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ABSTRACT WaveNet, which learns directly from speech waveform samples, has been used as an alternative
to vocoders and achieved very high-quality synthetic speech in terms of both naturalness and speaker simi-
larity even in multi-speaker text-to-speech synthesis systems. However, the WaveNet vocoder uses acoustic
features as local condition parameters, and these parameters need to be accurately predicted by another
acoustic model. So far, it is not yet clear how to train this acoustic model, which is problematic because
the final quality of synthetic speech is significantly affected by the performance of the acoustic model.
Significant degradation occurs, especially when predicted acoustic features have mismatched characteristics
compared to natural ones. In order to reduce the mismatched characteristics between natural and generated
acoustic features, we propose new frameworks that incorporate either a conditional generative adversarial
network (GAN) or its variant, Wasserstein GAN with gradient penalty (WGAN-GP), into multi-speaker
speech synthesis that uses the WaveNet vocoder. The GAN generator performs as an acoustic model and its
outputs are used as the local condition parameters of theWaveNet. We also extend the GAN frameworks and
use the discretized-mixture-of-logistics (DML) loss of a well-trained WaveNet in addition to mean squared
error and adversarial losses as parts of objective functions. Experimental results show that acoustic models
trained using the WGAN-GP framework using back-propagated DML loss achieves the highest subjective
evaluation scores in terms of both quality and speaker similarity.

INDEX TERMS Generative adversarial network, multi-speaker modeling, speech synthesis, WaveNet.

I. INTRODUCTION
A. GENERAL BACKGROUND
In recent years, text-to-speech (TTS) synthesis has gained
popularity as an artificial intelligence technique and is widely
used in many applications with speech interfaces. There are
currently two major categories in the machine learning-based
speech synthesis field: a) an end-to-end approach that learns
the relationship between text and speech directly and b) the
conventional pipeline processing approach that divides text-
to-speech conversion into sub tasks such as linguistic fea-
ture extraction and acoustic feature extraction. In the latter

approach, an acoustic model is trained to learn the relation-
ship between separately extracted linguistic and acoustic fea-
tures [1]. Previously investigated acoustic models include the
hidden Markov model (HMM) [2], the deep neural network
(DNN) [3], and the recurrent neural network (RNN) [4], [5].
These are normally trained with the minimum mean squared
error (MSE) criterion, and hence, the generated acoustic
parameters tend to be over-smoothed regardless of the archi-
tectures. Finally, speech waveforms have been reconstructed
using a deterministic vocoder based on the acoustic param-
eters [6]–[8]. However, the generated signals have artifacts
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and typically sound buzzy. Due to these two major issues,
the resultant quality of generated speech sounds obviously
worse compared with natural speech.

Very recently, we see emerging solutions for the two issues.
To alleviate the over-smoothing problem, Saito et al. [9], [10]
have incorporated adversarial training into acoustic model-
ing. The generative adversarial network (GAN) contains a
generator as well as a discriminator [11], where the generator
aims at deceiving the discriminator and the discriminator
is trained to distinguish the natural and generated feature
samples. In the framework proposed by Saito et al. [10],
the generator acts as an acoustic model and is optimized by
not only the conventional MSE but also an adversarial loss
computed using the discriminator. Experimental results show
that GAN can effectively alleviate the over-smoothing effect
of the generated speech parameters.

To avoid the artifacts and deterioration caused by deter-
ministic vocoders, WaveNet, which directly models the raw
waveform of the audio signal in a non-linear auto-regressive
way, has been proposed and dramatically improves the qual-
ity of synthetic speech [12], [13]. The original WaveNet
model [12] used linguistic features as well as the fundamental
frequency (F0) as local conditions. Later, theWaveNet model
was used as an alternative to the deterministic vocoders in
many studies [14], [15] by conditioning it on acoustic features
such as cepstrum, F0, or spectrograms only [14], and results
have shown that the sound quality of the WaveNet vocoder
outperformed deterministic vocoders and phase recovery
algorithms [16].

However, it is also reported that the samples generated
from WaveNet occasionally become unstable and generate
collapsed speech, especially when less accurately predicted
acoustic features are used as the local condition parame-
ters [17]. This would be more critical for the case of multi-
speaker acoustic modeling where the same network is used
for modeling multiple speakers at the same time, as the pre-
diction accuracy of the multi-speaker model would be worse
than well-trained speaker-dependent models.

B. MULTI-SPEAKER ACOUSTIC MODELING
Although deep learning-based methods have significantly
advanced the performance of statistical parametric speech
synthesis (SPSS), it still suffers from the necessity of a large
amount of speech recordings of one speaker to train a high-
quality acoustic model. Ideally, a speech synthesis system
should be able to generate an arbitrary speaker’s voice with
a minimum of training data. Multi-speaker speech synthe-
sis is one of the most effective approaches to train such a
high-quality acoustic model with a limited amount of speech
data of each speaker. Using multiple speakers’ data at the
same time, we can improve the quality of synthesized speech
and can also change the speaker characteristics of synthetic
speech flexibly.

Using DNN-based acoustic models as a basis,
Fan et al. [18] proposed multi-speaker speech synthe-
sis using shared speaker-independent layers as well as

a speaker-dependent output layer. They showed that the
speaker-dependent output layer can be estimated from a
target speaker’s data only and that the shared hidden layers
can improve the quality of synthesized speech of individual
speakers. Wu et al. [19] suggested using i-vectors for mod-
eling multiple speakers and controlling the speaker identity
of synthetic speech. Hojo et al. [20] proposed using speaker
codes based on a one-hot vector for modeling multiple speak-
ers and extending the code and associated weights at an input
layer for adapting it to unseen speakers. Luong et al. [21]
proposed estimating code vectors for new speakers via back-
propagation and experimented with manually manipulating
input code vectors to alter the gender and/or age charac-
teristics of the synthesized speech. Similar work has been
extended to Long short-termmemory (LSTM)-based acoustic
models. Zhao et al. [22] examined various speaker identity
representations for multi-speaker synthesis and showed that
multi-speaker systems trained with less of the target speaker’s
data can even outperform single speaker speech synthesis,
which uses a larger amount of the target speaker’s data.
Li and Zen [23] investigated multi-speaker modeling with
speech data in different languages.

Multi-speaker speech synthesis has also been investigated
in the recent WaveNet-based approaches and in end-to-end
approaches. Hayashi et al. [24] attempted WaveNet vocoder-
based multi-speaker synthesis using four speakers from the
CMU arctic corpus [25]. VoiceLoop [26] involves the data
of 109 speakers for acoustic model training, and Deep
Voice 3 [27] trained a multi-speaker model using over
2,000 speakers. Wang et al. [28] proposed a bank of
style embedding vectors and used it for modeling multiple
TED speakers. As we can see, very active research on multi-
speaker modeling has been carried out.

C. CONTRIBUTION OF THIS PAPER
In this paper, we propose frameworks that incorporate either
the conditional GAN [29] or its variant, Wasserstein GAN
with gradient penalty (WGAN-GP) [30], into RNN-based
speech synthesis systems using the WaveNet vocoder for the
purpose of reducing the mismatched characteristics between
natural and generated acoustic features and for making the
outputs of the WaveNet vocoder better and more stable.
We evaluate the proposed frameworks using a multi-speaker
modeling task. The generator of GAN is conditioned on
both linguistic features and speaker code, and the discrim-
inator aiming at distinguishing the real and predicted mel-
spectrograms is also conditioned on speaker information. The
WaveNet vocoder is conditioned on both mel-spectrogram
and speaker codes, as well.

In addition, we extend the GAN frameworks and define
a new objective function using the weighted sum of three
kinds of losses: conventional MSE loss, adversarial loss,
and discretized mixture logistic loss [31] obtained through
the well-trained WaveNet vocoder. Since the third loss will
let neural networks consider losses not only in the acoustic
feature domain (such asmel-spectrogram) but also in the final
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FIGURE 1. Proposed GAN-trained multi-speaker speech synthesis
framework using a WaveNet vocoder.

waveform, we hypothesize that it will improve the quality of
synthetic speech. In our experiment, simple recurrent units
(SRUs) [32] are utilized as basic components since they can
be trained faster than the LSTM-based RNN architecture
while maintaining a performance as good as or even better
than LSTM-RNN.

In Section II, we present the proposed framework formulti-
speaker speech synthesis and describe the elements of the
structure of the proposed model including SRU, GAN, and
WaveNet. The details of the training algorithms are given in
Section III. Section IV describes experimental conditions and
Section V discusses the results. We conclude in Section VI
with a brief summary and mention of future work.

II. MULTI-SPEAKER SPEECH SYNTHESIS
INCORPORATING GAN AND WAVENET VOCODER
In this section, we introduce the proposed speech synthesis
framework for multi-speaker modeling.

In the conventional SPSS structure, acoustic models and
vocoders usually work independently: the acoustic models
are trained without any consideration of the speech vocoding
process, and vice versa. It was the same in the first versions
of end-to-end structures such as Deep Voice [33], where
vocoders were usually designed or trained on natural acous-
tic parameters without considering the divergence between
predicted and natural acoustic parameters. This may lead
to obvious and unpredictable distortion of the synthesized
speech. To alleviate this problem, Tacotron 2 [15] utilized
mel-spectrograms predicted beforehand to train the WaveNet
vocoder instead of natural mel-spectrograms. Experimental
results showed that such a strategy may outperform those that
use natural parameters and may achieve a higher evaluation.

A novel idea of the present work is to minimize the acous-
tic mismatch of predicted and natural parameters by con-
ducting acoustic model training based on GAN, which also
considers vocoder loss. The proposed multi-speaker speech
synthesis framework is shown in Fig. 1. In this framework,
a generator part of GAN is adopted to predict acoustic fea-
tures from linguistic features, and both the generator and
discriminator are conditioned on speaker codes and trained

with multiple speakers’ data. Similar to Tacotron 2, the mel-
spectrogram, a low-dimensional representation of the linear-
frequency spectrogram, which contains both spectral envelop
and harmonics information, is selected as the output of the
generator and used to bridge the acoustic model and the
WaveNet vocoder. Mel-scale acoustic features have over-
whelming advantages in terms of emphasizing the details
of audio, especially for lower frequencies, since they are
more critical to phonetic information and hence to speech
intelligibility in general.

The input of the discriminator is either natural or generated
acoustic feature samples. The discriminator is trained to dis-
tinguish natural samples from generated ones. Speaker codes
are also attached to both the input and hidden layers of the
discriminator in order to make a better distinction between
different speakers. The discriminator is used to compute the
adversarial (ADV) loss, which is expected to alleviate the
over-smoothing problem.

In addition to the adversarial (ADV) loss from the discrim-
inator, the average discretized-mixture-of-logistics (DML)
loss of a well-trainedWaveNet model is also back-propagated
to the generator of GAN. This loss corresponds to dis-
tortion between natural and generated waveform samples.
We hypothesize that this increases the consistency of acoustic
features predicted by the acoustic model and utilized in the
vocoder since the acoustic model is updated on the basis
of gradients directly computed by the pre-trained WaveNet
vocoder.

In brief, it is expected that the weighted sum of the con-
ventional MSE loss, the adversarial loss of the discrimina-
tor, and the DML from the WaveNet vocoder will improve
the accuracy of the predicted acoustic parameters and thus
enhance synthesized speech quality.What sets this work apart
from other related works is that WaveNet is involved in the
process of acoustic modeling training. After extracting acous-
tic features from a training corpus, the WaveNet vocoder is
first trained by utilizing natural mel-spectrograms, and then
the trainedWaveNet model is directly referenced for acoustic
model optimization.

In the following subsections, we review the three
major components of the proposed framework, namely, the
SRU architecture and the GAN and WaveNet models.

A. SRU
For the sake of modeling accuracy as well as time efficiency,
we choose SRU [32] as the basic architecture of the acoustic
modeling. The SRU architecture was originally designed to
speed up the training process of RNN. By utilizing both skip
and highway connections, SRU is capable of outperforming
RNN, especially on very deep networks. Compared with
other recurrent architectures (e.g., LSTM and gated recur-
rent units), the basic form of SRU includes only a single
forget gate ft to alleviate vanishing and exploding gradient
problems instead of using many different gates to control
the information flow. In SRU, the forget gate is used to
modulate the internal state ct , which is then used to compute
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FIGURE 2. Details of the SRU cell. σ (·) and g(·) represent sigmoid and
ReLU activation functions, respectively.

FIGURE 3. GAN-based training of TTS acoustic model. LADV indicates
adversarial loss and LMSE indicates L2 loss.

the output state ht . Unlike existing RNN architectures that
use the previous output state in the recurrence computation,
SRU completely drops the connection between the gating
computations and the previous states, and this makes SRU
computationally efficient and allows us to use parallelization.
The complete architecture of SRU is shown in Fig. 2. The
reset gate rt is computed similar to the forget gate ft and
is used to compute the output state ht , which performs as
a combination of the internal state g(ct ) and the input xt .
g(·) represents a Rectified Linear Unit (ReLU) activation
function and σ (·) is a sigmoid function.

B. GENERATIVE ADVERSARIAL NETWORK
GANs have achieved great success in modeling the distribu-
tions of complex data and the predictions of realistic data
in many applications. They have also proven beneficial for
speaker-dependent speech synthesis [10].

Fig. 3 shows the GAN-based training of acoustic models
for TTS systems. The GAN training involves a pair of net-
works: a generator G aims to produce vivid feature samples
that deceive a discriminator D, and the discriminator aims to
estimate the probability that a sample y came from the real
data set distribution Pr rather than a generator distribution Pg.
For speech synthesis from text, the generator is conditioned
on linguistic vectors x ∼ Px . The generator and discriminator
are trained like a two-player min-max game objective func-
tion, as

min
G

max
D

E
y∼Pr

[
logD (y)

]
+ E

x∼Px

[
log (1− D (G (x)))

]
(1)

This objective function is not easy to optimize. To improve
the stability of model training, Wasserstein GAN (WGAN),

which minimizes a different distribution divergence called
Earth-Mover or Wasserstein-1 distance, has been proposed
and achieved a better performance than original GAN in
terms of convergence, especially in image processing [34].
The optimization criteria for WGAN is equal to

min
G

max
D

E
y∼Pr

[D(y)]− E
x∼Px

[D(G(x))] (2)

During the training of WGAN, the updated model parame-
ters of discriminator are clipped into a compact space [−c, c]
to enforce a Lipschitz constraint on D. However, the weight
clippingmay lead to either vanishing or exploding gradients if
the clipping threshold c is not carefully tuned, and the result-
ing discriminator may have a pathological value surface even
when optimization performs smoothly [30]. To address this
problem, Gulrajani et al. [30] proposed penalizing the norm
of the gradient deduced from a discriminator with respect to
its input. The new objective for WGANwith gradient penalty
(WGAN-GP) is shown as follows:

min
G

max
D

E
y∼Pr

[D(y)]− E
x∼Px

[D(G(x))]

+ λ E
ỹ∼Pỹ

[(
∥∥∇ỹD(ỹ)∥∥2 − 1)2] (3)

where λ is a gradient penalty coefficient and ỹ represents
samples that are linearly interpolated by the real data y and
the fake data generated from the generator G(x):

ỹ = εy+ (1− ε)G(x) (4)

where ε is a random number that obeys distribution U [0, 1].
The loss function of the generator is also expanded on the

basis of the least square errors of y as:

LG(y, ŷ) = LMSE (y, ŷ)+ γDLADV (ŷ) (5)

where LADV (ŷ) is the adversarial loss and γD controls the
weight of the adversarial loss.When γD = 0, the loss function
is equivalent to the conventional MSE criteria. In original
GAN, LADV (ŷ) equals E[log(1 − D(G(x)))]. In WGAN-GP,
LADV (ŷ) can be regarded as −E[D(G(x))].

C. WaveNet
WaveNet is a deep auto-regressive and generative model that
models a joint distribution of sequential data as a product of
conditional distributions, as

p(s) =
∏
t

p(st |s<t , θ) (6)

where st is a variable of s at time t and θ denotes model
parameters. The conditional distributions are usually mod-
eled with a neural network that receives all past variables
s<t as input and outputs a distribution over possible st . The
neural network consists of stacked dilated causal convolution
layers [12], and each causal convolutional layer can process
its input in parallel, making these architectures very fast to
train compared to RNNs. It typically uses gated activation
functions [35] along with two conditions, global and local,
which is another important concept in WaveNet.
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FIGURE 4. Local condition and global condition used in a WaveNet model.

The difference between the two conditions is shown
in Fig. 4. The global condition focuses on conditional vectors
irrelevant to time, e.g. a speaker embedding in a TTS model,
while the local condition deals with time-series input con-
ditions, such as linguistic and acoustic features. The basic
activation function with global conditioning is

hi = σ (Wg,i ∗ si + Vg,ic)� tanh(Wf ,i ∗ si + Vf ,ic) (7)

where ∗ denotes a convolution operator and � denotes an
element-wise multiplication operator. σ is a logistic sigmoid
function. c represents a global condition. i is the layer index.
f and g denote filter and gate, respectively. W and V are
learnable weights. For a case where c denotes the local con-
dition (such as mel-spectrogram), the matrix products Vg,ic
and Vf ,ic are replaced by convolutions Vg,i ∗ c and Vf ,i ∗ c,
respectively.

Oord et al. [12] take both linguistic and acoustic features
such as F0 as the local conditions. In other studies [14],
[15], [27], only acoustic features are used as the local con-
ditions, and the WaveNet model tends to perform as a neu-
ral vocoder. In the proposed framework, WaveNet is used
as a multi-speaker neural vocoder. It is locally conditioned
on mel-spectrograms and globally conditioned on speaker
embeddings.

D. DML LOSS
In [12], speech waveform samples were quantized and the
cross entropy loss was used for modeling categorical distri-
bution, but if we use additional quantization bits (to reduce
the quantization noise), the cost of computations may be
exponentially increased. Using discretized mixture of logis-
tics (DML) distribution loss [31] could save memory and
improve training efficiency because it just needs to predict
parameters for eachmixture component instead of all bits. For
example, modeling 16-bit quantized bits always requires the
training of a 65,536-way categorical distribution, while only
ten mixtures of logistic distributions are sufficient to model
16-bit audio samples empirically.

DML distribution assumes that each sample point s is
composed of amixture of continuous uni-variate distributions
υ, and each component υi obeys logistic distribution, as

υ =

K∑
i=1

πivi, where υi ∼ logistic(µi, φi) (8)

where πi is the mixture weight of component i that satisfies∑K
i=1 πi = 1. µ is the mean and φ is a scale parameter

proportional to the standard deviation. The probability on the
observed discretized audio sample s excepting the edge cases
(e.g., 0 and 65,535 for 16-bit sampling) would be

P(s|π,µ, φ) =
K∑
i=1

πi

[
σ (
s+ 1− µi

φiζ
)− σ (

s− 1− µi
φiζ

)
]
(9)

σ (·) is the logistic sigmoid function. ζ denotes the number
of sampling classes and ζ = 256 for 8-bit and 65536 for
16-bit sampling. For the edge case of 0, replace s − 1 with
−∞, and for 255 or 65535, replace s+ 1 with +∞. Finally,
the WaveNet model aims at maximizing the average log
likelihood of P:

LDML = max
W

E[logP(s|π̂ , µ̂, φ̂)] (10)

where π̂ , µ̂, φ̂ are predicted mixture component
parameters.

III. TRAINING ALGORITHM
A. TRAINING ALGORITHM FOR THE PROPOSED
ACOUSTIC MODEL
The overall loss function for training the proposed acous-
tic model that predicts mel-spectrogram can be written
as

LG(y, ŷ) = LMSE (y, ŷ)+ γDLADV (ŷ)+ γWLDML(y, ŷ).

(11)

In addition to the general MSE loss LMSE and adversar-
ial loss LADV , the DML loss LDML generated by a well-
trained WaveNet model is utilized for updating the model
parameters of the generator. Utilizing the DML loss with
the generator would integrate the divergence of synthesized
speech samples into the acoustic parametric training process.
Therefore, the proposed loss function minimizes not only the
parametric error of the mel-spectrogram but also the fidelity
disparity between predicted and natural audios. γW is a hyper-
parameter that denotes the weight of LDML . When γW = 0,
the loss function is equivalent to the conventional GAN
training. Model parameters of the generator θG are updated
by using the stochastic gradient calculated from LG(y, ŷ).
Fig. 5 shows the procedure for computing the proposed loss
function.

The details of the acoustic model training algorithm are
given in Algorithm 1. In the first step, the generator is trained
with the MSE criterion for a few epochs. Then, the generator
and discriminator are optimized in an iterative way, where
one module is being updated while the model parameters
of another are fixed. In the final step, the loss of WaveNet
LDML(y, ŷ) is enrolled in the training criterion of the gen-
erator. Before this step, the WaveNet vocoder needs to be
trained in advance and the optimum model parameters θW
should be saved. Note that the DML loss does not join the
optimization process of the discriminator, and the parameters
of the WaveNet model are always kept fixed. In other words,
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FIGURE 5. Loss functions and gradients for updating acoustic models in
the proposed method. Note that neither the model parameters of
WaveNet nor the discriminator are updated in this step.

although θD and θW are included in calculating LG(y, ŷ),
θD is not updated by the back-propagation of LG in the final
step, and neither is θW . The WaveNet model is used as a
measurement that reflects the divergence between speech
samples. In the WGAN-GP-based case, θD is first optimized
according to Eq. (3) and then θG is optimized according
to Eq. (11).

B. TIME RESOLUTION ADJUSTMENT
During the training of the multi-speaker acoustic model, there
are two instances where we need to pay attention to time
resolution problems. The first is when the mel-spectrograms
are input to the WaveNet vocoder. The other is when
DML loss is applied for generator optimization.

When acoustic features are transformed into speech sam-
ples, conventional parametric vocoders always use interpo-
lation inside frames to recover the audio sampling points.
Since different sampling points may share the same acous-
tic features, in existing studies related to WaveNet, several
approaches have been proposed to align the input conditional
features with the speech samples.

When acoustic features are transformed into speech sam-
ples in the WaveNet vocoder, Oord et al. [12] used a train-
able transposed convolutional network to upsample the time
resolution of the conditional acoustic features. Deep Voice 2
applied a stack of bidirectional quasi-recurrent neural net-
works and Tamamori et al. [14] simply duplicated the con-
ditional acoustic feature vector of each frame. In our work,
we use trainable transposed convolutional layers to align mel-
spectrograms and speech samples for theWaveNet vocoder as
in [12].

When the well-trained WaveNet vocoder is used for
the proposed generator optimization, it would be time-
consuming to calculate the DML loss along all the waveform
audio samples within the same frame. As shown in Fig. 6,
in order to improve computational efficiency, we randomly
select a part of the waveform audio points within each frame
and back-propagate their averaged DML loss to the generator
for acoustic model optimization.

Algorithm 1 Training Algorithm for Acoustic Modeling
Require:
1: x := linguistic features; c := speaker code; y := mel-

spectrogram;
2: Initial generator parameter θG and initial discriminator

parameter θD;
3: A well-trained WaveNet modelW and θW is fixed;
4: batch size m, learning rate η, the gradient penalty coeffi-

cient λ, weight for adversarial loss rD, weight for DML
loss rW , generator warming up iterations n1, basic adver-
sarial training iterations n2, number of total iterations n3.

Begin step 1: warming up generator
1: for epoch = 1, · · · , n1 do
2: for training data in (x, c, y) do
3: generate ŷ from the generator

ŷ = G(x, c)
4: update θG using MSE criterion:

θG← θG − ηG∇θGLMSE (y, ŷ)
5: end for
6: end for

End
Begin step2: adversarial training
1: for epoch = n1, · · · , n2 do
2: for training data in (x, c, y) do
3: for i = 1, · · · ,m do

ŷ = G(x, c)
ỹ = εy+ (1− ε)ŷ, ε ∈ U [0, 1]
L(i)D = D(ŷ)− D(y)+ λ(

∥∥∇̃yD(̃y)∥∥2 − 1)2

4: end for
5: update θD while fixing θG:

θD← θD − ηD∇θD
1
m

∑m
i=1 L

(i)
D

6: update θG using both MSE and adversarial crite-
rion:

LADV = 1
m

∑m
i=1D(G(x, c))

θG← θG − ηG∇θG (LMSE (y, ŷ)+ γDLADV )
7: end for
8: end for

End
Begin step 3: fine tuning the generator by utilizing WaveNet

loss.
1: for epoch = n2, · · · , n3 do
2: for training data in (x, c, y) do
3: generate ŷ and update θD following step 2.
4: upsampling ŷ.
5: generate ŝ from the well-trained WaveNet model:

ŝ = W (ŷ, c)
6: update θG with DML loss from WaveNet:

θG← θG−ηG∇θG (LMSE (y, ŷ)+γDLADV+γWLDML(s, ŝ))

7: end for
8: end for

End
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FIGURE 6. Time resolution adjustment of conditional acoustic features.
One frame includes four waveform audio points. Transposed
convolutional layers are used to upsample the conditional acoustic
features. The DML loss was computed using randomly selected
waveform audio points within each frame.

IV. EXPERIMENTAL SETUP
We used six speakers (awb, bdl, clb, ksp, rms, and slt) from
the CMU-ARCTIC database for multi-speaker training. Two
speakers (clb and slt) are female and the others are male. For
each speaker, 1000 utterances were used for training. Their
speech waveforms have a sampling frequency of 16 kHz and
a 16-bit PCM format. The six speakers read out the same
set of utterances. Linguistic labels were generated by Festi-
val TTS and consist of 376-dimensional binary vectors and
5-dimensional duration information. The linguistic features
are normalized by the min-max rule. Speaker codes consist
of seven dimensions, where six dimensions represent speaker
identity difference in one-hot format and the other dimension
denotes gender. The speaker codes are input to the first layer
of both the generator and discriminator as auxiliary features.
For the WaveNet vocoder, the speaker codes are first input to
a fixed-size embedding layer and then converted to an input
format compatible with WaveNet. None of the utterances in
the testing set appear in either the training or development
sets.

As acoustic features, 80-dimensional static mel-spectro-
grams are adopted in our experiment. To compute mel-
spectrograms, we first perform a short-time Fourier transform
(STFT) on audios using a 15-ms frame size, 5-ms frame
shift, and a Hann window function. Then we transform
the STFT magnitude spectrum to the mel scale using an
80-channel mel-filterbank that ranges from 125 Hz to
7.6 kHz, followed by log dynamic range compression. Prior
to the log compression, the filterbank output magnitudes are
clipped to a minimum value of 0.01 in order to limit the
dynamic range in the logarithmic domain. The mel-spectro-
grams are then normalized to have zero-mean unit variance.

We used six bidirectional SRU layers for acoustic mod-
eling and three feed-forward layers for the discriminator.
In the generator, each layer has 512 hidden nodes, and in the

discriminator, each layer has 128 hidden nodes. The ReLU
activation function is utilized in the SRU cell. A stochastic
gradient descent (SGD) optimizer was used as the optimizer
for both the generator and discriminator. Learning rate was
initialized to 0.01 for the generator and 0.001 for discrim-
inator along with exponential decays corresponding to the
number of training epochs.

To implement the WaveNet model, we referenced [36]
and adopted a modified version of the WaveNet architecture.
Instead of predicting discretized buckets with a softmax layer,
we followed Tacotron 2 and Parallel WaveNet and used a
10-component mixture of logistic distributions to generate
16-bit samples at 16 kHz. To compute the logistic mixture
distribution, the WaveNet stack output was passed through a
ReLU activation, followed by a linear projection to predict
parameters (mean, log scale, mixture weight) for each mix-
ture component. We adopted 24 dilated convolution layers
grouped into four dilation cycles. The dilation rate of the
k-th layer was set to 2k (mod 6), where k ∈ [0, 1, 2 · · · 23].
Finally, 24 residual blocks were connected. The number of
channels of (dilated) causal convolution and 1 × 1 convo-
lution in the residual block were set to 512. The number
of 1 × 1 convolution channel between skip-connection and
output layer was set to 256. We used three transposed con-
volutional layers for up-sampling. The Adam algorithm [37]
was used for the optimization, and its learning rate was
initialized to 0.001 and scheduled carefully with a scheme
similar to [38]. Other parameters in the Adam optimizer
were set as β1 = 0.9, β2 = 0.999, ε = 1.0e−8. We also
maintained an exponentially weighted moving average of the
network parameters over update steps with a decay of 0.9999.
A GeForce GTX 1080 was used for training. It took about a
week to train a high-quality multi-speaker WaveNet vocoder
and eight minutes to synthesize ten seconds of speech. When
updating the generator using the DML loss back-propagated
from the trained WaveNet Vocoder, we randomly chose half
of the sampling points in each frame to efficiently calcu-
late the DML loss. γD was set equal to E(LMGE )/E(LADV ),
and E(·) represented expectation value. γW was fixed
as 0.0001.

V. EXPERIMENTAL EVALUATION
We compared the performance of the following configura-
tions based on a listening test:

1) Baseline: Acoustic model trained using LMSE (y, ŷ) as a
criterion.

2) GAN: Acoustic model trained using LMSE (y, ŷ) +
γDLADV (ŷ) as a criterion.

3) GANW: Acoustic model trained using LMSE (y, ŷ) +
γDLADV (ŷ)+ γWLDML(y, ŷ) as a criterion.

4) WGAN-GP:Acousticmodeling trained usingLMSE (y, ŷ)+
γDLADV (ŷ) as a criterion. WGAN-GP was also used.

5) WGAN-GPW: Acoustic model trained using LMSE (y, ŷ)+
γDLADV (ŷ)+γWLDML(y, ŷ) as a criterion.WGAN-GPwas
also used.
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TABLE 1. Statistical significance analysis using t-tests with Holm-Bonferroni correction in terms of quality judgment.

6) Analysis by Synthesis (AbS): Synthetic speech gen-
erated by a WaveNet vocoder using ground-truth
mel-spectrograms.

7) Natural: Natural speech.
Note that systems 1 to 5 are TTS systems and use SRU as
basic architectures for acoustic models, as described earlier.
Also note that all the above TTS systems and analysis by
synthesis use the sameWaveNet vocoder. The differences are
how the local condition parameters of the WaveNet vocoder,
that is, mel-spectrogram, are predicted.

A. EVALUATION METHODOLOGY
For the listening test, we selected 20 utterances from the test-
ing set of each speaker and generated sets of synthetic speech
corresponding to the above experimental systems.1 Each
experimental system had 20 utterances, so 20 utterances ×
6speakers× 7 = 840 samples that needed to be evaluated in
total. Crowdsourced perceptual evaluation was carried out to
evaluate naturalness as well as speaker similarity of generated
speech. In the crowdsourcing test, we evaluated each sample
ten times to alleviate personal bias. The testing samples were
divided into different evaluation sets. Each set consisted of
three utterances generated by seven different systems. There-
fore, there were 42 utterances to be evaluated in each set:
21 for naturalness and 21 for similarity. We then collected
400 sets to cover all 840 samples (400 = 840× 10/21). This
guarantees at least 40 unique listeners, since we limited the
maximumnumber of sets per crowdsourced participant to ten.
The actual number of listeners who participated in our test
was 42.

To evaluate naturalness, listeners were asked to ignore the
meaning of the sentence and concentrate only on rating how
natural the speech sounded on a five-point scale:

1) completely unnatural
2) mostly unnatural
3) equally natural and unnatural
4) mostly natural
5) completely natural
For speaker similarity, listeners were asked to ignore the

meaning of the sentence and concentrate only on rating the
speaker identity. Synthetic speech samples and the corre-
sponding natural sound were presented in pairs at every turn
and listeners were asked to judge whether the two samples

1Audio samples of generated synthetic speech are available at https://nii-
yamagishilab.github.io/TTS-GAN-WN-MultiSpeaker/

FIGURE 7. Box plots on naturalness evaluation results. Red dots
represent the mean of each group averaged across all speakers.

were from the same or different speaker(s). The scale for
speaker similarity was judged on a four-point scale:

1) same speaker, absolutely sure
2) same speaker, not sure
3) different speaker, not sure
4) different speaker, absolutely sure

B. EVALUATION RESULTS AND ANALYSIS
Fig. 7 shows the box plots for the naturalness evalua-
tion results averaged across all speakers. Table 1 shows
statistical significance. From these, we can see that four
GAN-based experimental groups (GAN, GANW, WGAN-
GP, WGAN-GPW) outperform the baseline significantly.
Upper quartiles and mean opinion scores of the four GAN-
based groups are much higher than those of the baseline,
although their lower quartiles are quite similar to the baseline.
Note that all the systems (apart from natural speech) use the
same WaveNet vocoder. Hence, this also indicates that the
quality of WaveNet synthetic speech is affected by the local
condition parameters and that the ones predicted by the GAN-
based acoustic models sound more natural than those by the
baseline. We also see that WGAN-GP systems (WGAN-GP,
WGAN-GPW) are better than the original GAN system.
The use of DML loss alone did not bring statistically sig-
nificant improvements, but it obviously reduced p-values
(see Table 1), and hence a combination of WGAN-GP and
the DML loss resulted in the highest scores among the
TTS systems and was significantly better than GAN and
GANW (p < 0.05).
Compared with the natural speech and AbS, all TTS meth-

ods have obvious gaps. There is also a gap between the
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TABLE 2. Statistical significance analysis using t-tests with Holm-Bonferroni correction in terms of speaker similarity judgment.

FIGURE 8. Box plots of the MOS scores of six speakers. Left: WGAN-GPW

system. Right: AbS system.

AbS samples and natural speech. This indicates that our
multi-speaker TTS systems do not sound as good as natural
speech yet, and the multi-speaker WaveNet vocoder itself
does not sound as good as natural speech either, even if it uses
the ground-truth mel-spectrogram. In other words, both the
neural vocoder and the acoustic model have room for further
improvement.

Through our experiments, we found that the quality of our
synthetic speech varied speaker by speaker. Fig.8 shows box
plots of the MOS scores of the best WGAN-GPW system and
the AbS system of the six speakers. The left box plot shows
the results of the WGAN-GPW system and the right box plot
shows those of theAbS system for each speaker. Interestingly,
the quality of synthetic speech varied speaker by speaker, and
there is a very large gap between speaker SLT and the other
speakers. This implies that we need amore generalizedmodel
that can handlemultiple speakers better and can reproduce the
differences between speakers more precisely.

The similarity evaluation results are shown in Fig.9. The
WGAN-based systems outperform the baseline, and we can
clearly see that the portions of ‘‘Same’’ (yellow and gray)
have been increased. The proposed systems using a combi-
nation of WGAN-GP and DML loss achieved more apparent
preference in terms of ‘‘Same, absolutely sure’’. Likewise in
the quality evaluation, we can see a gap between TTS sys-
tems and WaveNet analysis-by-synthesis systems as well as
between WaveNet analysis-by-synthesis systems and natural
speech. The t-test results for similarity are shown in Table 2.
Compared with Table 1, Table 2 shows less significant dif-
ferences overall. This suggests that although the proposed
GAN-based groups behave obviously better than the baseline
for the quality evaluation, onlyWGAN-GP andWGAN-GPW

FIGURE 9. Similarity results averaged across all speakers.

FIGURE 10. Scatter plot matching naturalness and similarity scores for
each speaker in system WGAN-GPW and AbS. The similarity score is
defined as the added percentage of ‘same (not sure)’ and ‘same (sure)’
scores.

show significantly better performance than baseline in terms
of similarity.

Fig. 10 shows a scatter plot matching naturalness and
similarity scores of the best WGAN-GPW system and
AbS system of six speakers. Interestingly, the speaker sim-
ilarity scores also significantly varied speaker by speaker,
and speaker RMS had a very low speaker similarity score.
Our next step is to investigate why a few speakers had lower
speaker similarity.

VI. CONCLUSION
This paper investigated how we should train the acoustic
model that predicts the local condition parameters to be
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used by neural vocoders. Specifically, we looked into condi-
tional GANs or WGAN-GP to reduce the mismatched char-
acteristics between natural and generated acoustic features.
We also extended the GAN frameworks and used the dis-
cretizedmixture logistic loss of a well-trainedWaveNet along
with mean squared error and adversarial losses as parts of
the objective functions. These new objective functions were
evaluated in multi-speaker speech synthesis that uses the
WaveNet vocoder. Experimental results show that acous-
tic models trained with the WGAN-GP framework using
back-propagated DML loss achieved the highest subjec-
tive evaluation scores in terms of both quality and speaker
similarity.

Our future work will investigate why some speakers
have lower quality of synthetic speech or lower similarity.
We will also perform larger scale experiments using more
speakers.
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