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ABSTRACT This paper presents a 3-D surface saliency feature detection method, which can measure
the importance geometry region of the point clouds. Different from existing approaches that are based on
3-D filter banks, the new method first constructs the curvature co-occurrence histogram (CCH), which
encodes not only the global curvature occurrence, but also the co-occurrence of local distinctive features.
And then, the mesh saliency is extracted from CCH through our mapping function. The proposed method is
easy to implement and has high computation efficiency, which makes it especially suitable for large-scale
3-D point cloud preprocessing. The effectiveness of the saliency is demonstrated by point clouds’ registration
and mesh simplification. Experimental results, from visual and quantification, demonstrate that our saliency
contains more local geometrical details information and has more stable globally measurement comparing
with curvature only described feature and center-surround saliency.

INDEX TERMS Mesh saliency, mesh registration, mesh simplification, co-occurrence histogram.

I. INTRODUCTION
In recent years, with advances in high-speed 3D laser-
scanning and depth range sensor technologies, the collected
point clouds has higher density rate and also the scanned
models have higher accuracy. Hence, most of the raw scanned
models usually generate a huge amount of data points.
It brings various challenges for storage, registration and trans-
mission in real application. Thus, efficient and accurate sim-
plification methods for the data are necessary. But the regions
of mesh having relatively more important geometry features
should be preserved. Therefore, measuring the importance is
essential for preprocessing the mesh.

Pure geometric measures of mesh shape such as curva-
ture have a long history of application in mesh processing
literature. Such as simplification [1], smoothing [2], [3],
shape matching [4], rending [5] and viewpoint selection [6].
However, a pure curvature-based metric may not necessarily
be a good metric of perceptual importance [1]. For exam-
ple, we elastically stretch a small part of a sphere mesh,
as in Figure 1a, where the neck-like and bump region is likely
perceived to be important. However, it is likely that the neck
region has lower or equal curvature compared to the most
bottom hemisphere region in Figure 1b. In the past years,

FIGURE 1. (a) Original mesh. (b) Shaded by Gauss curvature. (c) Lee [1]
saliency. (d) Our saliency.

visual saliency theory has been applied in the field of mesh
feature detection. The salient regions can be used to detect
the mesh vertices that are important for the 3D surface.

There has been a number of mesh feature detection
methods which are based on visual saliency reported in
recent years. These methods can be divided into local
center-surround operator [7]–[10] and multi-scale compu-
tation [1], [2], [4], [11]. Leifman et al. [11] proposed a
viewpoint selection method based on vertex distinctness.
Gal and Cohen-Or [7] introduced a method for partial match-
ing of surfaces represented by triangular meshes. Lee et al. [1]
defined a center-surround operator on the local curvature
as the discriminative feature. Pauly et al. [12] present a
multi-scale technique for extracting surface variation and
feature-points over different scales. And other local 3D shape
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descriptor to extract the feature, such as [13] and [14].
These models are based only on the local feature operator.
Hence, the error created during the curvature estimation will
be amplified by the local difference operator, such as the
saliency in Figure 1c which is detected by the center-surround
model [1]. Zhao et al. [15] proposed a global model named
shape index field based on non-local means filter, it runs very
slowly especially for 3D point cloud.

In this paper, we present a novel mesh saliency model
based on the curvature co-occurrence histogram (CCH).
Analogously to co-occurrence histogram based image
saliency detection method [16], [17], the proposed model
concurrently encodes both global shape features occurrence
and local discriminative shape features compared with the
surroundings. Therefore, it can be determined based on the
distinctive feature and common shape feature. Figure 1d is
shaded by our proposed saliency, and it can be observed that
the bump region is shaded in higher value than bottom hemi-
sphere region, which is consistent with the visual perception.
We can observe that the model is computationally fast and
easy to be implemented. Hence, it is especially suitable for
processing large data sets.

The effectiveness of the model is verified by point cloud
registration and mesh simplification results. It demonstrates
that our mesh saliency represent more important features than
the state-of-the-art model.

II. ALGORITHM
The algorithm is highly related to the model proposed for
image saliency model [16] and includes two phases. Firstly,
it constructs the Curvature Co-occurrence Histogram, which
not only is the statistic of the global curvature information but
also the co-occurrence of curvature information in the local
region. Secondly, the saliency for eachmesh vertex is mapped
from the CCH in our saliency model.

A. CURVATURE CO-OCCURRENCE HISTOGRAM CCH
Let V = {v1, v2...vN } is a point set in R3 space. Its Gauss
curvature denoted as G = {g(v1), g(v2), · · · , g(vN )}. Then
we uniformly quantify the interval [gmin, gmax] to K =

{1, 2, · · · , k} bins, i.e. k levels. We denote the quantified G
as {g1, g2, · · · , gk )}. The curvature co-occurrence histogram
H is defined as:

H = [h(m, n)], m, n ∈ K, (1)

where H is a symmetric square matrix of size k × k . For
each vertex vi with a Gauss curvature gi falls into m, all
vertex within the neighborhood of vi are examined one by
one. If a neighboring vertex has a curvature value falls into n,
the H element h(m, n) is increased by one. H is built after all
vertices of the model are examined. The neighborhood of the
vertex vi is defined as a ball centred at vi with radius r denoted
as B(vi)r .

The CCH encodes both occurrence and co-occurrence of
the vertices curvature. Each vertex pair with itself to account
for many diagonal elements of the CCH, through which

global shape occurrence information is captured. At the same
time, each vertex pair with a number of neighborhood ver-
tices, to account for non-diagonal elements of the CCH,
through which local co-occurrence curvature feature is cap-
tured. For the Stanford bunny model in Figure 2a, Figure 2b
shows its CCH.

FIGURE 2. (a) Original bunny model. (b) The curvature co-occurrence
histogram of the bunny model. Since the Gauss curvature varies in a wide
range, and some bins have large occurrence,we scale H as log(1+H) for
better visualization.

B. MESH SALIENCY FROM CCH
Mesh saliency is captured by two types of CCH elements.
The first is that those elements far from the diagonal that
correspond to small convex or concave parts of themesh, such
as eyes, foot in Figure 2a. The second is that those elements
lying around the diagonal that correspond to mesh vertices
paired with neighbors have relatively infrequent distribution,
such as tail and ears in Figure 2b.We will establish a mapping
from CCH to the vertex’s saliency. We define a probability
mass function (PMF) as:

P =
H∑k

m=1
∑k

n=1 h(m, n)
. (2)

The values in P are 0 or larger than the average should not
be considered to be the contribution for saliency. And rest
of the values are inversely proportional with saliency. The
smaller probability value, the higher value of saliency. So an
inverted P̄ is computed as follows:

P̄ =


0, if P(m, n) = 0,
0, if P(m, n) > T ,
T − P(m, n), if P(m, n) ≤ T ,

(3)

where p(m, n) denotes an element of P. As defined in (3),
elements in P̄ are set to 0 when there are no corresponding
curvature value pairs within the model or when the corre-
sponding P elements are lager than a certain threshold.
The threshold T in (3) is a measure of the average curvature

value of model, which is set based on the average of nonzero
elements within P as follows:

T =
1∑

INZ (P)
, (4)

where INZ (P) denotes a binary nonzero function that sets all
nonzero elements within P to 1 and rest to 0. The denomi-
nator

∑
INZ (P) counts all nonzero elements in P. As shown

in Figure 2, the curvature value of the mouth is less than the
threshold T , so it has great value in P̄.
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The salient value for each vertex vi is computed as follows:

S(i) =
∑
j∈B(i)r

P̄(gi, gj), (5)

where j index the vertices within the neighborhood of
vi, and r is set the same as in CCH construction. gi and gj
denote curvature values at location vi and vj, respectively.
Therefore, P̄(gi, gj) is the element of P̄ indexed by gi and gj.

III. EXPERIMENTAL RESULTS
A. IMPLEMENTATION
There are 2 parameters need to be set in the algorithm. The
first is the ball radius r which specifies the neighbor size of
the given point. The second is the number of bins k involved
in the curvature vectorization.

The CCH has a very good characteristic: It is tolerant
to the variation of the radius r . To show that, we fix the
parameter k to 3700 bins, and then set r as 2%,4%,6%,8% of
the model diameter. Taking the bunny model as an example,
we depict the same sampled row in CCH for each parameter
of r . It shows in Figure 3 that the CCH is similar to each
other under different r . The main difference is that when the
radius r is much too smaller, the distribution of CCH is likely
close to 0. This is because only fewer closest neighboring
vertices having nearly same curvature are taken into statistics
when the r is oversmall. Hence, the total energy of the CCH
is too small and local discriminative geometry features can
not be encoded properly.

FIGURE 3. Comparison of the CCHs, which are calculated under different
radius r . Each curve is got by sampling from a fixed row (1850th) of CCH.

Figure 4 shows the saliency of the bunny model under
different radius r = 2%, 4%, 6%, 8% of the model diameter.
It can be seen that when r is greater than or equal to 4%
of the model diameter, the saliency detection results have
been slightly influenced by the parameter. Considering the
efficiency of the algorithm, we set r equals to the 4% of the
model diameter in this paper.

After the radius r is determined in the algorithm, we
discuss how to confirm the size of the CCH, i.e. k . The
complexity of the algorithm is highly relative to it. Firstly,
we define N as the number of vertices on model. And then,
the maximum computation time of (1), (2), (3), (4) and (5)
are T (N 2), T (2k2), T (k2), T (k2) and T (N 2), respectively.
So the performance time of our algorithm is T (2N 2

+ 4k2).

FIGURE 4. Salient feature detection results with different r . (a) r = 2%;
(b) r = 4%; (c) r = 6%; (d) r = 8%.

In order to have a higher quantification level k but not
to raise the complexity much, it is reasonable to set

k2 ≤ 1
2N

2. Although k = ( 12N
2)

1
2 gives higher quantification

level, the CCH takes up too much storage space to compute.
It would restrict the application scope of the CCH.

Therefore, we proposed a nonlinear function from that we

have k = ( 12N
2)

2
log10N+1 . There are two main advantages of

this function. Firstly, even for huge amount of point num-
ber N , the k is controlled in a computable scale, since it can

be proofed that lim
N→+∞

(
1
2
N 2)

2
log10N+1

= 104 (The proof is

represented in Appendix.). Secondly, in most case when N is
got in the range from 105 to 106, the number of bins k has a
moderate value in the range from 1710 to 2201.

Figure 5 plots the number of bins k varying with differ-
ent number of vertices N . It shows that the bins number k
increases slowly as the N increasing to infinity, and it is
restricted under 104. Therefore, for any number of vertices
of the model, the value k is satisfied with the limitations of
computer hardware.

FIGURE 5. The number of bins k vary with different number of clouds
scale N .

Figure 6 shows the saliency computed under different k .
It shows that even set bigger quantification levels than our
proposed k , the computed saliency has a slight variation. It is
hard to conclude that the proposed k gives an optimal choice
of quantification levels, but it get a balance between store
space and accuracy.

In Table 1, we compare the computation time at differ-
ent number of triangles. It can be seen that as the scale of
point cloud increasing, the computation complexity increase
extremely slower compares with the method in [1]. It makes
our method extremely suitable for large scale point clouds
feature detection.
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FIGURE 6. Salient feature detection results. The radius r is set to
4% of the model diameter and the number of vertices N = 35947.

(a) k = ( 1
2 N2)

2
log10N+1

= 1485; (b) k = 5000; (c) k = 10000.

TABLE 1. Computation efficiency comparison (sec).

In Figure 1, we shaded the synthesized model using dif-
ferent detecting method. And our saliency is more consistent
with the visual perception. Figure 7 presents the surface
saliency for the model cow, bunny and dragon. It can be seen
that the regions with more geometry information have been
indicated with ‘‘warm colors’’.

FIGURE 7. Salient feature detection results. The number of vertices N and
bins k : (a) N = 2904,k = 931; (b) N = 35947,k = 1485;
(c) N = 2396,k = 890; (d) N = 72259,k = 1641; (e) N = 35406,k = 1484.

Unlike in 2D images, 3D saliency detection does not have
ground truth, so the accuracy of the detected saliency cannot
be determined. To solve this problem, point cloud registration
and mesh simplification approach is applied. The simplifi-
cation and registration errors indicate the efficiency of the
proposed saliency detection method. According to the points’
saliency value, we can sample faithful points in registration,
and exert weight on important vertices to preserve the local
geometrical details in simplification. Figure 8c shows the
sampled points which are obtained by our saliency. Higher
salient regions will have more sampling points. Figure 8d
shows the 95% simplified mesh, and the details is presented
in III-C.

B. REGISTRATION
In this paper, the ICP algorithm [18], [19] is used for register-
ing the sampled points. For an original point cloud V in R3,

FIGURE 8. (a) Input model bunny and horse. (b) Our saliency. (c) Selected
salient points, 10% were selected. (d) 95% simplified model.

and the source point cloud V ′ can be computed as:

V ′ = Rθ · D(V ), (6)

Where D(·) denotes downsampling point cloud V according
to the points’ salient value. R is the rotation matrix and the
rotation parameter θ is set to 20◦. We fix the point cloud
V as the target and estimate Rθ ′ to register V ′ to V . The
ICP algorithm iteratively converge to the final estimation
parameter Rθ ′ , which can minimize the distance of point
set V and V ′.
The efficiency of the saliency detection can be eventu-

ally determined by the registered RMSE (root mean square
error) |V − V ′| =

√∑
v′i∈V

′ (vi − v′i)
2 and 1θ = |θ − θ̂ |.

Usually, the RMSE and angle estimating error indicate the
performance of the algorithm. Figure 9 shows the ICP reg-
istration results as the subsampling rate P varying from 50%
to 90%. It can be observed that the proposed method achieves
comparable accuracy with [1] under RMSE criteria, while our
method has relatively better results for θ estimation.

C. SIMPLIFICATION
In order to evaluate the effect of the simplification efficiency,
our simplification results have been compared with QEM
(Geometric quadric error metrics) method [20] and Lee-QEM
(Lee saliency weighted QEM)method [1]. Analogous to Lee-
QEM, we use the salient feature as the weight and exert

FIGURE 9. The ICP registration results based on our method and
Lee-QEM [1]. Applied on cow and bunny with 20◦ rotation angle,
respectively. First column: the RMSE error of registration.
Second column: the error of estimated rotation angle 1θ . P is the
percentage that sampled from the original point cloud. (a) Cow. (b) Bunny.
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FIGURE 10. Simplify by using QEM [20], Lee-QEM [1] and our method to
1k triangles. (a)(e) Original models (cow has 5804 triangles, bunny has
69451 triangles, wrist has 141232 triangles and feet has 70368 triangles.
(b)(f) QEM [20]. (c)(g) Lee-QEM [1]. (d)(h) Ours.

it to mesh vertices during simplification. At the initializa-
tion, the quadric matrix Q for each vertex v is multiplied
by its simplification weight W derived from the saliency of
v: Q ← W (v)Q. After a vertex-pair collapse, the weight W
for the new vertex is the sum of the weight for the pair of
vertices being collapsedW (vi)+W (vj). The weight for vertex
is defined as:

W (v) =

{
λS(vi), if S(vi) ≥ α,
S(vi), if S(vi) < α,

(7)

where W (·) amplifies the salient value by λ to those salient
value bigger than a threshold α. This will ensure that the
important salient vertices will preserve their position longer.
In our method and Lee-QEM [1], we all set λ = 100 and
α = 30% percentile saliency.
Figure 10 shows the visual quality comparison of the three

simplification methods. We simplify each model to 1k trian-
gles from the original models. Apparently, our method for
all models even for 3D medical models which was generated
from CT scan in retaining local details is much better than
the QEM and Lee-QEM. Our method preserves the shapes

FIGURE 11. Metro [21] to evaluate the geometric errors. First column: Max
geometric errors. Second column: Mean geometric errors. (a) Cow.
(b) Bunny.

of noses and mouths better. Other methods result in blur-
ring or distortion in these regions.

To quantificationally compare the simplified results,
we use triangular mesh error evaluation software Metro [21],
which can measure the difference between the original
model and simplified model. The Max geometric errors and
mean geometric errors of the three methods are showed
in Figure 11. It can be observed that our method has a mod-
erate performance under both types of error criterion. We can
deduce that our saliency not only gives an accurate measure
for the salient surface region but also conduct properly at the
non-salient region, which means that our saliency has a stable
measure for mesh globally.

IV. CONCLUSION
In this paper, we have presented a novel 3D surface
saliency detection method, which makes use of curvature
co-occurrence histograms. Compared with state-of-the-art
models, the proposed model has a high efficiency in compu-
tation especially suitable for large-scale date set processing.
The registration results show that the points sampled from
our saliency capture the main geometry features of the model.
Therefore registering using points extracted from our saliency
and points from other saliency have almost same registration
error. The performances of simplification on various data
show that our approach not only represents overall shape
fidelity but also has the capability to retain the sharp and
visual salient regions well.

APPENDIX
PROOF THE UPPER BOUND OF THE PROPOSED
QUANTIFICATION LEVELS k

lim
N→+∞

(
1
2
N 2)

2
log10N+1

= 104
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Proof:

lim
N→+∞

(
1
2
N 2)

2
log10N+1

= e
lim

N→+∞

2
log10N + 1

· ln
1
2
N 2

= e
lim

N→+∞

2 ln 1
2N

2

lnN
ln 10 + 1

= e
lim

N→+∞

4 lnN + 2 ln 1
2

lnN + ln 10
· ln 10

= e4 ln 10

= 104
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