
Received July 25, 2018, accepted September 16, 2018, date of publication September 24, 2018, date of current version October 17, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2871859

Industrial Internet of Things-Based Prognostic
Health Management: A Mean-Field
Stochastic Game Approach
MOHAMMED-AMINE KOULALI 1, SARA KOULALI2,
HAMIDOU TEMBINE3, (Senior Member, IEEE),
AND ABDELLATIF KOBBANE4
1MSN Research Team, Ecole Nationale des Sciences Appliquée d’Oujda, Mohammed First University, Oujda 60000, Morocco
2MATSI Laboratory, Ecole Supérieure de Technologie, Mohammed First University, Oujda 60000, Morocco
3Learning and Game Theory Laboratory, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
4Rabat IT Center, Ecole Nationale Supérieure d’Informatique et d’Analyse des Systèmes, Mohammed V University, Rabat BP 713, Morocco

Corresponding author: Mohammed-Amine Koulali (m.koulali@ump.ac.ma)

ABSTRACT Recent advances in industrial Internet of Things (IIoT) have dramatically leveraged prognostic
health management for industrial systems. Indeed, the cognitive and communication capabilities of IIoT
empower their integration in the industrial systems maintenance workflow to ease the transition toward
industry 4.0. In this paper, we study a mean field stochastic game for IIoT-based CBM of industrial facilities
formulated to favor grouped maintenance for cost reduction. We provide an analytical analysis of the
proposed game to characterize its equilibrium operating point: mean-field equilibrium (MFE). We design
a learning algorithm to reach the MFE based on a local adjustment of the maintenance rate and the global
health state distribution of the monitored components. Numerical evaluation validates the proposed game
and ensures maintaining a high fraction of the components in a healthy state by acting on preventive and
corrective replacement rates.

INDEX TERMS Prognostic health management, industrial Internet of Things, mean-field stochastic games,
mean-field equilibrium, H-learning, Markov chain.

I. INTRODUCTION
Prognostic Health Management (PHM) for maintenance of
industrial systems has attracted great research efforts from the
reliability community [22]–[24]. Their efforts cover health
state monitoring and prediction of industrial systems, dete-
rioration processes modeling and maintenance procedures
proposal [11], [17], [18]. The PHM aim is to spare the indus-
trial system operators from incurring the consequences of
failures. By providing alarms of eminent failures enough time
before their occurrence, operators can set effective preventive
and corrective maintenance operations. Industrial mainte-
nance is formed by three major categories: BreakdownMain-
tenance (BM), Time-based Preventive Maintenance (TPM)
and Condition BasedMaintenance (CBM).While BM is real-
ized on systems upon failure occurrence, the PTM and CBM
try to operate on systems to expect and eventually prevent
their failure [20]. Time-based preventive maintenance oper-
ates by setting periodic deadlines for maintenance operations.
To avoid scheduling unnecessary maintenance operations,

CBM [19], [21] plans maintenance operations according to
the monitored components health state. CBM can detect
early signs of potential failure of components according to
a developed predictive model combined with inspections.
Therefore, it reduces maintenance cost and industrial systems
down times incurred from maintenance operations or failure
and increases production rates.

Industrial Internet of Things (IIoT) [25]–[28] exhibits
promising opportunities to develop novel applications around
powerful industrial systems. Indeed, breakthroughs in key
enabling technologies: wireless communications, sensor
devices and hardware miniaturization have enlarged IIoT
domains of application. For instance, a wide range of IIoT
applications have been proposed and deployed in several
industrial fields such as transportation, logistics, robotics and
infrastructure assets monitoring.

IIoT-based CBM [9] is an emerging research field with
a vast potential of industrial applications as discussed
in [9], [12], and [13]. Ubiquity, sensing, interconnection and
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data fusion are inherent characteristics that empower IoT inte-
gration to existing CBM frameworks for industrial systems.
In Condition Based Maintenance, deployed IIoT allow auto-
mated periodic (respectively on-demand) monitoring of sys-
tems and their health states reporting. Thus, developed
preventive models could be updated and correct maintenance
operations conducted.

Xanthopoulos et al. [16] address the problem of main-
taining high service level while carrying as low inventory as
possible in a deteriorating manufacturing system. At every
time epoch the agent controlling the manufacturing facility
has three possible decisions, namely: produce, maintain or
remain idle. The formulated problem is solved through a
Reinforcement Learning (RL) based approach. The proposed
method is compared to standard production and maintenance
policies. Active and preventive maintenance are investi-
gated in [6]. The proposed approach combines the collec-
tion of manufacturing process bigdata off-line prediction
with a method based on a neural network that computes the
components lifetime under specific processing conditions.
Yan et al. [7], based on device electrocardiogram and deep
learning, propose a Remaining Useful Life (RUL) predic-
tion algorithm. The proposed approach reduces the depen-
dence w.r.t experts’ decisions by incorporating Artificial
Intelligence (IA) in the prediction loop.

Feng et al. [14] study an aircraft fleet maintenance
planning problem for which they developed a two-stage
dynamic decision-making model. To reduce the problem
scale, they divided the fleet into dispatch and standby sets
and formulated a heuristic hybrid game to investigate it.

In [15], two operators are making prognostics-based
replacement decisions for identical systems with common
manufacturer. They are involved in a strategic decision-
making process to acquire the needed replacement parts from
two suppliers. The studied problem is cast into a hierarchical
game framework with one of the operators acting as a leader
and the other serving as a follower.

PHM for aircraft power generators using Kalman filtering
is investigated in [10]. The authors develop a state estimator
such that model parameters are updated sequentially when
new observations are available.

In this paper, we address the problem of setting optimal
preventive and corrective maintenance rates for components
of an industrial facility. To achieve these objectives, we rely
on an IIoT to monitor the health state of each compo-
nent and provide a global health statistics of the facility
to its operators. Thus, maintenance operations could be
planned and eventually grouped to reduce the costs. For
industrial facilities with a considerable number of compo-
nents, operating on a per-component basis is not optimal.
We instead take advantage of the similarities between com-
ponents regarding their deterioration process and need for
preventive/corrective replacement. The components are com-
peting against each other to undergo maintenance opera-
tions as quickly as possible to counteract the deterioration

process effects. Meanwhile, to reduce their maintenance
costs, delaying the maintenance time to group with others
ensures cost sharing. Therefore, a balance or equilibrium has
to be established.

We notice first that the rewards and costs of each com-
ponent undergoing a maintenance operation do not depend
solely on its actions; maintenance rates, but on the choices
of other components as well. Besides, no inter-components
cooperation is taking place while choosing the maintenance
rates. Finally, the number of components to be moni-
tored could evolve easily from hundreds to several thou-
sand depending on the industrial plant size. Therefore,
the IIoT-based CBM fits perfectly within the Mean-Field
Game (MFG) framework [8]. One fundamental assumption
in Mean-Field Game theory is the indistinguishability per
class of the agents. This means that agents (players) could
be assumed to have similar behavior (controls) within the
same class. The other assumption states that the influence
of a single agent on the large coupled interaction system
is negligible. These assumptions lead to a more tractable
decision problem described from a generic agent point of
view with a generic control.

Our contribution can be summarized as follows:
We provide a rigorous description of the microscopic tran-
sition to microscopic level for the IIoT-based CBM prob-
lem. The latter is formulated as a mean-field stochastic
game (MFSG) between industrial facility components subject
of a Markovian deterioration process. Then, we characterize
the mean field limit as a solution of a Kolmogorov for-
ward equation. For each component, an individual dynamic
optimization problem whose objective is to maximize its
expected finite horizon payoff subject to own stochastic
dynamics and mean field limit is proposed. This formulation
leads to a coupled system of forward-backward Partial Dif-
ferential Equations (PDEs). The existence, uniqueness and
computation of Mean-Field Equilibria (MFE) solution to the
MFSG, as well as theH-learning algorithm for reaching them,
are discussed. To the best of our knowledge, this study is
among the first to formulate the IIoT-based CBM as a mean
field stochastic game.

The remainder of this paper is organized as follows.
In Section II, we state the IIoT-based prognostic management
problem in industrial facilities. In Section III, we develop the
mean-field game model of the studied problem and provide
existence and uniqueness results for the game MFE. We also
provide a Learning algorithm for the MFE. Numerical inves-
tigation results are presented and discussed in Section IV.
Finally, in Section V, a brief conclusion and envisions of
future development for MFG-based CBM are provided.

II. PROBLEM STATEMENT
We consider a network formed by N = {1, . . . , n} devices
that form an IIoT assisting the CBM operations of compo-
nents within an industrial facility. Each device monitors the
health state of a component whose state evolves according
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to a Markov chain composed of three states: Healthy(H ),
Failing(F) and Dead(D). When the component is fully
operational (state H ), no maintenance is authorized. Due to
various endogenous and exogenous factors, the components
become faulty with probability ρ. In the failing state (F),
the component is still functioning but not fully operational,
only preventive maintenance (actionm) is allowed and brings
the component back to its healthy state H . If no preventive
maintenance (action m) is realized, the component becomes
dead (state D) with probability ν. In this state, only cor-
rective maintenance (m) could bring the component back
to its healthy state. The preventive (respectively corrective)
maintenance occurs with probability δ(t) (respectively η(t)).
The associated costs are CPR and CCR respectively. Taking
into consideration the fact that the corrective maintenance
is more costly than the preventive one, we further impose
the following constraint: Cpr < Ccr . We are interested in
modeling the IIoT-based CBM problem over a finite time
interval

[
0, tf

]
.

III. MFG MODEL FOR IIoT-BASED CBM
Let us consider that the IIoT serving as a backbone for the
PHM is very dense (n→∞). The components seen as play-
ers are trying to share their maintenance costs by grouping
maintenance operation with one another. Unfortunately, since
the deterioration processes are independent, at a given time
epoch, components have different health states. Therefore,
for some components affording a maintenance delay is not
an option. Consequently, each component aims to balance
its need for maintenance with its interest in reducing the
associated costs by grouping with other ones to undergo joint
maintenance operations.

Given a particular component, referred to as the generic
component, we model its health state evolution with a
three-state Markov chain as depicted in FIGURE 1.

FIGURE 1. Markov chain representation: the parameters ri are the
complement of the other transitions.

Denote by D(t), F(t) and H (t) the number of components
in states D, F and H respectively. The health state repartition
of components at time epoch t respects the following equality
constraint: n = D(t) + F(t) + H (t). Furthermore, their
occupancy measure corresponding to the frequency vector of

TABLE 1. Probabilities, states (H(t),D(t), F (t)), actions.

the states is denoted by:

Mn(t) =



D(t)
n

F(t)
n

H (t)
n


.
=

D
n(t)

Fn(t)
Hn(t)

 (1)

TABLE 1 summarizes the impact of each individual compo-
nent state change on the per-epoch evolution of the occupancy
measureMn(t).

Given an occupancy measure M =

df
h

, the expected

change ofMn in one time epoch, called drift is:

φn(M) = nE(Mn(t + 1)−Mn(t)|Mn(t) =M). (2)

Then, its limit φ(M) for a highly dense IIoT is described by
the following system of ordinary differential equations:

φ(M) =

ḋḟ
ḣ

 =
 f ν − η(t)d

hρ − f (δ(t)+ ν)
−hρ + f δ(t)+ η(t)d

 (3)

The system simplifies further by noticing that:

∀ t ∈ [0, tf ], h(t) = 1− f (t)+ d(t).

In the remainder of the paper and without loss of generality,
we restrict our analysis to M first two components denoted

by m =
(
d
f

)
with the following evolution dynamics:

φ(m) =
(
ḋ
ḟ

)
=

(
f ν − ηd

ρ − f (δ + ν + ρ)− dρ

)
(4)

We aim to minimize the proportion of components in states
F and D by mean of control ui(t) = (δi(t), ηi(t)) ∈ U =
[0, 1]2 while encouraging grouped preventive and corrective
maintenance. This will naturally lead to maximizing the pro-
portion of healthy components while reducing maintenance
costs.

Let us define the per-epoch maintenance cost for the
generic component as follows:

g(m(t),u(t), t) =
δ(t)2 + η(t)2

2
+ (1− f (t)δ(t))Cpr

+ (1− d(t)η(t))Ccr (5)

Notice that by MFG assumptions stated above we drop
the player index i and consider a generic one. Also, costs
of grouped preventive (respectively corrective) maintenance
are reduced by a factor of (1 − δ(t)f (t)) (respectively
(1−η(t)d(t))). The intuition behind this formulation is the fol-
lowing: the greater the number of components to be replaced
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is (f (t) ↗ and/or d(t) ↗), the more the maintenance costs
will decrease.

We also express the objective functional to be minimized
cooperatively as follows:

J (u(t),m(t)) =
∫ tf

0
g(m(t),u(t), t)dt. (6)

Notice that the utility of each component J (u(t),m(t)) is
influenced by its action u(t) and by the mean field limit of the
state distribution m(t) of other components. This mean field
interaction leads naturally to a mean field stochastic game
formulation.

Therefore, for a given occupancy measure m =
(
d
f

)
,

the mean-field stochastic game is defined by the following
coupled system:

min
u(t)∈U

J (u(t),m(t))

ṁ = φ(m(t),u(t), t)
m(0) = m0

(7)

Let us denote by v(m(t), t) =
∫ tf
0 g(m(t),u(t), t) the

generic component value function to be minimized. Tak-
ing into account the key MFG theory assumption leads to
the following system of coupled backward Hamilton-Jacobi-
Bellman and forward Fokker-Planck equations:


−∂t v(t,m(t)) = min

u(t)∈U
g(m(t),u(t), t)

+ < φ(m(t)),∇v(t,m(t)) >
ṁ = φ(m(t),u(t), t)
v(tf ,m) = 0, m(0) = m0

(8)

A. DYNAMICAL SYSTEM ANALYSIS
We will investigate the existence and uniqueness of solutions
of the dynamical system ṁ = φ(m) describing components
states occupancy measure evolution. The main results are
stated in Theorem 1.
Theorem 1: The controlled system ṁ(t) = φ(m) that sat-

isfies the initial conditionsm(0) = m0 has a unique solution.

Proof: Let m =
(
d(t)
f (t)

)
and ∂(m) =

(
d d(t)
d t
d f (t)
d t

)
, so the

state dynamics are rewriting in the following form:

∂(m) = Am+ b. (9)

Where

A =
(
−η(t) ν

−ρ −ν − δ(t)− ρ

)
and b =

(
0
ρ

)
.

Then, given two states m1 and m2 the following inequality
holds:

‖∂(m1)− ∂(m2)‖ ≤ ‖A‖.‖m1
− m2
‖ (10)

Thus, it follows that the function ∂ is uniformly Lipschitz
continuous. Therefore, from the definition of the control u(t)

and the restriction on 0 ≤ d(t) ≤ 1 and 0 ≤ f (t) ≤ 1. By [5],
we realize that a unique solution of the controlled system ṁ =
φ(m) exists. �
We are interested in finding the equilibrium points of the

dynamical system described by (4). Thus, for any MFE u∗

solution to the MFSG (7), we solve the system φ(m) = 0.
The unique rest point of the system is given by:

d =
ν ρ

(δ∗ + η∗ + ρ)η∗ + ν ρ
and

f =
ρ η∗

(δ∗ + ν + ρ)η∗ + ν ρ
To investigate the stability of the system we compute its
Jacobian matrix:

J(u∗) =
[
−η∗ 0
−ρ −δ∗ − ν − ρ

]
Since Tr(J) = −(η∗ + δ∗ + ν + ρ) < 0, we conclude that

the system is stable. As depicted by FIGURE 2, starting from
the initial occupancy measure m(0) = (0, 0), corresponding
to all monitored components being in the state H , the system
converges to its equilibrium point m(200) = (0.16, 0.24)
after 200 time epochs.

FIGURE 2. System ṁ = φ(m) trajectory Simulation u∗ = (0.3,0.3),
ρ = 0.2, ν = 0.2.

Let us consider the augmentedHamiltonianHwith penalty
terms for the control constraints given by:

H(m(t),u(t), λ(t),w(t), t) = g(m(t),u(t), t)+ λ.ṁ

−w(t).


δ(t)

(1− δ(t))
η(t)

(1− η(t))

 (11)

where w = (w1(t),w2(t),w3(t),w4(t)) is a vector of com-
ponent wise positive penalty multipliers satisfying for u∗ the
following equality constraint:

w.


δ∗(t)

(1− δ∗(t))
η∗(t)

(1− η∗(t))

 = 0 (12)
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B. EXISTENCE & CHARACTERIZATION OF THE
MEAN-FIELD EQUILIBRIUM
Theorem 2: Consider the Mean-Field Game (7). There

exists a mean-field equilibrium u?(t) = (δ?(t), η?(t)) ∈ U
such that J (u?) = min

u∈U
J (u). Also, there exists a vector of

adjoint variables λ(t) = {λi}i∈{1,2} satisfying the following:

−λ̇1 =
∂H(m(t),u(t), λ(t),w(t), t)

∂d

−λ̇2 =
∂H(m(t),u(t), λ(t),w(t), t)

∂f
(13)

with boundary conditions: ∀i ∈ {1, 2}, λi(tf ) = 0 and
f (0) = f0, d(0) = d0. Further, u∗(t) = (δ∗(t), η∗(t)) can
be represented by:

δ∗(t) = max{0,min{1, f (t)× (Cpr + λ2(t))}} (14)

and

η∗(t) = max{0,min{1, d(t)× (Ccr + λ1(t))}} (15)
Proof: The existence of the mean-field equilibrium can

be proved using a result by Fleming and Rishel [3]:
First, an existence result provided by [14, Th. 9.2.1] for

the state system with bounded coefficients is invoked. Then,
the control space U = {(δ, η)/ δ and η are measurable, 0 ≤
δ(t), η(t) ≤ 1, t ∈ [0,T ]} is convex and closed by definition.
We notice that the right-hand side of the state system (4) can
be written as follows

φ

((
d
f

))
= A.

(
d
f

)
+ b

=

(
−η ν

−ρ −ν − δ − ρ

)
.

(
d
f

)
+

(
0
ρ

)
(16)

Let us find the upper bounds of the first part of the right hand
side of equality (16).∣∣∣∣(−η ν

−ρ −ν − δ − ρ

)(
d
f

)∣∣∣∣ ≤ ∣∣∣∣(0 ν0 0

)(
d
f

)∣∣∣∣
≤ C

(∣∣∣∣(df
)∣∣∣∣)

where C incorporates the upper bound of the given constant

matrices:
(
0 ν
0 0

)
. Thus

φ

((
d
f

))
≤ C

(∣∣∣∣(df
)∣∣∣∣)+ |b|

This upper-bound is a linear combination of the control,
state vectors and time. It is straightforward to notice that the
integrand of the functional is convex on U . Finally, ∃ c1, c2 >
0, β > 1 such as g(m(t),u(t), t) ≥ c1‖u‖β−c2. For instance,
for c1 = 1

2 ,Cpr+Ccr andβ = 2 the previous inequality holds.

The conditions of [3, Th. III.4.1] are satisfied. Then,
we conclude that there exists a mean-field equilibrium for
the MFSG (7).

Next, the maximum principle gives existence of the adjoint
variables satisfying (13). To complete the representation for
u∗ we analyze the optimality conditions. The mean-field
equilibrium u∗ and system state trajectory is obtained by
solving the following system:


∂H
∂ δ
= 0

∂H
∂ η
= 0

⇔

{
δ∗ = f (t)× (Cpr + λ2(t))+ w1 − w2

η∗ = d(t)× (Ccr + λ1(t))+ w3 − w4

For the controls δ we consider three cases:
1) On the set {t|0 < δ∗(t) < 1}, w1(t) = 0 = w2(t).

Hence the mean-field equilibrium is:

δ∗(t) = f (t)× (Cpr + λ2(t))

2) On the set {t|δ∗(t) = 1}, w1(t) = 0. Hence the
mean-field equilibrium is:

1 = δ∗(t) = f (t)× (Cpr + λ2(t))− w2(t)

This implies that f (t)× (Cpr +λ2(t)) ≥ 1 since w2 ≥ 0
and consequently

δ∗ = 1 ≤ f (t)× (Cpr + λ2(t))

3) On the set {t|δ∗(t) = 0}, w2(t) = 0. Hence the
mean-field equilibrium is:

0 = δ∗(t) = f (t)× (Cpr + λ2(t))+ w1(t)

This implies that f (t)× (Cpr + λ2(t)) is negative since
w1 ≥ 0. Consequently

δ∗ = 0 ≥ f (t)× (Cpr + λ2(t))

Combining these three cases we characterize the MFE
preventive maintenance probability δ∗(t) as follows:

δ∗(t) = max{0,min{1, f (t)× (Cpr + λ2(t))}}

Using similar arguments, we can also obtain the MFE
corrective maintenance probability:

η∗(t) = max{0,min{1, d(t)× (Ccr + λ1(t))}}

�

C. LEARNING THE MEAN-FIELD EQUILIBRIUM
In this section we propose a learning algorithm allowing con-
vergence to the mean-field equilibrium with mean field limit.
The proposed algorithm is Learning under the Hamiltonian
function namely: H-Learning [29]. Let us first introduce the
H-function defined by:

H (u(t),m(t), p) = g(u(t),m(t))+ < p, φ(m(t)) >
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Algorithm 1 summarizes the H-Learning algorithm steps:

Algorithm 1 H-Learning for IIot-Based CBM
1) Initialize m0
2) At iteration l use ml to compute the payoff g(ml, .).
3) Use the Hamilton-Jacobi-Bellman-Fleming optimality

(8) to obtain the value function approximation v̂(l) at
stage l.

4) compute the mean-field equilibrium u∗(l) via the
H-function (Pontryagin maximum principle)

5) Use u∗(l) to get m∗l solution of the
Fokker-Planck-Kolmogorov forward equation.

Each component will try to solve the coupled PDEs given
the mean-field limit of the occupancy measure and its local
action u(l). The algorithm operates iteratively to converge to
the MFE of the mean-field game.

FIGURE 3. Components Health states distribution evolution & MFE
Controls (NLP).

IV. NUMERICAL INVESTIGATION:
We consider the following scenario: ρ = 0.2, ν = 0.2,
Cpr = 2 and Ccr = 4, tf = 40 time epochs, m(0) =
(0, 0.1, 0.9). To derive a solution for the MFG and com-
pute the Mean-Field Equilibrium (MFE) one must deal with
solving HBJ-FPK PDEs depending on predefined bound-
ary conditions. We proceed firstly by a direct approach [2]
that transforms the infinite dimensional problem (7) into a
finite dimensional Non Linear Optimization Problem (NLP).
FIGURE 3 illustrates the maintenance policies at the MFE
along with the components health state occupancy measure
evolution. Starting from the initial occupancy measure m(0)
the components states converges after 15 iteration to the the
occupancy measure m(15) = (0.1, 0.2, 0.6) with the MFE
u(15) = (δ(15), η(15)) = (0.36, 0.36).

The previous scenario is investigated by letting each
component learn its MFE using the H-Learning algorithm.
As depicted by FIGURE 4, The learned equilibrium controls
and components health state occupancy measure evolution
matches the previously obtained results based on the direct
approach.

FIGURE 4. Components Health states distribution evolution & MFE
Controls (H-Learning).

FIGURE 5. h(t) at MFE for different ρ and ν values.

To study the impact of the component’s uncontrolled on
state transition probabilities(respectively ρ and ν) on the
health state occupancy measure, we compute the MFE for
different parameters values. The corresponding components
health state distribution and MFE controls are given in
FIGURE 5 and FIGURE 6 respectively. It can be noticed that
as deterioration probabilities increase, components preven-
tive and corrective maintenance probabilities also increase.
Thus, the equilibrium policy tries to bring as much as pos-
sible components to their healthy state by increasing the
maintenance probabilities.
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FIGURE 6. δ∗(t) and η∗(t) at MFE for different ρ and ν values.

V. CONCLUSION
In this paper, we proposed a Mean-Field Stochastic game
for IIoT-based CBM in Industrial facilities. Leveraging the
frameworks of MFG and learning theories, we analyti-
cally characterized the equilibrium preventive and corrective
maintenance rates. The proposed game allows keeping a
considerable fraction of the monitored components in a
healthy state even under severe deterioration probabilities
while favoring grouped maintenance for cost reduction.
Future work will generalize the modeling of the deteri-
oration process of components with various deterioration
probabilities.
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