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ABSTRACT This paper studies the emerging wireless power transfer for the Internet-of-Things (IoT)
network, where one hybrid access point (H-AP) with constant power supply communicates with a set
of IoT devices. This H-AP is assumed to work in a full-duplex mode, which transmits/receives signals
to/from these IoT devices simultaneously during the whole frame. The IoT devices are capable of harvesting
energy from the received signals broadcast by the H-AP. And the harvested energy is used to support the
uplink transmission. Since time-division multiple access is used in uplink transmission, one IoT device
keeps harvesting energy till its own uplink time slot. The objective of this paper is to maximize the
total surplus energy, which is defined as the gap between available energy and consumed energy for
uplink transmissions, by exploiting the optimal time allocation scheme for each device. A distributed
non-cooperative and a bargaining cooperative game-based algorithms are proposed to solve this problem.
In addition, the well-knownKKT condition approach is adopted as a comparison. The numerical results show
that the bargaining cooperative algorithm outperforms the distributed non-cooperative algorithm (DNCA)
and KKT algorithm (KKTA) in terms of total surplus energy and fairness index. The performance of DNCA
is better than that of KKTA in terms of total surplus energy while KKTA is fairer than DNCA.

INDEX TERMS Wireless power transfer, full-duplex, Internet-of-Things, game theory, surplus energy,
fairness index.

I. INTRODUCTION
5G era is characterized by its high density of base stations and
terminals [1]. It is widely reported that the 5G network has to
accommodate more than 1 trillion devices including IoT ter-
minals and human-oriented terminals [2]. Many challenges
are coming together with this significant evolution of wire-
less communication technology, e.g., resource management
issues, radio access issues, and energy consumption issues,
etc. Due to the limitation of battery and power supply of IoT
networks, energy consumption issues have attracted many
researchers working on this topic. Many innovative protocols
and algorithms are proposed to address these problems from
different aspects.

The development of renewable energy such as solar,
wind and tide has lasted for many years. Currently, these
renewable energy sources have been an irreplaceable part
of the power supply. However, applying renewable energy
techniques to wireless communication networks is a rela-
tively new idea. Compared with conventional grid power
supply, renewable energy is more environmental friendly

and sustainable. Reference [3] considers a communication
system powered by both grid and renewable energy sources
and the grid energy price is minimized by the proposed
optimization algorithm. Hu et al. [4] propose a capacity
maximization algorithm based on a MIMO system pow-
ered by smart grid as well as renewable energy sources.
A novel spectrum and energy cooperation strategy are pro-
posed in [5]. Reference [6] investigates the traffic load bal-
ancing in backhaul-constrained cache-enabled small cell
networks powered by hybrid energy sources.

However, the availability of these renewable energy
sources is extremely limited by the environment (i.e., no solar
at night). In this case, harvesting energy from ambient radio
signals has been a more reliable and available alternative
for the energy-sensitive terminals, such as wearable devices.
Reference [7] has demonstrated that 3.5mW and 1µW can
be harvested from 0.6 and 11 meters away. Mikeka and
Arai [8] show that over 50% harvesting efficiency can be
achieved with −5dBm input power. In addition to har-
vesting energy, the normal data transmission is able to be
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conducted simultaneously, which is called simultaneous
wireless information and power transfer (SWIPT) [9]. This
novel technique requires a unique receiver architecture where
the received signal is split either in the time domain or power
domain [10]. However, challenges still puzzle researchers
and engineers regarding hardware design [10], modulation
and coding scheme selection [11] and security issues [12].
In this paper, we consider a full duplex IoT network where
the terminals are powered by RF energy harvesting.

A. RELATED WORKS
Wireless charging technology is originally proposed with
resonant inductive coupling and magnetic resonance cou-
pling. But the features of these two techniques (i.e., low
effective distance and low charging efficiency) greatly limit
their deployments and applications [10]. Then, radio fre-
quency energy transfer or wireless energy transfer (WET) is
proposed, which overcomes these two problems. Therefore,
we only focus on WET in this paper.

Huang and Lau [13]authors propose a novel frame that
enables wireless power transfer in cellular networks in
terms of network architecture, modeling as well as the
deployment of power beacons. Reference [14] considers a
medium access control protocol for wireless sensor networks
which is powered by WET. The average network through-
put is improved by 112% over a modified unslotted CSMA
MAC protocol. Reference [15] considers a typical WET sce-
nario where all users harvest energy from downlink and
exhaust their harvested energy to uplink transmission by
time-division-multiple-access (TDMA). The corresponding
throughput is maximized by the proposed algorithm. The
similar network architecture is applied in [16] where the
minimum user throughput is maximized by a joint design
of the DL-UL time allocation, the DL energy beamforming,
and the UL transmit power allocation, as well as receive
beamforming. Reference [17] maximizes the sum rate via
the power control optimization in a two user network with
interference channel where time switch structure is applied.
Ju and Zhang [18] consider a full-duplex wireless pow-
ered communication network (FD-WPCN) where one hybrid
access point (H-AP) broadcasts wireless energy to users in
the downlink meanwhile receives information from the users
by TDMA in the uplink. An efficient protocol that sup-
ports this two-way communication is designed to maximize
the weighted sum uplink rate of all users. Reference [19]
addresses the impact of massive MIMO on the user asso-
ciation in massive multiple-input multiple-output (MIMO)-
aided heterogeneous networks (HetNets) embedded wireless
power transfer (WPT).

Game theory has been widely applied in wireless com-
munication. It provides analytical tools to predict the out-
come of complex interactions among rational entities [20].
The advantages of game theory make it be used as an
efficient approach to solve resource allocation problems.
In general, game theory consists of the non-cooperative
game model and cooperative game model. In [21],

a non-cooperative game model in terms of uplink power
control is formulated with the objective of maximizing its
own utility. A Pareto optimal solution is obtained for the
formulated game model. The non-cooperative game model
is also used in [22]–[24] to maximize their prescribed utility
functions in different network scenarios via optimal power
control. Besides, joint resource allocation problems also can
be solved by non-cooperative game model. Reference [25]
models the resource allocation problem as a non-cooperative
game with self-interested players and objective of maximiz-
ing its own energy efficiency in interference-limited device-
to-device communication networks. Reference [26] proposes
a supermodular game model where the utility function is
designed by considering both transmission power and rate.
The derived distributed algorithm reaches the expected Nash
Equilibrium (NE) through an iterative manner. In [27], A big
data-integrated coalition game approach is adopted to achieve
dependable content distribution in D2D cooperative vehicular
networks. And bandwidth allocation and admission control
algorithms are obtained on basis of this cooperative game
model. Reference [28] considers a relay network where the
signals transmitted from source to destiny is forwarded by
the relay. A bargaining game is formulated to determine the
power allocation to the relay and users. The Nash Bargain-
ing Solution (NBS) is obtained and a balance between the
sum-rate and the user fairness is achieved as well. A unified
cooperative bargaining game is formulated in [29] where
spectrum allocation, power allocation, and simultaneousmul-
tiresource allocation are taken into consideration. A good
trade-off between computational complexity and system effi-
ciency is achieved via the derived NBS.

In order to solve the issues of wireless energy trans-
mission, game theory has been considered as an efficient
methodology to address the formulated problems in var-
ious network setups. Reference [30] considers a multiple
source-destination network with objectives to minimize their
own transmission power under the constraints of SINR and
energy harvesting with the non-cooperative game theory.
A stackelberg game is formulated in [31] with a power
beacon-assisted wireless-powered communication network,
where the proposed algorithm achieves better performance in
terms of per unit throughput. Zheng et al. [32] adopt the time
switching-based relaying (TSR) protocol in a half-duplex
relay network, where the whole frame of the relay is dynam-
ically divided into three parts: energy harvesting, data trans-
mission from sources to the relay and data transmission
from relay to destinations. The Nash bargaining approach is
used to balance the information transmission efficiency of
source-destination pairs and the harvested energy of the relay.
In addition, [33] tries to maximize the energy efficiency via
minimizing the total consumed energy in a clustering IoT
network with energy harvesting. An iteration-based IPCTA
algorithm for TDMA is proposed tominimize the total energy
consumption.

Different from the above papers, this paper considers a
full duplex H-AP which transmits energy to the devices and
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receives information from the devices simultaneously with
TDMA. In order to give a direct insight into the behavior
of each individual device under the different game model,
the non-cooperative game theory and cooperative game the-
ory are applied to address the issue of surplus energy maxi-
mization, respectively. In addition to focusing on the energy
issue, the fairness problem is also considered in this paper.
And the numerical results show the superiority of our pro-
posed algorithms in terms of both surplus energy and fairness.

B. CONTRIBUTIONS
The main features of the IoT network in 5G are summarized
as large quantities of intelligent terminals, long lifetime and
small traffic volume [34]. Therefore, in order to enhance the
lifetime of the massive IoT devices, this paper adopts the
wireless power transfer technique which is regarded as a reli-
able option to charge the massive IoT devices. Furthermore,
since the lifetime of an IoT device is critical and mainly
determined by the available energy, the objective of this paper
is to maximize the surplus energy by exploring the optimal
time allocation scheme under the constraint of data volume
for each individual IoT device. The main contributions of this
paper are summarized as follows:
• Rather than throughput maximization and energy effi-
ciency optimization in most related papers, we consider
surplus energy maximization in this paper because the
battery capacity is very limited for most IoT devices.
And it is also inconvenient and uneconomical to fre-
quently recharge these mass deployed IoT devices.
To some extent, the surplus energy indicates the relia-
bility and availability of an IoT device, which is quite
important for some practical use cases like industrial IoT
networks and environment monitoring IoT networks.

• Different from the papers using half-duplex mode,
the proposed network setup in this paper consists of
an H-AP in the full-duplex mode which extremely
improves the energy harvesting efficiency and a set of
IoT devices enabling energy harvesting with TDMA
which eliminates the uplink mutual interference among
the IoT devices.

• The nature of game theory empowers the IoT devices
with intelligence, which means every individual device
is considered as a rational player who is capable of
making decisions based on its own acquired information
and rules. This feature matches the formulated problem
in this paper, where the time allocation of each device is
mutually affected.

• Different from the papers using game theory, we use
both non-cooperative game theory and cooperative game
theory to solve this surplus energy maximization prob-
lem. The diverse game-based approaches give an insight
into this optimization problem. The developed dis-
tributed non-cooperative algorithm allows each individ-
ual device to make selfish decisions without exchanging
any information among the devices, which simplifies
the system complexity. On the contrary, the bargaining

cooperative game requires full communications among
the devices, which results in a better system perfor-
mance.

• All theoretical analysis is verified by extensive numer-
ical simulations. The proposed bargaining cooperative
algorithm outperforms the other two by sacrificing the
computational complexity. The performance of the pro-
posed distributed non-cooperative algorithm is better
than that of the KKT condition regarding the total sur-
plus energy while the KKT condition is fairer than the
proposed non-cooperative algorithm.

The rest of this paper is organized as follows:
Section II shows the system model and the whole frame
structure. Section III formulates the problem and derives
the solutions based on the distributed non-cooperative game
model and bargaining cooperative game model. The numer-
ical results are presented in Section IV. Finally, this paper is
concluded in Section V.

FIGURE 1. System model.

II. SYSTEM MODEL
As illustrated in Fig. 1, this paper considers a wire-
less powered IoT network consisting of one H-AP com-
municating with multiple IoT devices denoted by IoTDi,
i = 1, · · · ,N . It is assumed that the H-AP and all devices
operate in full-duplex and half-duplex, respectively. There-
fore, the H-AP is able to broadcast energy signal and receive
information simultaneously. In the downlink direction, each
device harvests energy from the received signal broadcast by
the H-AP with practical non-linear energy harvesting model
introduced in [35]. Since TDMA is adopted in uplink trans-
mission, each individual IoT device keeps harvesting till its
allocated time slot defined by T τi, i = 1, · · · ,N , which is
illustrated in Fig. 2. T is defined as the frame length and τi
is a ratio varying from 0 and 1. Note that in order to ensure
the initial operation of the IoT devices, an original available
energy is defined as EOi and an initial energy harvesting time
slot is defined as T τ0. The downlink, uplink, and interference
channels are assumed to be quasi-static flat-fading with hi, gi
and gji, respectively.
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FIGURE 2. Time frame structure.

A. ENERGY HARVESTING MODEL
The H-AP broadcasts energy signal to all IoT devices during
the whole frame and the uplink transmission of one device
interferes with other devices which are harvesting energy.
Hence, the signal received by the IoTDi is expressed as

yi(τj) =
√
PAPhix + Ij(τj)+ ni (1)

where Ij(τj) =
√
Pjgjixj, j = 0 · · · i− 1. Note that I0(τ0) = 0.

PAP is the transmission power of the H-AP. Pj is the uplink
transmission power of IoTDj and x and xj are the transmitted
signals with E[|x|2] = E[|xi|2] = 1. ni ∼ CN (0, σ 2

i ) is the
additive Gaussian noise introduced by the received antenna
at the IoTDi. Note that although the received signal of (1)
consists of the interference from the uplink transmission
device, the harvested energy from interference is neglectable
because the interference power is pretty small compared with
that from the downlink transmission and it is too small to
trigger the energy harvesting functionality since there exists
a receiver sensitivity threshold for the non-linear harvesting
model. Therefore, the harvested energy of IoTDi during the
whole frame is written as

EHi =
i−1∑
j=0

u(PAP|hi|2)T τj (2)

where u(·) is defined as follows [35]

u(x) =
M (1+ eab)

eab + e−a(x−b)
−

M
eab

(3)

where a, b and M are positive parameters which capture the
joint effects of different non-linear phenomena caused by
hardware constraints. Therefore, the total available energy
of IoTDi can be expressed as

EAi = EOi + E
H
i (4)

B. ENERGY CONSUMPTION MODEL
In the allocated uplink time slot, IoTDi transmits data to the
H-AP with achievable throughput

Ri = BT τiln(1+
Pi|gi|2

σ 2
i

) (5)

where B is the bandwidth. Different from many energy har-
vesting papers, the circuit power consumption is taken into
account in this paper. It has been proved in [33] that the
circuit power consumption makes a non-negligible impact
on the system performance with energy harvesting. Thus,
the consumed energy of IoTDi is written as

ECi = τiT (Pi + Pc) (6)

where Pi is the uplink transmission power of IoTDi and Pc is
the uniform circuit power consumption of all devices.

C. SURPLUS ENERGY MODEL
Based on the previous discussions, the surplus energy
of IoTDi is defined as

ESi (τ ) =

EAi − ECi , if EAi ≥ E
C
i and

∑i

j=0
τj ≤ 1

EAi , else
(7)

where τ = [τ1, · · · , τN ]T denotes the time allocation ratio
vector for all IoT devices. This definition of surplus energy
indicates that it is possible that some of the devices do not
have the opportunities to conduct uplink transmission due to
insufficient harvested energy and limited frame length. Once
the available energy is less than the consumed energy or its
allocated slot exceeds the frame length, the corresponding
device does nothing but harvest energy. This mechanism
ensures most devices are able to implement uplink transmis-
sion after energy harvesting meanwhile provides an opportu-
nity to those who experience an insufficient energy harvesting
to accumulate more energy for the next frame. Note that for
the long-term cases with multiple frames, a well-designed
scheduling scheme is needed to achieve a long-term optimal
system performance, which is not within the scope of this
paper but a possible direction of our future research.

III. GAME THEORETICAL ALGORITHM
The system performance is characterized by the total surplus
energy. Naturally, the global optimization problem can be
formulated as

max
τ ,Ri

N∑
i=1

ESi (τ ) (8)

Constraints:

0 < τi < 1 (9)

0 <
N∑
i=0

τi < 1 (10)

Ri ≥ Di (11)

0 < Pi ≤ Pmax (12)

where Di is denoted as the required data volume of uplink
transmission of IoTDi and Pmax is the maximum transmis-
sion power of each device. To solve this global optimiza-
tion problem, we develop a distributed non-cooperative game
based algorithm and a bargaining cooperative game based
algorithm.
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A. DISTRIBUTED NON-COOPERATIVE
GAME BASED ALGORITHM
The distributed non-cooperative method allows each device
to make its individual decision without exchanging any deci-
sion information with other devices. Accordingly, the global
optimization degenerates into a local optimization problem
of IoTDi, which can be expressed as

max
τ ,Ri

ESi (τ ) (13)

Constraints: (9), (11) and (12).
Note that since no decision information is exchanged in

this distributed non-cooperative method, (10) is meaningless
for each individual device, which characterizes the distributed
non-cooperative method. In addition, it is clear that (11) has
to hold equality in this local maximum problem. Therefore,
the uplink transmission power is derived as

Pi =
σ 2
i

|gi|2

(
e

Di
BT τi − 1

)
(14)

Substituting (14) into (6), we obtain

ECi = τi

(
σ 2
i

|gi|2

(
e

Di
BT τi − 1

)
+ Pc

)
(15)

Therefore, this distributed non-cooperative game model
can be represented as
• Players: N IoT players.
• Actions: uplink transmission time ratio determined by
each individual IoT device.

• Utilities: the surplus energy defined in (7).
This game can be denoted as

GDNC = 〈N , {Ai}, {ESi (τ )}〉 (16)

whereAi is the feasible set of τi. In the following subsections,
the proof of existence and uniqueness of the solution for this
formulated game are provided.

1) EXISTENCE OF NASH EQUILIBRIUM
Nash Equilibrium (NE) is the solution to a non-cooperative
game and it is defined that no player is able to increase
its utility by deviating from the Nash Equilibrium [36]. For
the formulated game GDNC , the NE satisfies the following
inequality,

Esi
(
τ ∗i , τ

∗
−i

)
≥ Esi

(
τi, τ
∗
−i

)
, ∀τi ∈ Ai (17)

where τ−i = [τ1. · · · , τi−1, τi+1, · · · , τN ]T . The following
theorem proposed in [37] is adopted to prove the existence.
Theorem 1: A NE exists in a non-cooperative game
〈N , {Ai}, {ui(X)}〉 if ∀i ∈ N , {Ai} is a compact and convex
set. ui(X) is continuous in X and quasi-concave in xi, where
X = (xi,X−i).
After checking the properties of the action sets Ai and

utility function Esi (τ ), we have the following proposition in
terms of NE existence:

Proposition 1: The action sets Ai are all compact
and convex. The utility function Esi (τ ) is quasi-concave
in τi, ∀i ∈ N .

Proof: According to the definition of convex set [38]
and compact set [39], Ai is both convex and compact and
the utility function Esi (τ ) is continuous in τi. And the
quasi-concavity can be proved by the second partial derivative
of the utility function with respect to τi, which is derived as

∂Esi (τ )

∂τi
= −T

σ 2
i

|gi|2
e

Di
BT τi

(
1−

Di
BT τi

)
+ T

σ 2
i

|gi|2
− TPc

(18)
∂2Esi (τ )

∂τ 2i
= −

1

T τ 3i

σ 2
i D

2
i

|gi|2B2
e

Di
BT τi (19)

It can be observed that the second partial derivative is
negative, which indicates that the utility function Esi (τ ) is
quasi-concave with respect to τi.
Based on the above proof, it can be concluded that the

formulated game GDNC possesses at least one NE.

2) UNIQUENESS OF NASH EQUILIBRIUM
First of all, the iterative function for each device is derived by
letting

∂Esi (τ )
∂τi
= 0. Thus, we obtain

τ
(t+1)
i =

Xie
Xi
τ
(t)
i

e
Xi
τ
(t)
i − Yi

(20)

where Xi =
Di
TB and Yi = 1 − |gi|2

σ 2i
Pc. Then we

define the best response function BR(τ (t)i ) = τ
(t+1)
i .

Hence, the best response vector function is written as
BR(τ ) = [BR(τ1), · · · ,BR(τN )]. According to the fix
point theorem [40], the action set τ ∗ is a NE of the formulated
game GDNC if and only if it is the fixed point of BR(τ ).
Therefore, proving the uniqueness of NE for the formulated
gameGDNC is equivalent to prove the uniqueness of the fixed
point of function BR(τ ). Furthermore, according to [41],
the fixed point of BR(τ ) is unique if BR(τ ) is a standard
function, which is defined as follows:
Definition 1: A function f (x) is a standard function if the

following properties are satisfied for all x ≥ 0:

• Monotonicity: If x ≥ x ′, then f (x) ≥ f (x ′).
• Scalability: αf (x) > f (αx), ∀α > 1.
According to this definition, the following proposition is

concluded.
Proposition 2: There exists a unique NE in the formulated

non-cooperative game GDNC .
Proof: It is very straightforward to observe that BR(τi)

increases with the increase of τi. Then, we rewrite BR(τ ) as

f (τ ) = BR(τ ) =
X

1− Y

e
X
τ

(21)
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therefore, we have αf (τ ) = X α

1− Y

e
X
τ

and f (ατ ) = X 1
1− Y

e
X
ατ

.

Since α > 1, we have

lim
α→1

αf (τ ) = lim
α→1

f (ατ ) (22)

lim
α→+∞

αf (τ ) = +∞ (23)

lim
α→+∞

f (ατ ) =
X

1− Y
(24)

∂αf (τ )
∂α

>
∂f (ατ )
∂α

(25)

Based on the above analysis, we can conclude that there
exists a unique NE in the formulated game GDNC .

3) DISTRIBUTED NON-COOPERATIVE ALGORITHM
In this subsection, an iterative and distributed time allocation
algorithm is proposed in Algorithm 1. According to this algo-
rithm, one IoT device is capable of achieving the NE point by
updating its own decision to the convergence iteratively and
independently. The achieved NE is actually the sub-optimal
solution to the formulated problem (8).

Algorithm 1 Distributed Non-cooperative Algorithm
1: set bandwidth B, traffic volume Di, circuit power con-

sumption Pc, frame length T and iteration index t;
2: for t = t + 1 do
3: calculate BR(τ (t)i );
4: if BR(τ (t+1)i )− BR(τ (t)i ) ≤ ε then
5: Output: τi
6: end if
7: end for

B. BARGAINING COOPERATIVE
GAME BASED ALGORITHM
The bargaining cooperative method requires sufficient nego-
tiation before the players make decisions. Each player IoTDi
has a utility function which is defined as Ui over the space
{Ai}

⋃
{D}, whereD is the outcome if the players fail to reach

an agreement, i.e., the disagreement outcome [42]. And the
set of all potential utilities that these players is able to achieve
is denoted as

S = {(U1(τ ), · · · ,UN (τ )) |τ = (τ1, · · · , τN ) ∈ T } (26)

Furthermore, the disagreement point is defined as
d = (d1, · · · , dN ) with di = Ui(D). Therefore, a bargaining
problem can be defined as

GBC = (S, d) (27)

where S ⊂ RN and d ∈ S. For a cooperative game,
Nash proposed Nash axioms ensuring the Nash Bargain-
ing Solutions (NBSs) [43] which is originally dedicated for
two-player cases. Since there are multiple devices in the
system, the extended Nash Theorem is adopted.

Theorem 2: A Nash Bargaining Solution can be obtained
by maximizing a Nash product term as

max
Ui∈S,Ui≥di,∀i

N∏
i=1

(Ui(τ )− di(τ )) (28)

Constraints: (9), (10), (11) and (12).
In order to solve this Nash bargaining problem effectively,

(28) can be reformulated as

max
Ui∈S,Ui≥di,∀i

N∑
i=1

ln (Ui(τ )− di(τ )) (29)

Constraints: (9), (10), (11) and (12).
For the reformulated cooperative problem, we need to

prove there exists a unique NBS that maximizes the objective
function in (29). Note that the solution of (29) is applicable
to (28) and di(τ ) is set to be 0 [44].

1) EXISTENCE OF NASH BARGAINING SOLUTION
According to [43], there is at least one NBS to the prob-
lem (29) when S is a nonempty, convex, and compact set
which is straightforward to see. Furthermore, we define
f = ln (Ui(τ )− di(τ )). Then the second partial derivative can
be obtained as

∂2f

∂τ 2i
= −

1

U2
i

(
∂Ui
∂τi

)2

+
∂2Ui
∂τ 2i

1
Ui
−

N∑
j=i+1

(
T
u(PAP|hi|2)

Ui

)2

(30)

since Ui = Esi ,
∂2 Ui
∂τ 2i

< 0 according to (19). Therefore,

we have the conclusion that ∂
2 f
∂τ 2i

< 0. As a result, the exis-

tence of the NBS is established.

2) UNIQUENESS OF NASH BARGAINING SOLUTION
According to [45], there exists a unique NBS to a cooperative
game if and only if the following four conditions are satisfied.
• The strategy set Ai is nonempty.
• There exists τi ∈ Ai satisfying Ui ≥ 0.
• The utility function f is continuous and quasi-concave
with respect to τi.

• The game model GBC is diagonally strictly concave on
its strategy set Ai.

According to the above conditions, the following proposi-
tion is concluded.
Proposition 3: There exists a unique NBS in the formu-

lated cooperative game GBC .
Proof: The first three conditions are directly satisfied by

the proof of 1). The last condition is defined as
Definition 2: For any τ 6= τ ′ and α = [α1, · · · , αN ] ≥ 0,

the following inequality holds [45]:(
τ − τ ′

)T g (τ ,α)+ (τ ′ − τ)T g (τ ′,α) < 0

where the function is defined as

g(τ ,α) =
[
α1
∂f1
∂τ1

, · · · , αN
∂fN
∂τN

]T
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Based on Definition 2, we can derive that(
τ − τ ′

)T [g (τ ,α)− g (τ ′,α)]
=
(
τ−τ ′

)T
×

[
α1

(
∂f1
∂τ1
−
∂f1
∂τ ′1

)
, · · · , αN

(
∂fN
∂τN
−
∂fN
∂τ ′N

)]T
=

N∑
i=1

αi
(
τi − τ

′
i
) ( ∂fi
∂τi
−
∂fi
∂τ ′i

)
=

N∑
i=1

θi (31)

where θi = αi
(
τi − τ

′
i

) ( ∂fi
∂τi
−

∂fi
∂τ ′i

)
. Due to the concavity

of the utility function f , it is clear to observe that ∂fi
∂τi

is
monotonically decreasing with respect to τi. Therefore, for
τi > τ ′i ,

(
∂fi
∂τi
−

∂fi
∂τ ′i

)
< 0 and for τ ′i > τi,

(
∂fi
∂τ ′i
−

∂fi
∂τi

)
< 0.

Since αi > 0, it can be concluded that θi < 0 for all the cases.
Therefore, the last condition is satisfied as well.

Based on the above analysis, we can conclude that there
exists a unique NBS in the formulated game GBC .

3) BARGAINING COOPERATIVE ALGORITHM
In order to solve this Nash bargaining based time alloca-
tion problem with constraints, the well-known interior-point
method is adopted. Note that this NBS is the optimal solution
to the formulated problem (8). First, we define a function

L =
1∑
ln(Ui)

+ m
(∑

(τi − 1)2 +
(∑

τi − 1
)2)

(32)

li =
∂L
∂τi

(33)

where m is the barrier parameter.

IV. NUMERICAL RESULTS
In previous sections, all theoretical analyses and proof have
been finished. In this section, we present several numerical
results to illustrate and validate the aforementioned deriva-
tions and propositions. All devices are uniformly distributed
with a centralized H-AP. The transmission power of the H-AP
is set to be 500 mW, i.e., PAP = 0.5 Watt. The downlink and
uplink channel gains are assumed to be symmetric and subject
to independent Rayleigh fading. In addition, by considering
the path loss, the channel model is set to beE|hi|2 = E|gi|2 =
d−αi , where di is the distance between the H-AP and IoTDi
and the path loss factor α = 2.5 [46]. The required data
volume Di is set to be 15 Kbits, the frame length T is set
to be 10s, and the bandwidth B = 180 KHz [33]. According
to [35], we set M = 24 mW, a = 1500, and b = 0.0014
for the nonlinear energy harvesting model in (3). In addition,
the original available energy, which ensures the initial oper-
ation of IoTDi, is set to be EOi = 0.1 Joule and the initial
energy harvesting time ratio τ0 = 0.15.

First of all, we consider a simple scenario with five IoT
devices communicating with the H-AP to validate our pro-
posed distributed non-cooperative algorithm (DNCA), where
the circuit power consumption of IoT device Pc is set to
be 5mW. Fig. 3 shows the convergence of our proposed
DNCA. According to [40], there may exist multiple NEs

Algorithm 2 Bargaining Cooperative Algorithm
1: set bandwidth B, traffic volume Di, circuit power con-

sumption Pc, frame length T , initial τ and the number of
IoT device N ;

2: for k = k + 1 do
3: set τi = τ (i, k) and m = M(k);
4: for n = n+ 1 do
5: gi = li(τi,m)

6: if
√∑

g2i ≤ ε then
7: τ (i, k + 1) = τi
8: F0(k + 1) = L(τi,m)
9: else
10: D1 =

∑
(τi − dgi)2

11: D2 = e
(
(
∑

(τi − dgi) − 1)2 +∑
(τi − dgi − 1)2

)
12: D = D1 + D2
13: dd = solve

(
∂D
∂d = 0

)
14: τi = τi − ddgi
15: end if
16: end for
17: T =

√∑
(τ (i, k + 1)− τ (i, k))2

18: F =
(
F0(k+1)−F0(k)

F0(k)

)2
19: if T ≤ ε&&F ≤ ε then
20: Output τ (i, k + 1),F0(k + 1)
21: else
22: M(k + 1) = 10M(k)
23: end if
24: end for

FIGURE 3. Convergence of distributed non-cooperative algorithm.

if the identical convergence point cannot be achieved with
random initial starting points. It can be easily observed that
our proposed DNCA is capable of achieving the identical
convergence point with different initial points, which means
there exists a uniqueNE in the formulated gamemodelGDNC .
Fig. 4 shows the individual surplus energy of each IoT device.
It is straightforward to observe that the surplus energy expe-
riences an increase before the extreme point and a decrease
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FIGURE 4. Surplus energy versus time allocation ratio τ with
non-cooperative algorithm.

after this extreme point, whichmeans there exists a maximum
surplus energy for each IoT device. In addition, once we com-
bine Fig. 3 and Fig. 4, it can be concluded that the maximum
surplus energy in Fig. 4 is achieved by the convergence value
in Fig. 3 (i.e.,D1(0.1372, 0.008631)in Fig. 4 is achieved via
D1(20,0.1372) in Fig. 3).
Next, we investigate the average total surplus energy and

fairness of this wireless powered network in terms of device
quantity and circuit power consumption. Note that the curves
in the following figures are obtained over 10000 independent
simulations. And in order to fully illustrate the superiority of
our proposed game theory based algorithms, the well-known
KKT condition based algorithm is involved as the bench-
mark in the system performance comparison. Note that since
in most papers related to game theory and wireless power
transmission, the non-cooperative gamemodel is widely used
due to its adaptability. Therefore, the performance of these
non-cooperative game-based algorithms can be represented
by our DNCA in this paper. Consequently, the comparisons
actually involve the optimal cooperative game-based algo-
rithm (BCA), the sub-optimal non-cooperative game-based
algorithms represented by DNCA, and the benchmark algo-
rithm named KKTA.

Fig. 5 illustrates the average total surplus energy of this
wireless powered IoT network with fixed circuit power con-
sumption (i.e., Pc = 5mW). It can be observed that our pro-
posed DNCA and BCA always outperform KKTA regardless
of the device quantity. And the BCA is always superior to the
KKTA. The advantage is relatively small when the number
of devices is small. This is because the limited time resource
(i.e., T = 10s) is capable of accommodating the small
number of devices (i.e., N ≤ 20), which means the available
energy EAi partly contributed by the harvested energy EHi is
able to cover the consumed energy ECi . However, when the
device quantity exceeds the system capacity (i.e., N ≥ 50),
part of the devices just store their available energy instead
of uplink transmission, which results in the increase of total
surplus energy as well as the total surplus energy gap.

FIGURE 5. Total surplus energy versus the number of devices.

FIGURE 6. Fairness index versus the number of devices.

Fig. 6 shows the impact of IoT device quantity on system
fairness regarding the surplus energy. Note that the circuit
power consumption is also fixed to be 5mW here. It is clear
to observe that all these three curves experience a decrease
first and then increase with the number of devices. The reason
is that with the increase of devices, part of the devices has
no time to do uplink transmission. Therefore, they turn to
store all the available energy. Consequently, the distribution
of the surplus energy becomes dispersed, which results in a
decrease of fairness. However, when the number of devices
exceeds a certain value (i.e., N=40 for DNCA, N=70 for
KKTA and N=40 for BCA), the majority of the devices turns
to purely store energy without uplink transmission. Hence,
the distribution of the surplus energy concentrates again,
which leads to an increase of the fairness. Note that there
should exist a limitation for the number of devices served in
one frame since the frame length is fixed. This upper bond
depends on the overall channel condition, the required data
volume of uplink transmissionDi and the frame length T . The
fact is that with better channel condition, less data volume and
longer frame length, more devices can be accommodated.

In Fig. 7, the impact of circuit power consumption on total
surplus energy is investigated, where the number of devices
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FIGURE 7. Total surplus energy versus circuit power consumption.

FIGURE 8. Fairness index versus circuit power consumption.

is set to be 50. Our proposed BCA and DNCA outperform
the KKTA and all of them increase with the circuit power
consumption since the increase of Pc necessarily decreases
the surplus energy ESi based on (7). However, in Fig. 8 all
curves experience a slight increase with the circuit power
consumption generally. This is because once the circuit power
consumption is high, the surplus energy of each individual
device is compressed into a pretty small value, which makes
the distribution of surplus energy more concentrated.

V. CONCLUSION
In this paper, two game theory based algorithms which
address the time allocation problem in terms of surplus
energy for wireless powered IoT networks are developed.
The non-cooperative and cooperative game models are estab-
lished, respectively. After proving the existence and unique-
ness, the corresponding Nash equilibrium (NE) and Nash
bargaining solution (NBS) are derived based on the formu-
lated game model, which maximize the total surplus energy
of the proposed network scenario. The numerical results val-
idate our analysis about our proposed algorithms. Further-
more, the well-known KKT condition is adopted to make

the comparison, where our proposed complicated BCA is
always superior to the DNCA and KKTA in terms of the total
surplus energy and system fairness. And the proposed DNCA
outperforms KKTA regarding total surplus energy while it
is inferior to KKTA in terms of fairness. Note that although
the performance of BCA is overwhelming, the overhead for
negotiations is huge due to the large number of devices which
will be fully investigated in our future papers and it is possible
to apply the proposed algorithms to some long-term cases
and it is believed that with the assistance of a well-designed
scheduling scheme, the long-term optimization will dramati-
cally improve the system performance.
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