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ABSTRACT In this paper, aiming at the payload residual vibration problem, a dynamic differential
evolutionary algorithm-based sliding-mode controller (DDE-SMC) is designed for the under-actuated crane
systems. According to the under-actuated crane systems mechanism of action, a fusion sliding function
combined with position and angle sliding function is first given, and the corresponding control law by
incorporating switching and equivalent control law is designed during the control process.Moreover, in order
to configure the control parameter efficiently, the DDE algorithm is proposed and utilized for improving the
anti-swing control performance. Through computer simulation and comparisons under different operation
conditions, the proposed DDE-SMC demonstrates the effectiveness in damping the payload oscillations of
the under-actuated crane system.

INDEX TERMS Dynamic DE algorithm, sliding mode controller, parameter optimization, under-actuated
crane.

I. INTRODUCTION
As one of the most important transportation facility,
under-actuated cranes are widely applied in harbors, con-
struction site and industrial factories for the heavy car-
goes transportation. According to the structural difference,
under-actuated crane can be classified overhead crane, boom
crane and tower crane. Among these kinds of cranes, over-
head crane is the most representative and commonly used
crane. According to the overhead crane operation feature,
the trolley should carry the payload rapidly and do not cause
any excessive movement at the appointed position. Besides,
the swing of the payload should keep small as possible for
avoiding the unnecessary collision or accident. But the high
speed trolley movement easily causes payload swing in large
amplitude so as to give rise to the potential safety hazard.
Meanwhile, the under-actuated crane is a kind of typical

under-actuated system, i.e., the degrees of freedom are more
than the independent control inputs, which this intrinsic char-
acteristic brings enormous challenges in anti-swing control.
Hence, it is significant to design anti-swing controller for
overhead crane.

Over the last decades, extensive researches have been
studied for the anti-swing control of under-actuated cranes.
At the early research stage, the input shaping [1], [2] and
optimal control [3] have widely used for overhead cranes
anti-swing control to reduce the residual vibration owing
to the advantages of the easy designing difficulty and low
hardware cost. However, the control performance might be
degraded badly when the model parameter are inaccurate.
In order to solve the adverse effect from the tiny variation of
system parameter or external disturbances, various close-loop
feedback control methods are gradually developed to make
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up for the deficiency of open-loop control. In [4] and [5],
researchers adopt PID control method and dual-state observer
method for suppressing vibrations. The linear control method
can better adapt to the change of system parameters, and
has the merits of simple structure and easy design. However,
this kind of method is based on the linearized model, which
inevitably ignored the nonlinear characteristics of the over-
head crane, and thereby leading to an unsatisfied anti-swing
control performance in actual overhead crane control. For
figuring out the nonlinear characteristic of overhead crane,
numerous nonlinear control methods [6]–[9] are proposed
for overhead crane systems. Generally, the aforementioned
nonlinear control methods fully consider the nonlinear and
under-actuated characteristic of the overhead crane, andmake
the control performance has a lot of ascension in oscillation
elimination aspect.

Sliding mode control [10]–[19] is a commonly used vari-
able structure control scheme owing to the merits of the
simplicity and robustness against disturbances. Such as, Ngo
and Hong [11] developed a sliding mode anti sway control
method for offshore container crane. By designing the sliding
surface and incorporating the trolley dynamics, the sway
of payload has been damped effectively. Researchers pro-
posed a self-adaptive sliding mode controller for crane sys-
tem when the priori knowledge of the payload mass and
damped elements are unknown [11]. An integral sliding
mode controller is designed for overhead crane systems, and
suboptimal integral sliding mode is determined by using
the proposed extended Theta-D method [12]. In [13], for
vanishing oscillation of overhead crane, researchers pro-
posed a novel non-linear control scheme by incorporating
the partial feedback linearization and sliding mode tech-
nique for the cargo anti-swing control and trolley track-
ing control. In order to cope with system uncertainties,
a fuzzy logic uncertainty observer based sliding-mode anti-
swing control law was developed for overhead crane [14].
Pezeshki et al. [16] proposed a Sugeno fuzzy algorithm based
sliding mode controller for coping with the overhead crane
dynamic characteristic.

To configure the control parameters and mode parameters
are vitally important for eliminating the chattering
and improving robustness. However, the conventional
search algorithm such as gradient decent algorithm,
Levenberg-Marquart algorithm, genetic algorithm, etc are
easily trap into local optima for those complex parameter
optimization problem. Hence, it is significant to adopt a
powerful evolutionary algorithm for solving the parameter
configuration problem. Comparing with other heuristic evo-
lutionary algorithms, differential evolution (DE) algorithm
is a certified and efficient optimizing algorithm and has
been widely and successfully applied to various engineer-
ing optimization fields due to its excellent global search
efficiency [20]–[28]. However, the search performance is eas-
ily affected due to the parametric sensitivity problem. There-
fore, aiming at this problem, a dynamic scaling factor which
is inspired by genetic scheme is introduced for enhancing the

global search performance, and the improved DE algorithm is
adopted to the sliding mode controller optimization process
to strengthen the anti-swing control performance.

This paper is organized as follows. The brief description
of overhead crane is stated in Section 2; Section 3 states
the dynamic DE algorithm; The sliding mode controller and
parameter optimization is addressed in Section 4; The exper-
imental simulation results and comparisons are discussed
in Section 5; The conclusions are summarized in the final
section of this paper.

II. THE DESCRIPTION OF OVERHEAD CRANE SYSTEMS
Overhead crane systems is regarded as a nonlinear dynamic
systems, and the intrinsic under-actuated characteristic also
give rise to the difficulties for damping payload oscillation.
As show in Fig.1, the overhead crane systems is composed
of trolley and payload subsystems. Note that, the trolley will
move at the horizontal direction by the driving force, and
then, the payload will swing along with the trolley movement.
In order understand the dynamic characteristic of overhead
crane systems easily, we assume that the rope is inflexible
and the rope weight is not consider, the payload swing along
with x-y surface, and the friction between trolley and rail is
ignored.

FIGURE 1. Two dimension overhead crane systems.

By adopting Lagrangian method, the corresponding equa-
tion of the generalized coordinate qi is described as

d
dt
(
∂La
∂ q̇i

)−
∂La
∂qi
= Ti (1)

where i = 1, 2, La = K − P (K and P represent the
system kinetic energy and potential energy respectively.), qi
denotes the generalized coordination.(q1 and q2 are x and θ ,
respectively), and Ti is the external applied force.
Here, we assume that the payload is considered as a mate-

rial particle, then, the system kinetic energy is acquired as
follows

K =
1
2
Mẋ2 +

1
2
mv2 (2)

where v is a vector and it denotes the payload velocity, defined
as

v2 = v2x + v
2
y (3)
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where vx = ẋ + lθ̇cosθ and vy = −lθ̇sinθ . Here, we assume
the payload as a particle, then the moment of inertia can be
ignore in equation (2).

As shown in Fig.1, the system potential energy can be
expressed by the potential energy of the payload subsystem
because the potential energy of the trolley subsystem is invari-
able. The corresponding expression is depicted as

P = mgl(1− cosθ ) (4)

where g represents the gravitational acceleration. According
to the equation (2) and equation (4), La is described as

La = K − P =
1
2
Mẋ2 +

1
2
mv2 − mgl(1− cosθ ) (5)

Considering the partial differential La as for x and letting

∂La
∂x
= 0 (6)

Partial differential La with regard to ẋ in equation (5) lets

∂La
∂ ẋ
= Mẋ + m(ẋ + lθ̇cosθ ) (7)

Further, differentiating (7) for time t , the corresponding
expression is depicted as

d
dt
(
∂La
∂ ẋ

) = Mẍ + m(ẍ + lθ̈cosθ − lθ̇2sinθ ) (8)

The final Lagrangian expression as for the x can be stated as

d
dt
(
∂La
∂ ẋ

)−
∂La
∂x
= (m+M )ẍ + ml(θ̈cosθ − θ̇2sinθ ) = F

(9)

Considering the partial differential La as for θ in equation (5)
and letting

∂La
∂θ
= m[(ẋ + lθ̇cosθ )(−lθ̇sinθ )+ (lθ̇sinθ )(lθ̇cosθ )]

−mglsinθ

= −mlẋθ̇sinθ − mglsinθ (10)

Differentiating La for θ̇ in (5) yields

∂La

∂θ̇
= m[(ẋ + lθ̇cosθ )(lcosθ )+ (−lθ̇sinθ )(−lθ̇sinθ )]

= mlẋcosθ + ml2θ̇ (11)

Further, differentiating the equation (11) as for time t ,
the form is described as

d
dt
(
∂La

∂θ̇
) = mlẍcosθ − mlẋθ̇sinθ + ml2θ̈ (12)

The final Lagrangian expression as for the θ can be stated as

d
dt
(
∂La

∂θ̇
)−

∂La
∂θ
= mlẍcosθ + ml2θ̈ + mglsinθ = 0 (13)

From equation (9) and equation (13), the mechanism model
of overhead crane systems for x and θ is acquired as follows

(M + m)ẍ + ml(θ̈ cos θ − θ̇2 sin θ ) = F (14)

cos θ + lθ̈ + g sin θ = 0 (15)

Here, θ and x represent swing angle and the displacement
respectively; m and M are denoted as payload and trolley
mass respectively, l is the length of rope; F denotes the
driving force.

Finally, the corresponding state space model expression
can be described as

ẋ1 = x2
ẋ2 = f1(x)+ g1(x)u
ẋ3 = x4
ẋ4 = f2(x)+ g2(x)u

(16)

where, x = [x1, x2, x3, x4]T , x1 = x, x3 = θ , x2 and x4 are
respectively denoted as trolley and payload angular velocity;
u is the driving force coming from controller; f1, f2, g1 and g2
are described as

f1(x) =
mlx24sinx3 + mgsinx3cosx3

M + msin2x3
(17)

g1(x) =
1

M + msin2x3
(18)

f2(x) =
(M + m)gsinx3 + mlx24sinx3cosx3

(M + msin2x3)l
(19)

g1(x) =
cosx3

(M + msin2x3)l
(20)

III. DYNAMIC DIFFERENTIAL EVOLUTION ALGORITHM
As one of the heuristic algorithm, differential evolution algo-
rithm has been widely various practical applications for
systems optimization, parameter identification, scheduling
solving and so on. Firstly, DE algorithm randomly generated
NP individuals x = {x1, x2, . . . , xNP} at start stage. Thereinto,
the ith potential solution is denoted by the D-dimensional
vector xi = [xi,1, xi,2, . . . , xi,D]. In order to improve the
dynamic performance, a dynamic scaling factor is designed
for overcoming the parameter sensitivity of DE algorithm and
improving the search efficiency.

A. MUTATION
There are three individuals xr1, xr2, xr3(xr1 6= xr2 6= xr3)
need to be picked out at random. And these selected objective
vectors must unconformity. The new mutant individual is
produced based on the formula.

vi = x1 + Fm · (x2 − x3) (21)

where Fm is denoted as scaling parameter which controls the
amplification of vi, (i 6= j = 1, 2, . . . ,NP). The value of the
factor Fm plays an important role in optimization process.
If we assign a big value to Fm, that means, it will have
more opportunities to jump out the local optimal, but it also
may cause to badly global convergence performance. Simi-
larly, the small value for it has, the local search performance
will be improve, but the premature convergence also will be
appeared.

According to the genetic strategy, the dynamic scaling fac-
tor is adopted in different evolution stages for getting better
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convergence performance. The dynamic value of Fdm can be
calculated based on the formula as follows.

Fdm =



F inim ; g ≤ a

F inim − 2 ∗ (
g− a
b− a

)2; a ≤ g ≤
a+ b
2

F inim + 2 ∗ (
g− a
b− a

)2 − 1;
a+ b
2
≤ g ≤ b

F inim − 1 g ≤ b

(22)

where F inim is the initial scaling factor, a and b are the
adjustable coefficient, g is defined as current iteration
number.

B. CROSSOVER
After finishing the differential mutation operation, DE algo-
rithm then carry out the crossover operation to improve
the diversity of population. The new individual ui =
[ui,1, ui,2, . . . , ui,D] is created to mate the mutated individual
vi with xi by using the following formula.

ui,j =

{
vi,j; if (randj ≤ pc)orj = randD
xi,j; if (randj > pc)orj 6= randD

(23)

where randj denotes the jth arbitrary number between 0 and 1.
pc ∈ [0, 1] is a constant crossover probability. The randD ∈
[1,D] ensure the vi,j element be obtained.

C. SELECTION
In order to determine the target or the trial vector which can
survive to the next generation, in this section, we adopt greedy
selection strategy to pick out the new individual from ui and
xi. if the cost function value of ui is superior to the xi, the ui
will be selected, otherwise, the target individual xi is reserved.
Given minimum optimization problem minf (x), the select
operation is expressed as follows:

x t+1i =

{
ui; f (ui) < f (x ti )
x ti ; f (ui) ≥ f (x ti )

(24)

D. NUMERICAL TEST
In this section, shown in TABLE 1, nine typical benchmark
functions, namely Rosenbrock, Sphere, Hyper Ellipsoid,
Schwefel ridge, Griewank, Ackley, Rastrigin, Schwefel,
Salomon, are utilized to confirm the effectiveness of the
proposed algorithm. The first four functions (f1-f4) are typ-
ical unconstrained uni-modal function. The rest of five test
functions are commonly used unconstrained multi-modal
function with large search space, numerous local optimum
and fraudulence. All of test functions are simulated for high
dimensional search space (D = 30). The standard genetic
algorithm (GA), particle swarm optimization (PSO) and DE
algorithm are respectively tested for demonstrating the valid-
ity of improved DE algorithm. The parameter configuration
are listed in TABLE 2. And to be fair, every mentioned
algorithm implement thirty times for each test function.

TABLE 1. Benchmark test function.

TABLE 2. Parameter setting of GA, PSO,DE and DDE.

If the inequality |Ob − O∗| ≤ ε = 10−10 is satisfied, then
the optimization process will be ended. Here Ob represents
the final optimized value by using optimizing algorithm,
O∗ represents the intrinsic optimal value, and ε is the pre-
cision requirement. The Fw, Fb and Fav represent the worst,
best, average objective function value respectively, the Iterav
is the average iteration number. The final average results are
summarized in TABLE 3.

For the uni-modal functions (f1 ∼ f4), comparing with
standard GA, PSO and DE algorithm, the dynamic DE algo-
rithm gives better results in convergent accuracy. In f2 and
f3 functions testing, dynamic DE algorithm can satisfy the
testing terminated condition in limited iteration. For f1 and f4
functions, dynamic DE algorithm still exhibits good results
in convergence accuracy.

For the multi-modal functions (f5 ∼ f9), it is obvious
that the better optimal value are acquired by dynamic DE
algorithm. For f5, f6, f7, f8, and f9 functions, the dynamic
DE algorithm shows better convergent performance. Interest-
ingly, in function f7 testing, standard DE algorithm acquired
the worse optimized results to compare with GA and PSO.
The main reason is the fixed algorithm parameters lead to the
standard DE algorithm tramped into local optimal in some
more complex optimizing problems. Through various bench-
mark functions testing, the dynamic DE algorithm exhibits
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TABLE 3. Test results of benchmark function.

superior convergent speed and accuracy, which the search
capability is more suitable for the high dimension complex
parameter identification problem than other algorithms.

IV. THE SLIDING MODE CONTROLLER AND
PARAMETER OPTIMIZATION
The sliding mode control method is regarded as a variable
structure systems, in which the sliding modes are induced by
disruptive control forces. It has been studied extensively and
successfully adopted in complex nonlinear systems owing to
outstanding robustness against disturbances.

A. THE DESIGNING OF SLIDING MODE
CONTROLLER (SMC)
Without loss of generality, considering the following nonlin-
ear dynamic systems

ẋ = f (x, t)+ g(x, t)u+ d(t) (25)

Here, f and g represent the nonlinear functions of the dynamic
systems; x = [x, ẋ, · · · , x(n)]T denote the system tate vari-
ables; u represents the input force; d(t) denotes uncertain
disturbance.

Here, we denote the xd as the reference position, the corre-
sponding error between the reference point and system states
is depicted as follows.

e(t) = xd (t)− x(t) (26)

Let sliding surface s(e) = 0, and sliding surface can be
defined as follows.

s(e) = Ce (27)

where C = [c1, c2, · · · , cn−1, 1]. According to the sliding
mode control theory, the control law must force error vector
e(t) close to the sliding surface and move along with the
sliding surface to the origin. Then, the control process can
be divide into the approaching phase (letting s(e) 6= 0) and
the sliding phase (letting s(e) = 0). For the approaching
phase, the control law must satisfy the following condition
s(e)ṡ(e) < 0 to drive the error e toward the sliding surface.
According to the aforementioned approaching phase con-

dition, here, we denote the switching control law usw as
follows.

usw = u0sgn
(
s(e)

)
(28)

where sgn() is the sign function, u0 is unknown constant.
In the sliding phase, we denote the equivalent control ueq

as follows so as to propel the system dynamics to stay on
the sliding surface. And the equivalent control force ueq is
acquired by letting ṡ(e) = 0.

ṡ = Cė

= C
∂s
∂x

(ẋd − ẋ)

= C
(
∂s
∂x

(ẋd )−
∂s
∂x

(
f (x, t)+ g(x, t)u+ d(t)

))
= 0 (29)

Here, to assume ∂s
∂x g(x, t) is non-singular. Then

ueq =
(
∂s
∂x
g(x, t)

)−1(
∂s
∂x

(ẋd )−
∂s
∂x

(
f (x, t)+ d(t)

))
(30)

The corresponding control law is obtained as follows.

u = usw + ueq (31)

= u0sgn
(
s(e)

)
+

(
∂s
∂x
g(x, t)

)−1
∗

(
∂s
∂x

(ẋd )−
∂s
∂x

(
f (x, t)+ d(t)

))
(32)

B. PARAMETER OPTIMIZATION OF SMC
For implementing the parameter optimization, the parameters
of SMC need to be encoded by decimal firstly. According to
the overhead crane systems feature, the amplitude and resid-
ual oscillation of payload should keep as small as possible so
as to avoid the unexpected accident, and trolley should move
smoothly so as to rapidly and accurately arrival the appointed
position. The cost function can be denoted as follows.

Fcost =
∫ t

0
|x|dt + 2 ∗

∫ t

0
|θ |dt (33)

where x and θ respectively denote trolley displacement and
payload swing angle.

The optimization procedure is summarized as follows.
Step 1: Set up the parameter range of sliding mode con-

troller;
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Step 2: Initialize dynamic DE algorithm parameter such as
G = 500, NP= 30, pc = 0.5, F inim = 1.2, a = 50, b = 450;
Step 3: Randomly generate NP groups sliding mode con-

trol parameter;
Step 4: Implement overhead crane systems control process

for every group parameter and calculate the cost function
value;
Step 5: Let t = t + 1 and i = 1;
Step 6: Calculate the dynamic scaling factor Fdm based on

the eq.(22) and implement the mutation operation (eq.(21))
to acquire mutant individual vi;
Step 7: According to the eq.(23), carry out the crossover

operation between xi and vi to acquire new individual ui;
Step 8: Let i = i+ 1 and go to step 5 until i = NP;
Step 9: Perform overhead crane systems control process

based on the new NP groups parameter and compute the cost
function value;
Step 10: Implement selection operation to pick out the best

NP groups parameter;
Step 11: Determine whether the best group parameter

meets the iteration end condition. If it is met, then stop.
Otherwise return to step 5.

V. SIMULATION EXPERIMENT OF OVERHEAD
CRANE SYSTEMS
Based on the description of overhead crane systems, the over-
head crane systems can be divided into trolley position sub-
system and payload angle subsystem. The position sliding
function and angle sliding function respectively are given as
follows.

s1(x1, x2) = c1x1 + x2 (34)

s2(x3, x4) = c2x3 + x4 (35)

Then, the overall sliding function can be derived as:

s(x1, x2, x3, x4) = λ1s1 + λ2s2
= λ1c1x1 + λ1x2+ λ2c2x3 + λ2x4 (36)

where λ1, λ2, c1, c2 are denoted as adjusted parameter of
sliding function.

In order to verify the validity of the proposed method,
the PID controller [4], optimized PID controller, slidingmode
controller and optimized SMC are investigated and compared
each other respectively. Without loss generality, these control
methods are simulated under the following conditions.
Condition 1: payload weightm = 1kg, destination xd = 3,

xd = 7.
Condition 2: payload weightm = 3kg, destination xd = 3,

xd = 7.
Condition 3: payload weightm = 9kg, destination xd = 3,

xd = 7.
The Fig.2, Fig.3 and Fig.4 respectively illustrate the results

of trolley position and swing angle with different appointed
position of three conditions. The corresponding parameters
are listed in Table 2. In trolley position control aspect, the sim-
ulated control methods are enable to arrive at the appointed

FIGURE 2. The position and angle simulation results under the first
condition.

FIGURE 3. The position and angle simulation results under the second
condition.

FIGURE 4. The position and angle simulation results under the third
condition.

position accurately. Obviously, the PID control, optimized
PID and optimized SMC drive the trolley to the destination
more rapidly than unoptimized SMC. Note that, compar-
ing with other three methods, the optimized SMC doesn’t
need too much adjustments when the trolley arrived at the
appointed position.
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TABLE 4. The parameters of PID and SMC controllers.

In payload angle control aspect, the PID controllers (unop-
timized and optimized) exhibit unsatisfied performance in
eliminating residual vibration. In addition, the oscillation
amplitude of the unoptimized PID controller is much higher
than SMCs, which the maximum amplitude is close to
1.8 radian for the first condition. From the results we can infer
that the anti-sway control performance of the PID controllers
have highly correlated with payload weight and appointed
point. It means that the eliminating residual vibration is rela-
tive good when payload is heavy and the amplitude is relative
low when the specify point is not far, vice versa. The main
reason is that itself linear characteristic of the PID controller
cannot handle the nonlinear system effectively. In contrast,
the SMCs can damp the payload residual vibration effectively
with short time. Besides, the performance of amplitude is
much better than PID controllers. And the payload weight
has not too much effect on anti-swing performance. Most
important, the optimized SMC gives the best anti-swing
performance in eliminating residual vibration and damping
the oscillation amplitude, which it can avoid the unexpected
accident effectively.

VI. CONCLUSIONS
For eliminating the payload residual vibration, we firstly
design a sliding mode controller for under-actuated over-
head crane systems. Moreover, for configuring the SMC
parameter efficiently, we propose a dynamic DE algo-
rithm by introducing a dynamic scaling factor which is
inspired by genetic scheme and utilize it to configure SMC
parameters for solving the chattering problem. By simulat-
ing under three different operation conditions, the dynamic
DE algorithm based SMC exhibits the best control perfor-
mance in the trolley position and payload anti-swing control
performance.
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