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ABSTRACT Industrial IoT devices are vulnerable to code-reuse attacks in which benign codes of these
devices are reused for malicious activities. In the sense that adversary can compromise industrial IoT devices
by means of code-reuse attacks and impair entire industrial IoT ecosystems through the compromised
industrial IoT devices, it is very imperative to detect code-reuse attacks in industrial IoT devices. Although
different types of code-reuse attack detection schemes have been devised in the literature, they are mainly
system level or inefficient/vulnerable network level defense techniques. For the efficient and robust network
level defense, we propose a scheme that detects code-reuse attacks efficiently and resiliently by incorporating
the sequential probability ratio test (SPRT) with the probabilistic inspection on the packets incoming
into industrial IoT devices. Through experimental and analytical study, we demonstrate that our proposed
detection scheme resiliently and efficiently defends against code-reuse attacks in industrial IoT devices.
In particular, our simulation results show that the SPRT with probabilistic packet inspection achieves at least
93.2% and 99.0% average detection rate for small and large set of code-reuse packets, respectively, while
demanding below five samples for detection on an average. They also exhibit that it achieves at most 0.4%
average false positives with below four samples on an average.

INDEX TERMS Code-reuse attacks, probabilistic packet inspection, sequential probability ratio test (SPRT).

I. INTRODUCTION
Industrial IoT devices could be deployed for various indus-
trial IoT systems. For instance, they can be used for smart
manufacturing, smart grid, smart metering, and smart farm-
ing. Moreover, they could be applied to build up smart city
and industrial system security. For successful employment
of industrial IoT systems, it is inevitable to efficiently and
effectively establish industrial IoT systemswith using various
functionalities of industrial IoT devices. However, attacker
can paralyze this industrial IoT system establishment by
exploiting the vulnerabilities in industrial IoT devices. In the
sense that these industrial IoT devices share the substan-
tial number of vulnerabilities with conventional computing
systems, it will not be difficult for attacker to compromise
industrial IoT devices by exploiting these vulnerabilities and
mount myriad attacks with the compromised devices, making
havoc of industrial IoT systems.

In particular, industrial IoT devices are vulnerable to
code-reuse attacks [19] that are very deleterious from the

perspective that the malign reuse of the normal instructions
in devices will incur a variety of damages to those devices.
A variety of schemes [1]–[4], [6]–[12], [15], [16], [20], [23],
[25] have been contrived to guard against code-reuse attacks.
However, the works developed in [1]–[4], [6]–[10], [15], [16],
[20], [23], and [25] mainly provide the defenses at system
level against code-reuse attacks while not detecting code-
reuse attack packets incoming into industrial IoT devices.
Thus, this system level defense may not gain the advan-
tage that code-reuse attacks could be detected at the front
defense line of packet inspection. Although our prior schemes
devised in [11] and [12] are rooted on packet inspection,
they are not efficient and not robust, respectively. More
specifically, our prior scheme in [11] demands consider-
able overhead of examining every incoming and outgoing
packets for code-reuse attack detection. In [12], there are
security drawbacks that attacker can bypass the detection by
craftily placing packets for code-reuse attacks. As a result,
a new packet inspection scheme is needed for efficient and
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resilient detection against code-reuse attacks in industrial IoT
devices.

To comply with this necessity, we develop a scheme to
detect code-reuse attacks by integrating the Sequential Proba-
bility Ratio Test (SPRT) [24] with probabilistic packet inspec-
tion under the intuition that code-reuse packets contain the
addresses of instructions or library functions in industrial
IoT devices. More specifically, whenever receiving packets
in bytes, each industrial IoT device inspects incoming bytes
in accordance with probabilistic selection. It then performs
the SPRT with the inspected bytes. The SPRT is deemed
to be a decision process in which a decision is statistically
brought to completion with null hypothesis and alternate
hypothesis. In our proposed scheme, H1 (resp. H0) is the
alternate (resp. null) hypothesis that the inspected bytes do
(resp. not) belong to address space of instructions or library
functions. Putting it in different way, H1 is associated with
the hypothesis that packets incoming into industrial devices
contain code-reuse packets.H0 corresponds to the hypothesis
that incoming packets do not contain code-reuse packets. The
SPRT will go toward the adoption of H1 (resp. H0) if it takes
the inspected bytes with H1 (resp. H0) type, and it eventually
put an end to either H0 or H1 decision. When H1 is the final
decision of the SPRT, the SPRT detects code-reuse attacks
and thereafter the bytes contributing to the H1 decision are
quarantined for further investigation of maliciousness. If they
are considered to be used for malicious activities, they will be
discarded from industrial IoT devices.

From the perspective of combining the SPRT with proba-
bilistic packet inspection for code-reuse attack detection, our
proposed scheme is regarded as network level defense tech-
nique and thus it is novel and distinct from the existing work
on system level defense. Hence, our proposed scheme takes
a key advantage of the network level defense: Code-reuse
packets can be detected and eliminated from industrial IoT
devices before they come into the systems of these devices
and compromise these devices. Moreover, packet inspection
is probabilistically performed and thus the overhead incurred
by it is not substantial.

We demonstrate that our proposed scheme works effi-
ciently and resiliently by way of simulation and analysis.
In particular, the simulation results show that an average
detection rate is at least 93.2% and 99.0% while an average
number of samples is at most 4.234 and 4.443 for small and
large set of code-reuse packets, respectively. Moreover, our
proposed scheme fulfills at most 0.4% average false positives
with at most 3.984 samples on an average, respectively. From
these simulation results, we see that code-reuse attacks are
robustly and efficiently detected by the SPRTwith probabilis-
tic packet inspection. Moreover, we compare our proposed
scheme to our prior work [12]. The comparison results show
that the detection rates of our proposed scheme are higher
than 3.47 times as much the highest detection rate of [12] as
while needing less number of samples for detection than [12].

We first explain the details of the relevant work, back-
ground, and our proposed scheme in the following sections.

We then put on display of the simulation results of our
proposed scheme and make a conclusion on the paper.

II. RELATED WORK
In this section, we give an introduction to diverse relevant
works to code-reuse attacks in the literature and give an
explanation of why our proposed scheme is still imperative
for code-reuse attack detection in spite of substantial number
of related works.

Gras et al. [8] demonstrate that address space layout
randomization (ASLR) technique, which is regarded as
defense technique against code-reuse attacks, is vulnera-
ble on AMD, Intel, ARM architectures based on cache.
In [2], layout randomization technique, which is resilient
to information leakage, is proposed for mobile embedded
devices. Crane et al. [4] propose defense technique based
on layout randomization of code-pointer tables against the
reuse attacks of dynamically bound functions. Lu et al. [15]
develop a method to cease address space leakage that could
be occurred when to use ASLR. Seo et al. [20] devise a ALSR
method tuned to Intel Software Guard Extension (SGX).
Lu et al. [16] propose a technique of re-randomizing address
space layout at runtime to hamper clone-probing attacks
against ALSR. Crane et al. [3] develop a code randomization
technique called Readactor that is resilient to memory leak-
age. In [10], novel instruction location randomization tech-
nique is proposed to hamper return-oriented programming
attacks. To guard against code-reuse attacks, the proposed
scheme in [9] performs the verification on the target address
of every instruction being recognized as possible attack points
by binary code analysis in IoT devices.

Snow et al. [21] present just-in-time code-reuse attacks
that impair the effectiveness of fine-grained ASLR. In [6],
code randomization technique called Isomeron is proposed as
defense technique against JIT-ROP attacks. Tang et al. [23]
develop Heisenbyte system to guard against code-reuse
attacks. In Heisenbyte system, codes are distorted after
code reading, leading to code-reuse attack prevention.
Werner et al. [25] design No-Execute-After-Read (NEAR)
technique to combat against just-in time code-reuse attacks.
Snow et al. [22] introduce code inference attacks that par-
alyze the code-reuse defense technique in which codes are
destructed after code reading.

Davi et al. [5] demonstrate that coarse-grained control-
flow integrity defense approaches are not effective against
ROP attacks. In [13], demonstrate that gadget-chain length
is not accurate metric to be used for code-reuse attack
defense. In [17], JIT-ROP attacks and defenses are thoroughly
explored. The proposed scheme in [1] defends against code-
reuse attacks by checking the integrity of control flows in
program codes. In [7], a practical tool called ROPdefender
is proposed against return-oriented programming attacks.
Jang et al. [14] show that kernel ASLR with intel TSX can
be paralyzed though a timing attack.

From the perspective that the aforementioned works on
code-reuse attack defense are basically thought to be system
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level protection, they do not consider faster detection method
of packet inspection in IoT devices in which attacker can mix
code-reuse attack packets with normal packets.

On the other hand, our previously devised schemes
[11], [12] are based on packet inspection technique. In [11],
code-reuse attack detection technique has been devised to
adapt Kullback-Leibler divergence to the incoming and out-
going packets in IoT devices. However, this work incurs
substantial overhead of scrutinizing every incoming and out-
going packet in IoT devices. A code-reuse attack detection
schemewith using the SPRT [12] has been proposed to reduce
the substantial overhead incurred by [11]. However, the
SPRT-based detection scheme in [12] has restriction in terms
of detection capability. Specifically, it divides the incoming
packets into 4-byte or 8-byte blocks and applies the SPRT to
inspect whether a 4-byte or 8-byte block matches with the
address space of instructions in code regions of IoT devices,
and thus the packets for code-reuse attacks can stretch over
two adjacent blocks to evade the block-based detection of
[12]. In general, attacker can craftily locate the packets for
code-reuse attacks on basis of bytes in order to avoid the
block-based detection of [12].

We pacify this limitation of [12] by efficiently and
resiliently combining the SPRT with probabilistic packet
inspection in unit of a byte rather than 4-byte or 8-byte block.
In particular, our proposed scheme is more efficient than [12]
in terms of how the SPRT is incorporated into the code-reuse
attack detection.

III. BACKGROUND
In this section, we begin describing attacker model for our
proposed scheme and explain the illustrative example of
code-reuse attacks.

A. ATTACKER MODEL
The basic concept of code-reuse attacks is that attacker
can carry out malicious activities in the target systems by
craftily reusing the executable codes or library functions of
target systems. More specifically, attacker makes the chains
with the addresses of instruction gadgets or with the argu-
ments and addresses of library functions needed for mali-
cious behavior implementation in target systems, where a
gadget is a sequence of instructions. He then injects these
chains into target systems by harnessing the vulnerabilities
of them, leading to malicious activity execution in target
systems. We denote these chains for code-reuse attacks as
code-reuse packets. Buffer overflow vulnerability is one of
the vulnerabilities largely used for code-reuse attacks.We call
code-reuse attacks using instruction gadgets return-oriented
programming (ROP) attacks. We also call code-reuse attacks
using library functions in libc return-to-libc (RTL) attacks.
Although that library functions in libc are basically used in
RTL attacks, we do not restrict that attacker should only use
libc for RTL attacks. Rather, we assume that attacker can cre-
ate vulnerable programs containing a variety of useful library
functions and install these programs into target systems.

He then exploit these library functions of vulnerable pro-
grams to launch RTL attacks.

Attacker can compromise the benign devices through
code-reuse attacks. More specifically, he can inject code-
reuse packets combined with normal packets into the benign
devices, leading to the compromise of benign devices. The
main rational behind mingling code-reuse packets with the
normal packets is to masquerade code-reuse packets as parts
of the normal packets, leading to diminish the chance that
code-reuse attacks are detected.

B. ILLUSTRATIVE EXAMPLE OF CODE-REUSE ATTACKS
For illustration purpose, let us consider RTL attacks with
using instruction gadgets. This scenario is thought of as
combination of RTL and ROP attacks. More specifically,
we implement attack client program and target server pro-
gram in Raspberry Pi 3 Model B [18]. All programs are
written in C language. To let target server have instruction
gadgets and library functions to be reused by attack client,
two object codes are linked into target server program such
that the first object code contains instruction gadgets of pop
lr and pop pc and the second one contains library functions
of sys_df, sys_ps, sys_uname, sys_sh, which is defined as
a system function with argument /bin/df /bin/ps, /bin/uname
-a, /bin/sh, respectively. Attack client (resp. target server)
program runs on Pi machine with IP address of 192.168.1.3
(resp. 192.168.1.4). Target server is a simple server in which
it receives 9 types of sensor data sent by clients and stores
each type of data into separate file. 9 types of sensor data are
assumed to be location, image, air quality, sound, infrared,
temperature, humidity, water quality, and ultraviolet.

Furthermore, target server uses 9 strcpy functions to pro-
cess sensor data from clients and all these strcpy functions
have buffer overflow vulnerabilities. Attack client sends tar-
get server code-reuse packet with total size of 396 bytes.
Code-reuse packet is composed of 9 sections such that each
section with 44 byte size is disguised with each sensor data
type with 4 byte size and each sensor data with 40 byte size.
Attack client exploits buffer overflow vulnerability of strcpy
function to copy each section into 4 byte array in stack of
target server and thus 40 bytes overflow per section occur
in stack of target server. Code-reuse packet is first initialized
to 0x90, which is NOP (no operation) code. The last 4 byte
of each section in code-reuse packet is then craftily reset
to one of the addresses of {pop lr, pop pc}, sys_df, sys_ps,
sys_uname, sys_sh for code-reuse attacks, where lr and pc
indicate link register and program counter, respectively. The
last 4 bytes of 9 sections in code-reuse packet will be eventu-
ally placed in the target server’s stack.

Figure 1 displays the snapshot of stack in target server
after code-reuse packet is located inside target server’s stack
though buffer overflow vulnerability. From the snapshot
in Figure 1, we construct Table 1 to figure out the stack
addresses for the last 4 bytes of 9 sections in code-reuse
packet. As shown in Table 1, the stack region from 0x7efff3cc
to 0x7efff3ec is for 9 types of sensor data and thus the
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FIGURE 1. Stack snapshot of target server after code-reuse packets are placed in the stack of target
server through buffer overflow vulnerability.

TABLE 1. Stack addresses for the last 4 bytes of 9 sections in code-reuse
packets.

overflow region starts at 0x7efff3f0. Indeed, the information
for lr and pc reside at 0x7efff3f0 and 0x7efff3f4, respectively.
Hence, the last 4 bytes of the first section in code-reuse packet
are placed in the stack region at 0x7efff3f4, the last 4 bytes of
the following 8 sections consecutively reside in region from
0x7efff3f8 to 0x7efff414. Note that 9 strcpy functions with
buffer overflow vulnerability are called in processSensorData
function of target server. When processSensorData function
terminates, address of {pop lr, pop pc} at 0x7efff3f4 is popped
from stack in target server and pc is set to the popped address

of 0x00011080. Once the process control hits 0x00011080,
pop lr and pop pc instructions are executed in turn and hence
pc is set to sys_df’s address of 0x00011088. Also, lr is set to
address of {pop lr, pop pc}.
Once the process control hits 0x00011088, sys_df function

is executed. When sys_df function terminates, pc is set to lr
and thus it becomes 0x00011080. Once the process control
hits 0x00011080, pop lr and pop pc instructions are executed
in turn and hence pc is set to sys_ps’s address of 0x000110a0.
Also, lr is set to address of {pop lr, pop pc}. Once the process
control hits 0x000110a0, sys_ps function is run. The above
chaining process from the execution of sys_df to the execution
of sys_ps is similarly applied to the executions of sys_uname,
sys_sh. We discern that {pop lr, pop pc} instruction gadget
set plays a role of transferring the process control from one
library function to another library function.

Figure 2 shows the outputs of code-reuse attacks in the
terminal of attack client. In target server, sys_df, sys_ps,
sys_uname library functions are executed in turn. Target
server uses dup2 system call to redirect the execution results
of these functions to netcat program running on attack client.
After these three library functions’ executions, sys_sh library
function is finally run and thus attack client is able to gain
the control of target server. To demonstrate that target server
is under the control of attack client, we run who and netstat |
grep 192.168.1.3 commands and confirm that the outputs of
these commands are displayed in the terminal of attack client.

IV. CODE-REUSE ATTACK DETECTION BY INTEGRATING
THE SPRT INTO PROBABILISTIC PACKET INSPECTION
Although our proposed scheme can be applied to industrial
IoT devices with any size of address space of instruction
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FIGURE 2. After code-reuse attacks are successfully mounted against target server, the execution results
of sys_df, sys_ps, sys_uname library functions in target server are displayed in the terminal of attack
client, and then attack client gains control of target server upon the execution of sys_sh library function.

gadgets and library functions, we focus on the devices with
4-byte address space of instruction gadgets and library func-
tions for simplicity.

A. SCHEME DESCRIPTION
In this section, we describe how the SPRT is integrated into
probabilistic packet inspection to detect code-reuse attacks.

We first define the bth address-type byte as a byte falling
within the address space of bth bytes out of 4-byte addresses
of instruction gadgets and library functions in ROP attacks
and RTL attacks as mentioned in Section III-A, respectively
(1 ≤ b ≤ 4). Moreover, we define address-type block as a
4-byte set consisting of the first, second, third, fourth address-
type bytes. Address-type block is used as a manifestation that
code-reuse packets are coming into industrial IoT devices.

For probabilistic packet inspection, we break a series of
incoming packets into a series of bytes. Each time indus-
trial IoT device receives a series of incoming bytes, it per-
forms probabilistic packet inspection to decide whether these
incoming bytes include address-type blocks or not. The spe-
cific procedure for probabilistic packet inspection is as fol-
lows: It selects a byte for inspection with probability p. If the
byte is chosen and it is the first address-type byte, industrial
IoT device checks whether the subsequent three incoming
bytes are the second, third, fourth address-type bytes, respec-
tively. If so, an address-type block is formed from these four
address-type bytes. Otherwise, an address-type block is not
formed. Industrial IoT device repeats probabilistic packet
inspection procedure from the byte following the byte that
succeeds or fails to form address-type block.

Now, we explain how the SPRT is integrated with
probabilistic packet inspection procedure. In the SPRT,
H1 (resp.H0) is defined as the alternate (resp. null) hypothesis
that a sequence of incoming bytes do (resp. not) include

address-type block. We also define a Bernoulli random vari-
able Wk (k ≥ 1), which is considered to be a sample in the
SPRT, as follows:

We set Wk = 1 if the following two conditions are
all satisfied. The first condition is that kth byte selected in
probabilistic packet inspection procedure is the first address-
type byte and subsequently address-type block is formed.
The second condition is that Wk is the first sample with
H1 type value of 1 or there is a previous sample Wm = 1
(1 ≤ m ≤ k − 1, k ≥ 2) such that k −m ≤ τ holds. Note that
τ is a number of bytes used for regulating the number of H1
type samples. By controlling the creation of H1 type samples
through τ , we can reduce the chance that benign packets are
misclassified as code-reuse packets.

We set Wk = 0 if the kth byte selected in probabilistic
packet inspection procedure is the first address-type byte and
subsequently address-type block is not formed.
z = Pr(Wk = 1) = 1 − Pr(Wk = 0) hold under the def-

inition of success probability z of the Bernoulli distribution.
Given two thresholds of z0 and z1 (z0 < z1), the SPRT gets to
accept H0 (resp. H1) if z ≤ z0 (resp. z ≥ z1) holds. We have
the log-probability ratio Ig on g(g ≥ 1) samples such that

Ig = ln
Pr(W1, . . . ,Wg|H1)
Pr(W1, . . . ,Wg|H0)

In the SPRT, we have a user-configured false positive rate α′

and a user-configured false negative rate β ′. IfWg ≤ ln β ′

1−α′ ,
the SPRT accepts H0 and it starts the test process again
with new samples. If Wg ≥ ln 1−β ′

α′
, the SPRT ends in the

acceptance of H1. Upon the completion of the SPRT with
H1 decision, probabilistic packet inspection procedure is also
terminated and we quarantine the bytes leading to the H1
decision while inspecting the maliciousness of these bytes.
If they are judged to be used for malicious activities, they are

VOLUME 6, 2018 54347



J.-W. Ho: Efficient and Robust Detection of Code-Reuse Attacks Through Probabilistic Packet Inspection

disused from industrial IoT devices. Otherwise, it keeps on
the testing process.

In probabilistic packet inspection procedure, an incoming
byte is chosen with probability p. This means that the selec-
tion of an incoming byte is independent to other byte selection
and the selection probability p is identically applied to each
incoming byte. As a result, we can make use of independent
and identically distributed (i.i.d.) assumption for incoming
byte selection process and thus Wk is assumed to be i.i.d.
Given this i.i.d. assumption, the SPRT can be converted

as follows, where Ng is defined as the number of times

that Wk = 1 in the g samples: If Ng ≤
ln β′

1−α′
+g ln 1−z0

1−z1

ln z1
z0
−ln 1−z1

1−z0

,

the SPRT accepts H0 and starts test process again. If Ng ≥
ln 1−β′

α′
+g ln 1−z0

1−z1

ln z1
z0
−ln 1−z1

1−z0

, the SPRT accepts H1 and finishes up the test

process. Otherwise, the SPRT keeps on the test process.

B. SECURITY ANALYSIS
In this section, we describe the error rates of the SPRT and
discuss about the detection capability and false positives of
our SPRT-based detection scheme against RTL and ROP
attacks.

According to [24], the SPRT generally consummates low
false positive rate α and low false negative rate β such that
α and β are bounded above by α′

1−β ′ and
β ′

1−α′ , respectively,
and thus we have α = β = 0.01 when α′ = β ′ = 0.01.
Next, we explore the detection capability of our proposed

scheme on code-reuse attacks. For simplicity, we assume that
the probabilistic packet inspection procedure starts at the first
byte in code-reuse packet. In ROP attacks, code-reuse packet
is a sequence of addresses of instruction gadgets and thus
it consists of only address-type blocks. Accordingly, proba-
bilistic packet inspection procedure selects only address-type
blocks from code-reuse packet. As long as τ is configured
in such a way that a H1 type sample is created per selected
address-type block, the SPRT takes the consecutive H1-type
samples from the address-type blocks chosen through the
probabilistic packet inspection procedure. Since the SPRT

accepts H1 if Ng ≥
ln 1−β′

α′
+g ln 1−z0

1−z1

ln z1
z0
−ln 1−z1

1−z0

, ROP attacks are detected

if g ≥
ln 1−β′

α′

ln z1
z0

holds under g consecutive H1-type samples

inside code-reuse packet. This implies that ROP attacks are
detected if the number of the address-type blocks consecu-
tively sampled by the SPRT within code-reuse packet reaches

d
ln 1−β′

α′

ln z1
z0

e. When α′ = β ′ = 0.01 and z0 = 0.1, z1 = 0.9,

only three address-type blocks inside code-reuse packet are
enough for ROP attack detection.

In RTL case, code-reuse packet is a sequence of addresses
and arguments of library functions. We assume that the
arguments of library functions are basically filled with non-
address-type bytes. This assumption is reasonable in the
sense that most library functions rarely use the arguments

containing address-type bytes. Under this assumption, prob-
abilistic packet inspection procedure chooses only address-
type blocks from code-reuse packet because the arguments of
library functions consist of non-address-type bytes and thus
they are not selected through probabilistic packet inspection
procedure. Accordingly, as in ROP case, as long as τ is
configured in such a way that a H1 type sample is created
per selected address-type block, all samples taken by the
SPRT are successive H1-type samples from address-type-
blocks determined by the probabilistic packet inspection pro-
cedure. As a consequence, we can apply the analysis for ROP
case to RTL case.

Finally, we look into the false positive issue of our pro-
posed scheme. Since our proposed scheme runs on industrial
IoT devices, most of data exchanged between industrial IoT
devices will be likely sensor data. As a result, they will
not likely contain address-type blocks, leading to low false
positive rate when to deploy our proposed scheme.

V. PERFORMANCE EVALUATION
In this section, we first depict the evaluation environments,
and then represent evaluation results of our proposed scheme
and the comparison results to our previous work [12].

A. EVALUATION ENVIRONMENTS
We perform the evaluation on our proposed scheme through
a plain simulation program. We also compare our proposed
scheme to our previous work [12]. From the perspective that
our proposed scheme can be thought of as the byte-basis
SPRT while our previous work [12] can be regarded as the
block-basis SPRT, we call our proposed scheme Byte-SPRT
and call our previous work [12] Block-SPRT. For our eval-
uations of the Byte-SPRT and the Block-SPRT, we consider
three cases such as Benign, ROP, and RTL cases. In all three
cases of the Byte-SPRT and the Block-SPRT, we set the
total number of bytes incoming into industrial IoT device to
10000 and set a block size to 4 bytes.

We first describe the simulation parameters for our pro-
posed Byte-SPRT. In the Byte-SPRT, we configure a number
of bytes τ = 300 for governing the number of H1 type
samples. We also set byte selection probability p from 0.1 to
0.5 in increases of 0.1. In order to emulate the possible case in
network traffic, we perform address-type byte setup process
in all three cases as follows: We choose Nc uniformly at ran-
dom from the range of [0, 5), and then select Nc non-address-
type incoming bytes uniformly at random and set them to
the one selected from the first, second, third, fourth address-
type bytes uniformly at random. Additionally, we repeat-
edly apply address-type byte setup process to the cases of
two-consecutive, three-consecutive, four-consecutive incom-
ing bytes.

In Benign case of the Byte-SPRT, we denote the number
of address-type blocks by Nb. We consider small and large
Nb sets. Small Nb set is composed of Nb = 5, 4, 3, 2, 1 when
p = 0.1, 0.2, 0.3, 0.4, 0.5, respectively. Large Nb set consists
of Nb = 10, 8, 6, 4, 2 when p = 0.1, 0.2, 0.3, 0.4, 0.5,
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respectively. We set Nb in accordance with p in such a way
that the largerNb is configuredwhenwe have the lower p. The
main rationale behind these settings is that the more number
of address-type blocks are likely selected as the lower p is
configured. The reason why we break Nb sets into small and
large ones is to perform the evaluation under the relatively
small and large values of Nb. The reason why the value of
Nb is at most 10 is that the cases of H1 in benign blocks are
not common and thus we configure the maximum value of
Nb to as small number as possible. We perform individual
address-type block setup process in which we select Nb four-
consecutive non-address-type incoming bytes uniformly at
random and convert these selected bytes into Nb address-type
blocks.

In ROP case of the Byte-SPRT, we denote the number of
address-type blocks by No. We consider small and large No
sets. Small No set is composed of No = 50, 40, 30, 20, 10
when p = 0.1, 0.2, 0.3, 0.4, 0.5, respectively. Large No
set consists of No = 100, 80, 60, 40, 20 when p =

0.1, 0.2, 0.3, 0.4, 0.5, respectively. Themain rationale behind
these settings of No is similar to the one described in Benign
case. We then run continuous address-type block setup pro-
cess in whichwe chooseNo continuous four-consecutive non-
address-type incoming bytes uniformly at random and turn
these selected bytes into No continuous address-type-blocks.
In RTL case of the Byte-SPRT, we denote the number of

address-type blocks by Nt . We consider small and large Nt
sets. Small Nt set is composed of Nt = 50, 40, 30, 20, 10
when p = 0.1, 0.2, 0.3, 0.4, 0.5, respectively. Large Nt
set consists of Nt = 100, 80, 60, 40, 20 when p =

0.1, 0.2, 0.3, 0.4, 0.5, respectively. Themain rationale behind
these settings of Nt is similar to the one explained in Benign
case. We then execute discrete address-type block setup pro-
cess in which we select Nt continuous four-consecutive non-
address-type incoming bytes uniformly at random and change
these chosen bytes into Nt address-type block groups such
that a group consists of an address-type block followed by
4 × Nl argument bytes of library functions, where Nl is the
number of arguments of library functions and it is picked
uniformly at random from the range of [0, 4).

The reason why the values of No and Nt are at most 100 is
that the cases of H1 in ROP and RTL blocks are common
and hence we set the maximum values of No and Nt to as
reasonably enough number as possible. We set the arguments
of library functions to have no address-type bytes according
to the assumption in Section IV-B. Indeed, attacker can put
more than one address-type block into a group in such a
way that address-type blocks are consecutively placed in
a group. However, each address-type block group contains
only one address-type block in RTL case. From the perspec-
tive that the less number of address-type blocks in a group
leads to the lower detection rate, our RTL case with one
address-type block is regarded as the worst case in terms of
RTL attack detection. In other words, we perform evaluation
of our detection scheme against the best scenario of RTL
attacks.

As far as the SPRT configuration parameters of the
Byte-SPRT are concerned, we set α′ = β ′ = 0.01 and
z1 = 0.9. We also configure z0 = 0.05 in cases that (p,Nb) =
(0.1, 5), (0.5, 1), (p,No) = (p,Nt ) = (0.1, 50), (0.5, 10).
We set z0 = 0.1 in all other cases except the cases of
z0 = 0.05. The main rationale behind these settings is to
boost the SPRT detection capability by having very low value
of z0 when address-type blocks are sampled with very low
probability.

Next, we explain the simulation parameters for the Block-
SPRT [12]. We let the first block starts from the simulation.
In Benign case of the Block-SPRT, we set Nb = 1, 2, 3, 4, 5.
In RTL and ROP cases of the Block-SPRT, we set Nt = No =
10, 20, 30, 40, 50. Additionally, the Block-SPRT employs the
same address-type byte setup, individual address-type block
setup, continuous address-type block setup, discrete address-
type block setup processes as in the Byte-SPRT. In all these
settings of the Block-SPRT, we fix ε to 1.0. In the sense that
a sample in the Block-SPRT is obtained from a block with
probability ε, ε = 1.0 indicates that the Block-SPRT utilizes
every block for code-reuse attack detection. Themain rational
behind this ε configuration is to compare the Byte-SPRT to
the best case of the Block-SPRT in terms of code-reuse attack
detection capability. In the Block-SPRT, we configure α′ =
β ′ = 0.01 and z1 = 0.9. We also set z0 = 0.05 in cases that
Nb = 1, 5 and No = Nt = 10, 50. We set z0 = 0.1 in all other
cases except the cases of z0 = 0.05.
Note that simulation configurations used in [12] are differ-

ent to the ones specified in this section. In [12], the fraction
of the number of address-type blocks over the total number
of entire packets in code-reuse attack case is approximately
0.5 on an average, whereas it is at most 0.04 in our simulation
settings. ε = 0.1, 0.15, 0.2 in [12], whereas ε = 1 in
our simulation configurations. Moreover, code-reuse packets
are randomly distributed in unit of a block in [12], whereas
code-reuse packets for RTL and ROP cases are randomly
distributed in unit of bytes in our simulation configurations.
Overall, our simulation configurations for code-reuse packets
are harsher than the ones in [12] in terms of code-reuse attack
detection. As a consequence, the evaluation results of the
Block-SPRT through our simulation will be worse than the
ones in [12].

In both the Byte-SPRT and the Block-SPRT, the sim-
ulation has been repeated 1000 times and an average
results of 1000 iterations are presented in the following
section.

B. EVALUATION RESULTS
We employ the following metrics to evaluate code-reuse
attack detection scheme based on the SPRT and packet
inspection.
• Number of Samples for the SPRT decision: an average
number of samples for the SPRT to accept H0 Hypothe-
sis in Benign case,H1 hypothesis in RTL and ROP cases.

• False positive rate (%): an average error rate for benign
packets to be misjudged as code-reuse packets.
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• Detection rate (%): an average rate for detecting
code-reuse packets.

• No decision rate (%): an average rate for the SPRT not
to make a decision.

• Fraction of selected address-type bytes: an average frac-
tion of the number of address-type bytes selected for
the SPRT over the total number of bytes incoming into
industrial IoT device.

False positive rate is calculated as the percentage of the
number of times that benign case is misidentified as code-
reuse attack case plus the one that it is not decided by the
SPRT out of 1000 executions. Detection rate is computed as
the percentage of the number of times that code-reuse attack
case is detected by the SPRT out of 1000 executions. Note that
we classify the case that the SPRT does not make a decision
as being undetected.

Furthermore, note that the number of address-type bytes
selected for the SPRT is measured from the start of simu-
lation to the end of simulation when the SPRT adopts H0
decision or does not reach a decision. On the other hand,
the numbers of address-type bytes selected for the SPRT in
RTL an ROP cases represent are measured from the start of
simulation to the termination of the SPRT in case of adoption
of H1 decision.

In Benign case of the Byte-SPRT, the false positive rate is
measured as 0.4% when Nb = 5 and p = 0.1. It is measured
as 0% in all other configurations. Furthermore, no decision
rate is observed from 67.5% to 98.4% in case of small Nb
set and from 70% to 99.2% in case of large Nb set. This
indicates that the Byte-SPRT does not reach a decision in
large number of executions in Benign case while incurring
very low false positive error. This is mainly because the com-
bination of small number of the first address-type bytes and
byte selection probability pwith at most 0.5 makes it difficult
for enough number of samples for decision to be collected,
having the Byte-SPRT come to no decision. On the other
hand, in Benign case of the Block-SPRT, the false positive is
measured as 0% in all configurations and no decision rate is
measured as 0%, which means that the Block-SPRT makes
a correct decision for each execution in Benign case. This
is mainly due to the fact that ε = 1 makes each block
correspond to each sample and thus the Block-SPRT gets
sufficient number of samples for decision.

As show in Figure 3, number of samples for the
Byte-SPRT and the Block-SPRT in Benign case is measured
as at most 3.428 and at most 3.003 in all settings of small
Nb set, respectively. From these observations, number of
samples in the Byte-SPRT with small Nb set is slightly more
than the one in the Block-SPRT. However, note that our
proposed Byte-SPRT with small Nb set still requires a small
number of samples for H0 decision in Benign case, which is
below 3.5 on an average. Figure 11 displays the comparison
results on number of samples between small and large Nb
sets in the Byte-SPRT. We first perceive that the Byte-SPRT
needs at most 3.984 samples on an average in all settings
of p, small and large Nb sets. Except the case of p = 0.1,

number of samples in small Nb set tends to be lower than
the one in large Nb set. From this observation, we see that
the less number of address-type blocks tends to result in the
smaller number of samples for decision in Benign case of the
Byte-SPRT. We also discern that number of samples in large
Nb set is more dynamically affected by p than the one in small
Nb set. We infer from this observation that a rise in number
of address-type blocks contributes to dynamic effect by p in
Benign case of the Byte-SPRT.

FIGURE 3. Comparing the number of samples for the Byte-SPRT decision
to the one for the Block-SPRT decision while varying the number of
address-type blocks (Nb) in Benign case.

In RTL case of the Byte-SPRT, no decision rate is observed
from 1.2% to 6.8% in case of small Nt set and at most 1% in
case of large Nt set. This signifies that the Byte-SPRT does
not reach a decision in a very small number of executions
in small Nt set while it reaches a decision in almost all
executions in large Nt set. In RTL case of the Block-SPRT,
no decision rate is measured as 0%, which indicates that the
Block-SPRT makes a decision for each execution in RTL
case.

As shown in Figure 4, number of samples for the
Byte-SPRT and the Block-SPRT to detect RTL attacks is
measured as at most 4.201 and at most 8.737 in all settings

FIGURE 4. Comparing the number of samples for the Byte-SPRT decision
to the one for the Block-SPRT decision while changing the number of
address-type blocks (Nt ) in RTL case.
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FIGURE 5. Comparing the number of samples for the Byte-SPRT decision
to the one for the Block-SPRT decision while changing the number of
address-type blocks (No) in ROP case.

of small Nt set, respectively. These measurements indicate
that the Byte-SPRT with small Nt set fulfills faster RTL
attack detection than the Block-SPRT while requiring less
than half of the Block-SPRT in terms of the maximum value
of number of samples. We also see that the Block-SPRT is
more considerably affected by Nt than the Byte-SPRT with
small Nt set. Figure 12 shows the comparison results on an
average number of samples between small and large Nt sets
in the Byte-SPRT. We first discern that the Byte-SPRT needs
at most 4.341 samples on an average in all settings of p, small
and large Nt sets. We also figure out that number of samples
in small Nt set is smaller than the one in large Nt set in cases
of p = 0.1, 0.5. From this observation, we see that lower
value of z0 = 0.05 in cases of (Nt , p) = (50, 0.1), (10, 0.5)
leads to the smaller number of samples than the higher value
of z0 = 0.1 in other cases of (Nt , p).
As shown in Figure 6, RTL attack detection rate of the

Byte-SPRT with small Nt set ranges from 93.2% to 98.4%
while detection rate in the Block-SPRT ranges from 10.4%
to 23.5%. This signifies that the lowest detection rate of

FIGURE 6. Comparing detection rate (%) of the Byte-SPRT to the one of
the Block-SPRT while changing the number of address-type blocks (Nt ) in
RTL case.

FIGURE 7. Comparing detection rate (%) of the Byte-SPRT to one of the
Block-SPRT while changing the number of address-type blocks (No) in
ROP case.

FIGURE 8. Comparing the fraction of selected address-type bytes of the
Byte-SPRT to the one of the Block-SPRT while varying the number of
address-type blocks (Nb) in Benign case.

our proposed Byte-SPRT with small Nt set is higher than
3.96 times as much the highest detection rate of the Block-
SPRT as. Figure 14 displays the comparison results between
the detection rates of small and large Nt sets in the RTL
case of the Byte-SPRT. We observe that the Byte-SPRT with
large Nt set detects RTL attacks at least 99.0% rate. We also
perceive that detection rates in large Nt set are higher than
the ones in small Nt set. We infer from this that the more
number of address-type blocks leads to the higher RTL attack
detection.

In ROP case of the Byte-SPRT, no decision rate is observed
from 0.4% to 6.7% in case of smallNo set and at most 0.6% in
case of large No set. This indicates that the Byte-SPRT does
not reach a decision in a few number of executions in small
No set while it reaches a decision in almost all executions in
largeNo set. In ROP case of the Block-SPRT, no decision rate
is measured as 0%, which means that the Block-SPRT comes
to a decision for each execution in ROP case.

As shown in Figure 5, number of samples for the
Byte-SPRT and the Block-SPRT to detect ROP attacks is
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FIGURE 9. Comparing the fraction of selected address-type bytes of the
Byte-SPRT to the one of the Block-SPRT while varying the number of
address-type blocks (Nt ) in RTL case.

FIGURE 10. Comparing the fraction of selected address-type bytes of the
Byte-SPRT to the one of the Block-SPRT while varying the number of
address-type blocks (No) in ROP case.

measured as at most 4.234 and as at most 5.992 in all set-
tings of small No set, respectively. From these measurements,
we notice that the Byte-SPRTwith smallNo set accomplishes
faster ROP attack detection than the Block-SPRT. Figure 13
shows the comparison results on number of samples between
small and large No sets in the Byte-SPRT. We first recognize
that the Byte-SPRT demands at most 4.443 samples on an
average in all settings of p, small and large No sets. We also
observe that number of samples in small No set is fewer than
the one in large No set in cases of p = 0.1, 0.5. Similar to
RTL case, we perceive from this observation that the lower
value of z0 = 0.05 in cases of (No, p) = (50, 0.1), (10, 0.5)
results in the fewer number of samples than the higher value
of z0 = 0.1 in other cases of (No, p).
As shown in Figure 7, ROP attack detection rate of the

Byte-SPRT with small No set ranges from 93.3% to 99.5%
while detection rate in the Block-SPRT ranges from 23.7%
to 26.9%. This indicates that the lowest detection rate of
our proposed Byte-SPRT with small No set is higher than
3.47 times as much the highest detection rate of the Block-

FIGURE 11. In Benign case, comparing the number of samples for the
Byte-SPRT decision in small Nb set to the one in large Nb set while
varying the byte selection probability p in probabilistic packet inspection
procedure.

FIGURE 12. In RTL case, comparing the number of samples for the
Byte-SPRT decision in small Nt set to the one in large Nt set while
changing the byte selection probability p in probabilistic packet
inspection procedure.

FIGURE 13. In ROP case, comparing the number of samples for the
Byte-SPRT decision in small No set to the one in large No set while
varying the byte selection probability p in probabilistic packet inspection
procedure.

SPRT as. Figure 15 displays the comparison results between
the detection rates of small and large No sets in the ROP case
of the Byte-SPRT. We see that the Byte-SPRT with large No
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FIGURE 14. In RTL case, comparing detection rate (%) of the Byte-SPRT in
small Nt set to the one in large Nt set while varying the byte selection
probability p in probabilistic packet inspection procedure.

FIGURE 15. In ROP case, comparing detection rate (%) of the Byte-SPRT
in small No set to the one in large No set while varying the byte selection
probability p in probabilistic packet inspection procedure.

FIGURE 16. In Benign case, comparing fraction of selected address-type
bytes of the Byte-SPRT in small Nb set to the one in large Nb set while
varying the byte selection probability p in probabilistic packet inspection
procedure.

set detects ROP attacks at least 99.4% rate. We also perceive
that detection rates in large No set are higher than the ones in
small No set. From this, we discern that the more number of
address-type blocks leads to the higher ROP attack detection.

FIGURE 17. In RTL case, comparing fraction of selected address-type
bytes of the Byte-SPRT in small Nt set to the one in large Nt set while
varying the byte selection probability p in probabilistic packet inspection
procedure.

FIGURE 18. In ROP case, comparing fraction of selected address-type
bytes of the Byte-SPRT in small No set to the one in large No set while
varying the byte selection probability p in probabilistic packet inspection
procedure.

Figures 8, 9, 10 display the comparison results of frac-
tion of selected address-type bytes between the Block-SPRT
and the Byte-SPRT with small Nb, Nt , No sets, respectively.
Fraction of selected address-type bytes is refrained from
below 0.001, 0.0078, and 0.0019 in Benign, RTL, and ROP
cases of the Block-SPRT, respectively. Except the cases that
Nb = 1, 2 in Figure 8, the fractions of selected address-
type bytes in the Block-SPRT tend to be higher than the
ones in the Byte-SPRT with small Nb, Nt , No sets. As shown
in Figures 16, 17, 18, fraction of selected address-type bytes is
restricted to below 0.001, 0.0016, and 0.0016 in Benign, RTL,
and ROP cases of the Byte-SPRT, respectively. These imply
that our proposed Byte-SPRT works with a small fraction of
address-type bytes selected for the SPRT.

VI. CONCLUSION
In this paper, we devise a code-reuse attack detection scheme
based on the probabilistic packet inspection and the SPRT
in industrial IoT devices and demonstrate that our devel-
oped scheme attains resilient detection competence with little
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overhead through simulation and analysis. In particular, our
simulation results exhibit that the SPRT with probabilistic
packet inspection accomplishes at least 93.2% detection rate
on an average for small set of code-reuse packets and at least
99.0% detection rate on an average for large set of code-reuse
packets while requiring below five samples for detection on
an average. Furthermore, it attains at most 0.4% average false
positive rate with below four samples on an average.
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