC-NDR algorithm respects the intrinsic nature of data
itself more.

B. THE OBJECTIVE FUNCTION OF HSIC-NDR ALGORITHM
In HSIC (X ,Y ), the dimensionality reduction result Y is
hidden in the kernel matrix KY , which is not conducive
to the solution of the HSIC-NDR problem shown in for-
mula (30). To explicitly represent Y , the kernel function of Y
in HSIC-NDR is defined as kY : Rd × Rd → R. And for any

y′, y′′ ∈ Rd ,

kY
(
y′, y′′

)
= y′T y′′ + κδ

(
y′, y′′

)
(31)

where κ > 0, δ
(
y′, y′′

)
=

{
1 y′ = y′′

0 others
. δ is added in order to

theoretically guarantee the positive definiteness of kY . From
the following derivation, it can be seen that κ does not appear
in the objective function of HSIC-NDR.

Obviously, the function kY shown in the formula (31) is a
kernel function. According to the discussion in Section III,
kY can uniquely produce an RKHS HY such that kY is the
reproducing kernel of HY . Thus, KY can be expressed as
follows.

KY =

 kY (y1, y1) · · · kY (y1, yN )
...

. . .
...

kY (yN , y1) · · · kY (yN , yN )


=

 y
T
1 y1 · · · yT1 yN
...

. . .
...

yTN y1 · · · yTN yN

+ κIN = Y TY + κIN (32)

Substituting equation (32) into equation (30), it gets

HSIC (X ,Y )

=
1
N 2 tr (KYCNKXCN )

=
1
N 2 tr

(
Y TYCNKXCN

)
+

κ

N 2 tr (CNKXCN )

=
1
N 2 tr

(
YCNKXCNY T

)
+

κ

N 2 tr (CNKXCN ) (33)

Since tr (CNKXCN ) has nothing to do with Y , and N or κ
are also irrelevant to Y , the problem of equation (30) can be
equivalent to the following problem:

tr
(
YCNKXCNY T

)
−→

choose Y
max (34)

Geometrically, YCN implies that the center of Y is shifted
from ȳ to the origin of the low-dimensional Euclidean
space Rd , where ȳ= 1

N

∑N
n=1 yn ∈ Rd . From the point of

dimension reduction view, YCN and Y is the same. Therefore,
the problem shown in equation (34) can be further reduced to
the following problem:

tr
(
YKXY T

)
−→

choose Y
max (35)

Equation (35) is the objective function of the HSIC-NDR
algorithm. Obviously, the equation (35) is simple, easy to
understand and use. Besides, the solution to the problem
shown in equation (35) is also very simple. In fact, since
the kernel matrix KX is a symmetric positive definite matrix,
the solution of the problem shown in equation (35) can be
transformed into the problem of calculating the Rayleigh
quotient maximum under the condition of YY T= Id . The
Rayleigh quotient calculation problem is a common problem
in matrix calculation. There are many ready-made source
programs available for calling.
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FIGURE 2. HSIC-NDR dimension reduction with classifier.

C. THE ADAPTABILITY OF HSIC-NDR ALGORITHM
In the objective function of the HSIC-NDR shown in equa-
tion (35), the kernel matrix KX is optional and depends on
the kernel function kX and the data X to be reduced. In prac-
tice, different kernel functions can be chosen depending on
the application. Therefore, HSIC-NDR is fundamentally an
algorithmic framework. Only when the kernel function and
the parameters contained in the kernel function are selected,
HSIC-NDR becomes a specific algorithm.

For example, given a dataset X in high-dimensional
Euclidean space RD to train a classifier, the proposed
HSIC-NDR algorithm is used to reduce the high-dimensional
dataset X to the low-dimensional dataset in Euclidean
space Rd , where d << D. And the classifier is trained in
a low-dimensional Y Euclidean space Rd (See Fig.2).
In Fig.2, kX

(
x, x ′ |θ

)
represents the kernel function, where

θ represents the parameter of the kernel function and r
represents the classification accuracy. Since the HSIC-NDR
algorithm depends on the kernel function kX

(
x, x ′ |θ

)
,

the classification accuracy r depends on kX
(
x, x ′ |θ

)
. There-

fore, it can be denoted as r
(
kX
(
x, x ′ |θ

))
.

If there are Nk kernels to choose from k iX
(
x, x ′ |θi

)
, where

i = 1, · · ·Nk , then the optimal kernel selection procedure is
as follows:

(1) According to the classification accuracy r , determine
the optimal parameters of each kernel function:

θ∗i = argmax
θi

r
(
k iX
(
x, x ′ |θi

))
(36)

where i = 1, · · ·Nk
(2) According to the classification accuracy r , choose the

best kernel function:

i∗ = argmax
1≤i≤Nk

r
(
k iX
(
x, x ′

∣∣θ∗i )) (37)

Thus, the kernel function used by the HSIC-NDR
algorithm is k i

∗

X

(
x, x ′

∣∣θ∗i ).
VI. EXPERIMENTAL RESULTS
A. KERNEL POOL
As mentioned above, the proposed HSIC-NDR algorithm
first transforms original dataset X and dimension reduction
result Y into two RKHS spaces HX and HY , and then it uses
the HS operator between the two RKHSs to measure the
linear dependence of these two datasets. In order to explicitly
represent the dataset Y , the reproducing kernel kY of HY is
selected as a positive definite linear kernel, while the repro-
ducing kernel kX of HX is an optional kernel. The advantage
of the HSIC-NDR algorithm is that one can choose the best
kernel function in the kernel pool according to the needs of the

practical application. Reference [35] discusses the properties
of some available kernel functions. However, because of the
variety of applications and different learning models, the best
approach may be to determine the optimal kernel function
according to the given application, and a particular learning
model is testing on each of the given kernel functions by
using given samples. In the experiment provided in this paper,
the kernel pool contains the following eight kernel functions.
1) Polynomial Kernel(poly)

k
(
x, x ′

)
=

(
αxT x ′ + β

)γ
(38)

When α = γ = 1 and β = 0, it is a linear kernel(lin).
B-spline
2) Kernel (bspline)

k
(
x, x ′

)
=

D∏
n=1

B3
(
xn − x ′n

)
(39)

where B3 is cubic spline whose formula is as follows.

B3 (ω) =


4− 6 |ω|2 + 3 |ω|3

6
0 ≤ |ω| < 1

(2− |ω|)3

6
1 ≤ |ω| < 2

0 others, ω ∈ R

Chi-Square
3) Kernel (chi2)

k
(
x, x ′

)
=

D∑
n=1

2xnx ′n
xn + x ′n

(40)

4) Generalized T-Student Kernel (tst)

k
(
x, x ′

)
=

1
1+ ‖x − x ′‖γ

(41)

5) Wave Kernel (wave)

k
(
x, x ′

)
=

θ

‖x − x ′‖
sin

(∥∥x − x ′∥∥
θ

)
(42)

6) Wavelet Kernel (wavelet)

k
(
x, x ′

)
=

D∏
n=1

h
(
xn − x ′n

a

)
(43)

where h (ω) = cos (1.75ω) exp
(
−
ω2

2

)
, ω ∈ R

7) Gaussian Kernel (rbf)

k
(
x, x ′

)
= exp

(
−
||d(x, x ′)||2

2σ 2

)
(44)

where d(x, x ′) is the distance of two vectors, and nor-
mally ||d(x, x ′)||2 =

∥∥x − x ′∥∥2 which is Euclidean
Distance. However, d(x, x ′) can also be the geodesic
distance of these two vectors, and this type of kernel is
marked as ’’rbf-geo’’ in the experiments.

8) Sigmoid Kernel (sigmod)

k
(
x, x ′

)
= tanh

(
axT x ′ + c

)
(45)

55544 VOLUME 6, 2018



Z. Ma et al.: Nonlinear Dimensionality Reduction Based on HSIC Maximization

B. COMPARISON ALGORITHM
In the experiment, the proposed HSIC-NDR algorithm is
compared with PCA, MDS, ISOMAP, LTSA and LPP algo-
rithms. From the perspective of keeping the data unchanged
in the process of dimension reduction, the data dimension
reduction algorithm can be broadly divided into three cate-
gories: global preserving, local preserving, local and global
preserving simultaneously. PCA,MDS, and ISOMAP belong
to the algorithm of global preserving. LTSA belongs to the
algorithm of local preserving. LPP belongs to the algorithm
of local and global preserving simultaneously. The proposed
HSIC-NDR algorithm belongs to the algorithm of global
preserving.

We have conducted the experiments on synthetic and real
datasets. The main algorithm is implemented in Python. The
running time is measured on a 2.4GHz PC with 8G memory
running on Windows 7.

C. DATA SET
The experimental datasets used in this paper are all commonly
used datasets in machine learning research. Many articles
compare the effects of various algorithms on these datasets.

1) SYNTHETIC BENCHMARK DATASETS
The Swiss Roll and S-Curve datasets are typically used for
evaluating manifold learning algorithms. Both datasets are
1000-point uniformly sampled. We select the RBF kernel
with different choices of σ for HSIC algorithm. And the 2-D
visual results of Swiss Roll and S-Curve are shown in Fig.3
and Fig.5 correspondingly. Visual results compare to other
classical algorithms are shown in Fig.4 and Fig.6. From the
experimental results show in Fig.3, Fig.4, Fig.5 and Fig.6,
HSIC shows better results than the traditional MDS, PCA,
and LPP algorithms. The experimental results of the HSIC
algorithm are comparable to the experimental results of the
globally preserving ISOMAP algorithm. And the calculation
time of these two algorithms is also close.

FIGURE 3. Experiment results of HSIC on swiss roll dataset using RBF
kernel with different parameters.

2) IRIS
Iris dataset is collected by Edgar Anderson to quantify the
morphologic variation of Iris flowers of three related species.
The dataset contains 3 classes (Iris setosa, Iris virginica, and

FIGURE 4. Experiment results of different algorithms on swiss roll
dataset.

FIGURE 5. Experiment results of HSIC on S-curve dataset using RBF
kernel with different parameters.

FIGURE 6. Experiment results of different algorithms on S-curve dataset.

Iris versicolor) of 50 instances each, where each class refers
to a type of iris plant. One class is linearly separable from the
other two, and the latter are NOT linearly separable from each
other. Four features were measured from each sample: the
length and the width of the sepals and petals, in centimeters.

During the experiment, we plot the dataset using the first
three feature in 3-Dmode. And we use HSIC-NDR algorithm
to reduce the data to two dimensions by using Chi-Square ker-
nel function with different parameters. And the experiment
results are plotted in Fig. 7. Experiment results compare to
other classical algorithms are shown in Fig.8. From the exper-
imental results, the HSIC algorithm has shown reasonable
visual results. In addition, the calculation time of the HSIC
algorithm is relatively small.

3) EXTEND YALEB
This dataset has 38 individuals and around from 59 to 64 near
grayscale images under different illuminations per individ-
ual. The whole image dataset contains 2414 images and
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FIGURE 7. Experiment results of HSIC on iris dataset using chi-square
kernel with different parameters.

FIGURE 8. Experiment results of different algorithms on iris dataset.

is downloaded from http://www.cad.zju.edu.cn/
home/dengcai/Data/FaceData.html. Fig.9 is part
of this dataset.

FIGURE 9. Part of extend YaleB image dataset.

During the experiment, each image is organized into a
32×32 pixel image. In classification, it randomly takes
20 images of each individual as the training set, and the rest
is the test set. A total of 10 randomized experiments has been
run and the average of 10 randomized experimental results is
taken as the final experimental results. A10-NN classifier is
used for classification.

Table 1 shows the experimental results of HSIC-NDR
using different kernel functions. In Table 1, the first column
is the number of dimensions after dimensionality reduction,
and the number of dimensions of the original data is 32 ×
32 = 1024. The highest accuracy rate for each dimension
has been bolded. The results of HSIC-NDR vary widely with
different kernel functions. Therefore, within a certain range,
it is necessary to choose the best kernel function.

Table 2 shows the experimental comparison results of
HSIC-NDR and other algorithms. In Table 2, the accuracy
of the HSIC-NDR is the best accuracy picking from Table 1.
As can be seen from Table 2, HSIC-NDR achieves the best
results for each dimension reduction. Also, the accuracy of
classification of HSIC-NDR and other algorithms are higher
than that of non-dimensionality reduction data whose direct
classification rate is 39.71%. In the case of HSIC-NDR,
the HSIC-NDR uses a linear kernel as the kernel function for

FIGURE 10. Part of AR images dataset.

FIGURE 11. Part of ORL images dateset.

data dimension reduction, which is equivalent to the criterion
that requires the covariance of data after dimension reduction
to be the largest, thus improving the classification accuracy.

4) AR
The AR contains over 4,000 color images corresponding
to126 people’s faces with 70 men and 56 women for each.
The images are shot during two weeks. Each person took
pictures of different expressions, illumination conditions and
occlusions in each week. Fig.10 shows part of images of the
AR dataset, where the first row of the figure are the pictures
taken in the first week and the second row of the figure are the
pictures taken in the second week. The AR dataset is down-
loaded from http://www2.ece.ohio-state.edu/
~aleix/ARdatabase.html.

When conducting the experiment, each image is organized
into a gray-scale image of 60×43 pixels. During the classifi-
cation, the pictures taken in the first week were used as the
training set, and the pictures taken in the second week were
used as the test set. Since each person has a small number of
pictures, a 5-NN classifier is used for classification.

Table 3 shows the experimental results of HSIC-NDR
using different kernel functions. In Table 3, the first column
is the number of dimension after dimension reduction, and
the number of dimensions in the original data is 60 × 43 =
2580. The highest accuracy rate for each dimensionality
has been bolded. As can be seen from Table 3, the results
of HSIC-NDR vary widely with different kernel functions.
Therefore, for a specific application, it is necessary to choose
the proper kernel function.

Table 4 shows the experimental comparison results of
HSIC-NDR and other algorithms. In Table 4, the accuracy
of the HSIC-NDR is the best accuracy picking from Table 3.
HSIC-NDR still achieves the best results for each dimension.

Tables 5 and 6 show the experimental results on the
unobstructed (no glasses, no mouth cover) images in the
AR dataset. As the image quality is better, the accuracy is
improved.

5) ORL
ORL involves 40 people, each taking 10 grayscale images
of different expressions, different lighting, and different
shades. The entire image dataset has a total of 400 images.
Fig.11 shows part of the images of ORL. The download
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TABLE 1. Experimental results of HSIC-NDR on Extend YaleB dataset using different kernel functions.

TABLE 2. Experimental results of HSIC-NDR compare with other algorithms on Extend YaleB dataset. (Without dimensionality reduction, the accuracy of
direct classification is 39.71%).

TABLE 3. Experimental results of HSIC-NDR on AR dataset using different kernel functions.

URL of ORL dataset is http://www.cad.zju.edu.
cn/home/dengcai/Data/FaceData.html.

When running the experiment, each image is organized into
an image of 32 × 32 pixels. Since each person has a small
number of images, a 3-NN classifier is used for classification.

For the classification result shown in Table 7 and 8,
it randomly takes 3 images of each person as the training
set, the rest of the images is used as the test set. For the
classification result shown in Table 9 and 10, it randomly
takes 4 images of each person as the training set, the rest
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TABLE 4. Experimental results of HSIC-NDR compare with other algorithms on AR dataset. (Without dimensionality reduction, the accuracy of direct
classification is 25.77%).

TABLE 5. Experimental results of HSIC-NDR on the unobstructed images dataset of AR using different kernel function.

TABLE 6. Experimental results of HSIC-NDR compare with other algorithms on the unobstructed images dataset of AR. (Without dimensionality reduction,
the accuracy of direct classification is 35.71%).

of the images is used as the test set. For the classifica-
tion result shown in Table 11 and 12, it randomly takes
5 images of each person as the training set, the rest of the
images is used as the test set. A total of 10 randomized
experiments has been run and the average of 10 random-
ized experimental results is taken as the final experimental
results.

In Table 7, 8, 9, 10, 11 and 12, the first column is the
number of dimension after dimension reduction, and the

number of dimension of the original data is 32 × 32 =
1024. The highest accuracy rate for each dimensionality has
been bolded in Table 7, 9 and 11. In Table 8, 10 and 12,
the accuracy of the HSIC-NDR is the best accuracy picking
from Table 7, 9 and 11 respectively.

6) VEHICLE
Vehicle dataset is grouped into four categories, each
containing 199-218 samples, for a total of 846 samples.
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TABLE 7. Experimental results of HSIC-NDR on ORL dataset using different kernel functions. (3 images per person are taken as the training samples,
the other 7 images are taken as the test samples.)

TABLE 8. Experimental results of HSIC-NDR compare with other algorithms on ORL dataset. (3 images per person are taken as the training samples,
the other 7 images are taken as the test samples. Without dimensionality reduction, the accuracy of direct classification is 61.79% ).

TABLE 9. Experimental results of HSIC-NDR on ORL dataset using different kernel functions. (4 images per person are taken as the training samples,
the other 6 images are taken as the test samples.)

The download URL of Vehicle dataset is http://
archive.ics.uci.edu/ml/datasets/Statlog+
%28Vehicle+Silhouettes%29.

When running the experiment, it randomly takes 100 sam-
ples from each category as the training set, and the rest is used
as the test set. A total of 10 randomized experiments has been

run and the average of 10 randomized experimental results is
taken as the final experimental results. A 3-NN classifier is
used for classification.

Table 13 shows the experimental results of HSIC-NDR
using different kernel functions. In Table 13 and 14,
the first column is the number of dimension after dimension
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TABLE 10. Experimental results of HSIC-NDR compare with other algorithms on ORL dataset. ( 4 images per person are taken as the training samples,
the other 6 images are taken as the test samples. Without dimension reduction, the accuracy of direct classification is 72.67%.)

TABLE 11. Experimental results of HSIC-NDR on ORL dataset using different kernel functions. (5 images per person are taken as the training samples,
the other 5 images are taken as the test samples.)

TABLE 12. Experimental results of HSIC-NDR compare with other algorithms on ORL dataset. (5 images per person are taken as the training samples,
the other 5 images are taken as the test samples. Without dimension reduction, the accuracy of direct classification is 77.15%.)

reduction, and the number of dimension of the original data
is 18. The highest accuracy rate for each dimensionality has
been bolded. Table 14 shows the comparison experimental
results of HSIC-NDR and other algorithms. In Table 14,
the accuracy of the HSIC-NDR is the best accuracy picking
from Table 13. HSIC-NDR outperforms other algorithms in
different dimensions in the experiments.

7) MNIST
The MNIST database of handwritten digits, available
from http://yann.lecun.com/exdb/mnist/, has
a training set of 60,000 examples, and a test set
of 10,000 examples. It is a subset of a larger set available
from NIST. For computational reasons, we selected the
first 2,000 digits for our experiments. The digits have been

55550 VOLUME 6, 2018



Z. Ma et al.: Nonlinear Dimensionality Reduction Based on HSIC Maximization

TABLE 13. Experimental results of HSIC-NDR on Vehicle dataset using different kernel functions .

TABLE 14. Experimental results of HSIC-NDR compare with other algorithms on Vehicle dataset. (Without dimensionality reduction, the accuracy of direct
classification is 59.51%.)

size-normalized and centred in a fixed-size image. These
images have 28×28 pixels, and can thus be considered as
points in a 784-dimensional space.

When running the experiment, it randomly takes 1000 sam-
ples as the training set, and the rest is used as the test set.
A total of 10 randomized experiments has been run and the
average of 10 randomized experimental results is taken as
the final experimental results. A 10-NN classifier is used for
classification.

Table 15 shows the experimental results of HSIC-NDR
using different kernel functions. In Table 15, the first column

is the number of dimension after dimension reduction. The
highest accuracy rate for each dimensionality has been
bolded. Table 16 shows the comparison experimental results
of HSIC-NDR and other algorithms. In Table 16, the accuracy
of the HSIC-NDR is the best accuracy picking from Table 15.

8) BREAST CANCER
The breast cancer dataset is a classic and very easy
binary classification dataset obtained from https://
archive.ics.uci.edu/ml/datasets/Breast+
Cancer+Wisconsin+(Diagnostic). There are
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TABLE 15. Experimental results of HSIC-NDR on MNIST dataset using different kernel functions.

TABLE 16. Experimental results of HSIC-NDR compare with other algorithms on MNIST dataset. (Without dimensionality reduction, the accuracy of direct
classification is 85.99%.)

TABLE 17. Experimental results of HSIC-NDR on Breast Cancer dataset dataset using different kernel functions .

569 samples in total. And 30 features are computed from a
digitized image of a fine needle aspirate (FNA) of a breast
mass. There are 212 samples are diagnosed as Malignant, and
the left 357 are diagnosed as Benign.

When running the experiment, it randomly takes 300 sam-
ples as the training set, and the rest is used as the test
set. A 5-NN classifier is used for classification and a total
of 10 randomized experiments have been run and the average

of 10 randomized experimental results is taken as the final
experimental results.

Table 17 shows the experimental results of HSIC-NDR
using different kernel functions. Comparison experimen-
tal results of HSIC-NDR and other algorithms are shown
in Table 18. The first column in Table 17 and Table 18
is the number of Dimensionality after dimension reduction.
The highest accuracy rate for each dimensionality has been
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TABLE 18. Experimental results of HSIC-NDR compare with other algorithms on Breast Cancer dataset. (Without dimension reduction, the accuracy of
direct classification is 92.49%.)

TABLE 19. Experimental results of HSIC-NDR on Wine dataset using different kernel functions .

TABLE 20. Experimental results of HSIC-NDR compare with other algorithms on Wine dataset. (Without dimension reduction, the accuracy of direct
classification is 68.87%.)

bolded. In Table 18, the accuracy of the HSIC-NDR is the
best accuracy picking from Table 17.

9) WINE
The Wine dataset includes results of a chemical analysis
of wines grown in the same region in Italy but derived
from three different cultivars. The analysis determined the

quantities of 13 constituents found in each of the three
types of wines. The dataset is available on https://
archive.ics.uci.edu/ml/datasets/wine and
there are 178 instances.

When running the experiment, it randomly takes 100 sam-
ples as the training set, and the rest is used as the test
set. A 5-NN classifier is used for classification and a total
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of 10 randomized experiments have been run and the average
of 10 randomized experimental results is taken as the final
experimental results.

Table 19 shows the experimental results of HSIC-NDR
using different kernel functions. Comparison experi-
mental results of HSIC-NDR and other algorithms are
shown in Table 20. The first column in Table 19 and
Table 20 are the number of Dimensionality after dimen-
sion reduction. The highest accuracy rate for each dimen-
sionality has been bolded. In Table 20, the accuracy
of the HSIC-NDR is the best accuracy picking from
Table 19.

VII. CONCLUSIONS
1) The theory of HSIC may sound a little complicated,

which may affect the wide application of HSIC to a
certain extent. This paper is brief, but completely and
accurately introduces the HSIC theory. As long as one
has the basic knowledge of function analysis, through
this paper, he/she should have a clear understanding of
the ins and outs of HSIC theory.

2) So far, HSIC has not been directly applied to
data dimensionality reduction. There are some HSIC
applications similar to data dimensionality reduc-
tion, such as supervised feature selection based
on HSIC [33]–[36] dictionary learning based on
HSIC [37], [38], and supervised subspace learning
based on HISC [40]. However, these HSIC-based
methods are essentially different from the HSIC-NDR
method proposed in this paper. First, these methods
are all supervised machine learning methods, while
the proposed HSIC-NDR algorithm is an unsupervised
machine learning method. Secondly, the prerequisite
for the supervised feature selection is that the feature
of the data has been determined. The feature selec-
tion method is based on the existing features. How-
ever, the dimension reduction data to be determined
by the HSIC-NDR algorithm is unknown. And it is
sought through the optimization algorithm according
to certain criteria (the data after dimension reduction
and the original data maintain the maximum statis-
tical dependence criterion). In terms of supervised
dictionary learning or subspace learning, the high-
dimensional data and dimensionality-reduced data are
limited to a linear relationship. That means the HSICs
of high-dimensional data and dimensionality-reduced
data are constant and cannot be used as a basis for dic-
tionary or subspace selection. They are based on maxi-
mizing the HSIC of dimensionality reduction data and
data Labels as a dictionary or subspace selection. The
HSIC-NDR algorithm proposed in this paper directly
maximizes the HSIC between high dimensional data
and dimensionality reduction data as the basis for data
dimensionality reduction. Therefore, our dimensional-
ity reduction algorithm is a nonlinear data dimension
reduction algorithm.

3) In the framework of HSIC, there are two kernel func-
tions, so two RKHS spaces are generated, which
are the workspaces of two sets of data before and
after dimension reduction respectively. In the proposed
HSIC-NDR algorithm, the kernel function used in the
dimension reduction result is defined as a linear kernel,
so that the objective function of the algorithm can be
transformed into the form of the Rayleigh quotient.
Also, the linear kernel matrix of the dimension reduc-
tion data is the covariance matrix of the dimension
reduction data. The maximization of the data covari-
ance matrix is helpful to improve the accuracy of data
discrimination. In the proposed HSIC-NDR algorithm,
the kernel function used for the original data (before
dimension reduction) is optional. Hence the most suit-
able kernel function can be chosen according to the
specific application. From this point of view, the pro-
posed HSIC-NDR algorithm is a framework in which
the kernel functions need to be determined based on the
specific application. Hence it can be widely used.
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