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ABSTRACT In the previous paper, we reconstructed the entire transcriptional network for all 2418 clock-
associated genes in the model filamentous fungus, Neurospora crassa (N. crassa). Several authors have
suggested that there is extensive post-transcriptional control in the genome-wide clock network (IEEE 3:
27, 2015). Here we have successfully reconstructed the entire clock network in N. crassa with a variable
topology ensemble method (VTENS), assigning each clock-associated gene to the regulation of one or more
of five transcription factors as well as to six RNA operons. The resulting network provides a unifying
framework to explore the clock’s linkage to metabolism through post-transcriptional regulation, in which
∼850 genes are predicted to fall under the regulatory control of an RNA operon. A unique feature of all of
the RNA operons inferred is their functional connection to genes connected to the ribosome. We have been
successful in distinguishing several hypotheses about regulatory topologies of the clock network through
protein profiling of the regulators.

INDEX TERMS Variable topology ensemble methods, RNA operon, has-1, lhp-1, ribosome biogenesis,
circadian rhythms.

I. INTRODUCTION
One of the major challenges of systems biology is the integra-
tion of a variety of omics and physiological data to understand
complex traits, such as metabolism, development, behavior,
and disease [1]. Genetic networks provide the framework
to do this and also provide a framework for testing various
regulatory mechanisms controlling a complex trait [2]. One
of the major challenges in carrying out a program to test
the regulatory mechanisms prevalent in a genome is having
network reconstruction methods that: (1) recognize the spar-
sity of omics data scattered over the whole genome coupled
with the large number of parameters (i.e., rate constants and
initial conditions of molecular species) [3], [4] for specifying
a genetic network; (2) scale to the whole genome [5]; and

(3) allow the reconstruction of networks of unknown topol-
ogy (i.e., who regulates whom) [6]–[8]. Microbial systems,
such as Saccharomyces cerevisiae and N. crassa, have laid
the foundation for understanding eukaryotic gene regula-
tion [1], [9]–[14]. These systems continue to provide this
foundation on a genomic scale [6]. Recently we developed
variable topology ensemble (VTENS) methods to address
all three of the challenges described above [6]. We applied
these methods to the complex trait of the biological clock and
reconstructed an entire transcriptional network for the clock
involving 2,436 clock-associated genes for the first time [6].
This reconstruction of the clock network enabled testing of
the various regulatory hypotheses about the clock’s regula-
tory role in the genome. As an example, this network allowed
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us to frame different hypotheses about how metabolism links
the biological clock to aging [15].

Al-Omari et al. [6], and Hurley et al. [16] have argued that
most of the regulatory control of the biological clock must
be post-transcriptional because there are only five transcrip-
tional regulators that are clock associated and 2,418 targets in
the clock network [17]. On average each transcription factor
is expected to have ∼40 targets [18], [19]. That means that
only about 200 genes are likely to be transcriptional targets of
clock-associated genes, which falls short of the 2,418 clock-
associated genes by an order of magnitude. One possibility is
that some of the circadian genes are not only regulated tran-
scriptionally, but also post-transcriptionally [20], [21]. In N.
crassa, there is indeed evidence for post-transcriptional RNA
degradation rate control by the clock’s FRQ protein [22], [23]
and by the clock-related exosome [24]. In such an ‘‘RNA
operon’’ mechanism [21], each RNA-binding regulator can
again be expected to control no more than 40-220 circadian
target genes [25], [26]. There are six RNA-binding proteins
that could act as the master regulators in six RNA operons
in N. crassa [17]. The RNA operon hypothesis combined
with transcriptional control begins to narrow the gap between
the observed size of the clock network and the explanation
provided by the regulatory mechanisms involved.

In this paper, we formulate a regulatory network with
both transcriptional control and post-transcriptional control
through RNA-binding proteins that affect the mRNA stability
of target genes.We then reconstruct the genome-scale genetic
network based on these two regulatory mechanisms using
variable topology ensemble methods. We finish by using the
integration of RNA and protein profiling information on the
clock network to test these hypotheses.

A. RNA OPERON MODEL WITH TRANSCRIPTIONAL
REGULATION.
Each clock–associated gene, to which we will refer as
a putative clock-controlled gene (ccg), can be regulated
by one or more transcriptional regulators as previously
described [6]. The master clock regulator, the WHITE-
COLLARCOMPLEX (WCC) regulates 5 transcriptional reg-
ulators, which in turn together with WCC may regulate all
putative clock-controlled genes. The clock mechanism itself
is described previously with FRQ providing negative feed-
back to WCC [23], [27], [28] with many ensemble members
stably oscillating. In addition, we developed a new com-
ponent of the model that involves six post-transcriptional
regulators that bind to mRNA (Fig 1A). Each of these post-
transcriptional regulators under the control of WCC define
an RNA operon. These post-transcriptional regulators are
hypothesized to be RNA-binding proteins that affect com-
binatorially the mRNA stability of each target ccg. The
combined effect of these six RNA-binding proteins occurs
through the signal Sp(t) on each ccgmRNA (Fig 1B). There
are then two components of the model: (1) the regulatory
hierarchy (Fig 1A); (2) the model of regulation for each
putative clock-controlled gene (Fig 1B).

FIGURE 1. (a) The Supernet, where each of the 2,407 genes is
hypothesized to be regulated, potentially, by all of the 12 regulators
(6 transcriptional regulators including one repressor and 6 RNA-binding
proteins). (b) Putative clock-controlled genes are regulated by one or
more RNA-binding proteins, which generate a combinatorial signal Sp,
which determines the putative ccg mRNA (gr) stability. Notation follows
that of the GKIN software used to generate this regulatory
mechanism [29]. Molecular species (i.e., reactants or products) in the
network are represented by boxes, such as those labeled g0 and g1.
These indicate transcriptionally inactive and active genes respectively; gr
and grp indicate translationally active and inactive mRNA; and gp are
proteins. Reactions in the network are represented by circles. Arrows
pointing to circles identify reactants; arrows leaving circles identify
products; and bi-directional arrows identify catalysts. Reactions Ac or Bc
are activation and deactivation reactions, respectively. Reactions labeled
with Sc, Cp, or Lc, represent transcription, post-transcriptional control, or
translation reactions, respectively. Reactions without products, such as
Dcrp, Dcr, and Dcp are used to indicate decay reactions. The S Box acts as a
signal that combines the effects of the five transcriptional regulators and
denotes the weighted average of activator protein signals from all five
regulators, and the Sp box acts as the signal that combines the effects of
the six post transcriptional mRNA regulators, which bind to target mRNAs.

The new model component (Fig 1B) describing transcrip-
tional regulation and post-transcriptional regulation shown
below is specified by a subsystem of ordinary differential
equations (ODEs) for each ccg(see Fig 1B):

dg0
dt
= Bcg1 − Acg0S (t)+ Acg1(t) µ4

[
r0
r4

]m [
Reg4 (t)

]m
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dg1
dt
= Acg0S (t)− Bcg1 − Acg1 (t) µ4

[
r0
r4

]m [
Reg4 (t)

]m
OR

(
dg1
dt
= −

dg0
dt

)

dgr
dt
= Scg1(t)− Dcrgr(t)−CpSp(t)gr(t)

dgrp
dt
= CpSp(t)gr(t−Dcrpgrp(t)

dgp
dt
= Lcgr(t)−Dcpgp(t) (1)

The dynamical variables here are the concentrations of the
putative clock-controlled gene (g0 and g1 in the inactive and
active state, respectively), its mRNAs (gr and grp), and its
protein (gp). See the (Fig 1B) legend for rate constants Ac, Bc,
Sc, Dcr, Cp and Dcrp and their descriptions. The differential
equations for the protein level gp are presented but not used
here to fit the mRNA levels observed because the protein
levels are usually not observed.

The supernet [6] allows for possible regulation of the
putative ccg by any one of the six possible transcriptional
ccg-regulators or six post transcriptional regulators, with
S(t) acting as a signal that combines the effects of the
six transcriptional regulators. The signal S(t) denotes the
weighted average of activator protein signals from all six
regulators. The signal Sp(t) acts to combine the effects of
the six post-transcriptional mRNA regulators, which bind
to target mRNAs. The hypothesized RNA binding pro-
teins are: NCU08295, NCU04504, NCU03363, NCU04799,
NCU00919, NCU09349. These RNA-binding proteins were
identified by four separate microarray experiments including:
(1) an assay for circadian rhythms in the dark; (2) a light
entrainment response; (3) evidence for regulation by WCC
through a wc-1 knockout [17]. The signal for transcriptional
regulation is formally defined as:

S(t)

=µ0
[
Reg0 (t)

]m
+rm0

∑5

k=1,k 6=4

([
1
rk

]m
µk
[
Regk (t)

]m)
(2)

The concentrations Regk(t) (k ∈ [1], [5]): are the pro-
tein concentrations from 4 positive transcriptional activa-
tors (NCU07392, NCU01640, NCU06108, NCU07155) and
one transcriptional repressor NCU00045), which all bind to
DNA. The protein profiles of the activators were captured
using Westerns (see Materials and Methods).

Notice that Reg0(t) for WCC is treated as in the
previous work [6] to generate the WCC concentrations
because Western data were not available to measure the
concentration [WCC] over time. Instead this trajectory was
identified from an ensemble generated by a maximally infor-
mative sequence of next experiments (MINE) [17] involving
four microarray experiments and initialized with published
data [22], [30], [31] including Western data on WC-1.

The post-transcriptional signal affecting the ccg mRNA
stability is defined as:

Sp(t) =
∑11

k=6

([
1
rk

]m
µk
[
Regk (t)

]m) (3)

The concentrations Regk(t)(k ∈ [6], [11]): are the post-
transcriptional regulator concentrations. We used exactly the
same approach that we did in the previous paper [6] ( See
Materials and Methods/Part A to generate the concentrations
of these post-transcriptional regulators.

For this model, the weights (binding strengths) µk are
constrained only by µk ≥ 0 and

∑11
k=0,k 6=4 µk = 1, while

µ4 ≥ 0 has no upper bound. The reason for no upper bound is
that the 4th regulator is a repressor and acts without constraint
from the other regulators. The other regulators are relative to
WCC. The only constraint on µ4 is the same one imposed on
rate constants in general, such as Ac or Dcr. These weights
give the relative importance of control by a particular regula-
tor (with the exception of the repressor).

Regulators k=[1,11] are themselves putative ccg products,
assumed to be regulated and controlled by WCC, i.e., having
a fixed µ0 = 1. For any other, non-regulatory ccg, the µk, are
ensemble Monte Carlo variables, randomly varied to fit the
data.

II. MATERIALS AND METHODS
A. DATA
A total of 13 cultures in triplicate were grown for a constant
amount of time of 50 h. Samples varied for the amount of
time in the dark. The experiments were done in such a way
that the total growth time for each sample was kept constant
at 50 hours so as not to confound circadian rhythms with
growth effects. What varied was the amount of time in the
dark. For example, the zero time point was in the dark for
0 hours and in the light, for 50 hours. The 13th time point was
in the dark for 48 hours and in the light, 2 h. The average
amount of time in the light for cell synchronization was 26 h
before transfer to the dark. Total RNA was extracted from
each of the 13 cultures grown in the dark for varying amounts
of time. The total RNA of these 13 samples was probed with a
microarray chip as described previously [17]. RNA profiling
data on all 11,000 genes in this D/D experiment are publicly
available under Accession 13 [32].

B. PROTEIN EXTRACTION
Protein extraction was carried out with kit YT-015 (Invent
Biotechnologies, Inc. Eden Prairie, MN). The kit protocol
was modified to the following six step protocol: (1) On
dry ice, about 0.1 – 0.13 grams of previously ground up
and frozen N. crassa mycelia were collected into a 1.7 ml
microcentrifuge tube. This material was kept frozen until
step #2. (2) The pellet was washed with one ml of water
by centrifuging at top speed in a microcentrifuge for 3 min.
The supernatant was removed completely. (3) 100 mg protein
extraction powder was weighed out and added into the bottom
of the tube (avoiding powder on the wall of the tube). This can
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be done by weighing out the powder on a piece of folded wax
paper and pouring the powder to the bottom of the tube). (4)
∼25µl of denaturing buffer and 5µl of 7× Protease Inhibitor
Cocktail (‘‘cOmplete Mini, EDTA free’’ from Roche) were
added to the bottom of the tube. The material in the tube
was ground repeatedly with the pestle for about 2-3 min with
twisting force. (5) 180 µl protein extraction buffer (Denatur-
ing)/30 µl of 7× PIC used in step 2 above was added, and
grindingwas continued for about thirty seconds. The tubewas
capped and vortexed vigorously for 10 seconds. (6) The tube
was centrifuged at top speed for 3-4min. The supernatant was
transferred to a fresh tube (this is the extracted total protein).
If more protein was desired, steps 3-4 were repeated one
more time. Extracted protein was then aliquoted and stored
at −20C for future use.

C. ANTIBODY PRODUCTION
Polyclonal antibody production (PolyExpress Gold Package
SC1649) was carried out by GenScript USA, Inc. (860 Cen-
tennial Ave, Pascataway, NJ 08854) for gene products from
NCU00045, NCU01640 (rpn-4), NCU06106, NCU07155,
andNCU07392 (adv-1), all hypothesized to be transcriptional
regulators.

D. PROTEIN PROFILING OF TRANSCRIPTIONAL
REGULATORS
Western blots were performed to provide protein profiles on
four transcriptional regulators.

E. PROTEIN GELS
All gels were pre-cast from 4-20% ‘‘ExpressPlus
PAGE Gels’’ from ‘‘GenScript.’’ A ‘‘Qubit 2.0 Fluoreme-
ter’’ instrument as detailed previously [33] was used to
equalize loadings in each gel. They were run at 140 volts
for about 70 minutes in Tris-MOPS (SDS) running Buffer
also from ‘‘GenScript.’’ Protein Ladders used were either
‘‘BLUEstain’’ Protein Ladder from ‘‘Gold Biotechnology,
Inc. (St. Louis, MO) or ‘‘Precision Plus Protein ‘‘WesternC’’
Standards (from Bio-Rad, Hercules, CA).

F. GEL TRANSFER
Gel transfer was done using the ‘‘eBlot’’ electroblotter from
‘‘GenScript’’ following their protocol. Each blot was trans-
ferred to the provided ‘‘GenScript WestClear’’ Nitrocel-
lulose Membrane for 10 minutes. Following the transfer,
the Western membrane was processed using the ‘‘GenScript
ONE-HOURWestern Advanced Kit.’’ The protocol here was
modified from theirs and is described in the next section 2.7.

G. WESTERN BLOT WAS CARRIED OUT IN SIX STEPS:
(1) The Western blot was placed in 20 mls of Blocking
Reagent (10mls of Pretreat Solution A and 10mls of Pretreat
Solution B). This was placed on a shaker at room temperature
withmoderate agitation for aminimum of 15minutes. (2) The
Western was then transferred to a fresh 20 mls of Blocking
Reagent with 10µl of a respective Knock-Out protein sample

of the protein antibody of interest. The Knock-Out protein
sample was taken from an ‘‘Invent Technology Minute Pro-
tein Extraction’’ aliquot. The membrane was put back on the
shaker to block for about 1 hour. (3) The membrane was
then rinsed two times with the provided 1× Wash Solution
and then placed in a pre-made mixture (and incubated for
40-60 minutes) of 11-15 µl of Mixture 1 and 10mls of the
provided WB-2 Solution. Mixture 1 is 10 mls of the provided
WB-1 solution and about 0.1-0.5 of the Primary Antibody.
This too was put on the shaker with moderate agitation,
at RT for 60 minutes. (4) The membrane was then rinsed one
time w/15mls of Wash Solution, followed by three washes
of 15-20 minutes each in 20 mls of Wash Solution. Each of
these washes was done in a fresh container. (5) During the
last wash, the Chemiluminescent HRP Substrate was made
up and kept in the dark as much as possible. For our Westerns
we combined 800µl of the provided Reagent Awith 1,600µl
of the provided Reagent B. We vortexed to mix and stored
in a closed drawer until use in the next step. (6) At the
end of the last wash, the Western was taken to a dark room
with a ‘‘Safe Light’’ and processed with the Chem. HRP
Substrate made in Step 5. The Western was blotted semi-
dry on clean ‘‘Kimwipes’’ (Kimberly-Clark) and then placed
in a fresh container. The substrate was then used to slowly
cover the entire opposite side of the membrane. This allowed
a reaction with the Western for 5 minutes. It was the blotted
semi-dry again. It was then wrapped in ‘‘Saran Wrap’’ to be
exposed to chemiluminescence film (‘‘CL-X Posure Film,‘‘
Thermo Scientific). The amount of time exposed to film can
usually be determined visually based on the strength of the
chemiluminescence in total darkness. It varies from 5 seconds
to 20 minutes. The bands on Westerns were quantified using
IMAGEJ [34], and the HIS-3 band intensity at each time point
was used to normalize the band intensity of other proteins at
the same time point.

H. DETERMINING THE PROTEIN CONCENTRATIONS OF
THE POST TRANSCRIPTIONAL REGULATORS
We used the numerical methods described previously [6]
(See Materials and Methods/ Part A of the previ-
ous paper) to find the concentrations of Regk(t)(k ∈

[6], [11]); NCU08295, NCU04504, NCU03363, NCU04799,
NCU00919, NCU09349. We briefly recapitulate the prior
more detailed description. (1) The trajectory of WCC is
derived from earlier ensemble calculations [17]. (2) For a
given model proposal in Eqn (1) for each regulator con-
centration the protein trajectory of the regulator, [Regk(t)]
(k∈[6], [11]), was solved in closed form with initial condition
rk. (3) In this solution we matched the initial condition rk to
the time average of [Regk(t)] (k∈[6, 11]).

I. ENSEMBLE METHOD FOR DISCOVERING A
GENOMIC-SCALE NETWORK OF UNKNOWN TOPOLOGY
The method used for this project is detailed in previous
work [6] (See Materials and Methods/ Part B of this previous
paper) using a larger scale model that includes here extra
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FIGURE 2. The regulatory network with transcriptional control and 6 RNA
operons (in red) fits microarray RNA profiling data on 2,418 genes (in
black) over a 48 hour window with time points every four hours. The
2,418 genes are arranged in order of the similarity of their RNA profiles.
Data are taken from [17]. The model ensemble has 5 transcriptional
regulators (including one repressor) and 6 RNA-binding proteins, all
acting with a cooperativity of 4. The predictions fit the experimental data
within a standard error. The observed data are computed using
ln(yexp.

k,m )-< ψck > vs. time (t) and the predictions, computed using

<ln
(

Fk,m
(
t, θ, µ

))
> vs. time. Predictions for the other models and

associated plots as above resemble very closely this figure.

FIGURE 3. An average over 2,418 predicted mRNA profiles (in blue)
accurately predicts the observed average over 2,418 mRNA profiles.

post-transcriptional weights µk with a total of 22 variables
for each gene and total of 53,196 variables for all of the
2,418 putative clock-controlled genes. A brief recapitulation
of the method is now given. First, a putative ccg was chosen
at random from among 2,418 putative ccgs. Then a fair coin
was flipped to decide either to update the rate constants and

FIGURE 4. The fit (as measured by the chi-squared statistic) of the model
ensemble as a function of sweep converges quite quickly under the
Variable Topology Ensemble Method. A sweep is a visit on average to
each parameter once in the model. There are 53,196 parameters in the
model. In this model fitting the topology, the rates, and initial conditions
were varied. This equilibration curve is that leading to the model
ensemble shown in Fig 2.

initial conditions (i.e., θ−variables in Eqn. (1)) or the binding
strengths (µk) in Eqn.s (2-3). The θ−variables were updated
using a Metropolis-Hasting Algorithm with adjustable step-
width [6], [35]. The binding strengths were updated with
a measure-preserving transformation which also preserves
their sum of 1 (with the exception of the repressor). The
regulators are assumed to be only regulated by WCC. The
measure preserving transformation ensured that the number
of parameters remained constant during the Monte Carlo run.
The updates were sent to the GPU to solve the large system
of ODEs. Then a Metropolis update was performed on the
CPU. The Monte Carlo run was continued for∼40,000 equi-
libration sweeps followed by ∼40,000 accumulation sweeps
to generate the ensemble, where a sweep is a visit to each
parameter in the model once on average.

J. AN ENSEMBLE METHOD USING HETEROGENEOUS ODE
SOLVERS (ARK AND GQ) ON THE GPU
The system of ODEs described above can be solved using
an exact integral solution formula for solving the first order
linear ODEs described previously [6]. The subsystem of ordi-
nary differential equations model has two properties in term
of its solution:

1) It should be solved nearly 4 billion times during aMonte
Carlo run so that we have developed a fast ODE solver using
Gauss Quadrature integrator(GQ) with 100 integration points
to solve for the 2,418ODE subsystems in parallel on theGPU.
The accuracy of the solution is sufficient for our biological
problem [36].

2) The ODE solutions have a sudden change (stiff solution)
at the early time points. Thus, we need a special solver with
high accuracy and error control for this stiff solution, where
the GQ solver fails for such a case, so we developed an
Adaptive Runge Kutta(ARK) solver that runs on the GPU
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FIGURE 5. Western Blots of 4 regulators capture temporal profiles of
regulatory proteins. The level of each protein is shown in different lanes
for 0,4, . . . ,48 hours. Protein ladders are in the margins of each gel in
kiloDaltons (kDa). A full Western gel is shown for the protein of NCU07392
(adv-1) [38]. Band intensities were quantified using IMAGEJ [34]. The
HIS-3 protein from N. crassa is shown as a control (Cntrl).

in a parallel fashion to find the stiff part [5] of the solution.
In essence, using this ARK solver in parallel alone over the
whole interval [0 48] would take years of simulation while
using just GQ would not give an accurate solution due to
the stiffness problem, which occurs at the beginning of the
solution. As a consequence, we developed a heterogeneous
solver consisting of both solvers to maintain the required
speed and accuracy.

A K40 GPU (NVIDIA, Inc., Santa Clara, CA) was used
for the equilibration phase, and two K40 GPUs were used
for the accumulation phase with 2,418 threads on each
GPU divided into a thread block of size 32 threads to
solve for the system of ODEs described above, where each
system had the same mathematical form and represented
different putative clock-controlled genes with a different set
of parameters. Increasing the number of thread blocks per
streaming multiprocessor on the GPU and decreasing the
number of threads per block (32 threads per block), provided
more independent warps from other thread blocks when
one warp was stalled. To achieve the best possible speed,
the algorithm used registers on the GPU, which constitute the
fastest memory holder, to define our variables. Nonetheless,
to avoid the restriction that could happen from the excessive
use of registers, all constant data, for instance, the inter-
polation files and all of the ARK’s and GQ’s constants,

FIGURE 6. There is strong support for a regulatory network in which there
are 4 positive activators and one repressor in the transcriptional
component of the network, all acting as tetramers because the histogram
of chi-squared statistics of the best fitting model ensemble (in yellow) is
non-overlapping with those of the remaining model ensembles and
significantly different from those by Table 1. Western profiles of each
transcriptional activator were utilized in the fitting.

were defined in constant memory on the GPU. This code
organization showed the best performance among other code
organizations that were tested. The described ODE solver
used ARK during the stiff part of the ODE solution interval
and used GQ for the rest of the ODE solution to achieve
the required speed and accuracy. The software +_data in
this paper are deposited in sourceforge.net under at the
link: https://sourceforge.net/projects/vtensarkclock1/files/
PostTranscriptionalCode/?upload_just_completed=true
An interactive visualization of the network in Fig 8 is

provided in a supplement S1 Fig to this publication in
Cytoscape [37].

III. RESULTS AND DISCUSSION
A. COMPARISON OF THE REGULATORY MODEL TO
PROFILING EXPERIMENTS
The first step in the analysis was to examine how the new
regulatorymodel ensemble explainsmicroarray data obtained
every 4 hours over a 48 hour window in which N. crassa
cultures were shifted to dark conditions (D/D) (Materials and
Methods). Predictionswere derived as amodel average across
an ensemble of models (Fig 1) using a Variable Topology
Ensemble Method (VTENS) (See Materials and Methods).
There were two components to the model, the regulatory
topology (Fig 1A) and how each putative clock-controlled
gene is regulated (Fig 1B). Both components were identified
by a recently developed novel ensemble method VTENS
using Markov Chain Monte Carlo [6]. The temporal profiles
on mRNAs of 2,418 genes known to be circadian were com-
pared directly with those predicted by the model ensemble
in Fig 1. The network of 2,418 putative clock-controlled genes
fits to the experimental data using the ensemble method very
well and is assessed quantitatively in the next section using a
chi-squared goodness of fit statistic. In the surface in Fig. 2
two peaks and two valleys can be seen corresponding to
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TABLE 1. 20 replicate VTENS runs under 5 different regulatory hypotheses support the hypothesis that 4 transcriptional activators and 1 repressor is the
‘‘best’’ hypothesis. The presence/absence of a repressor and the Hill coefficients of regulators are varied.

TABLE 2. One-way analysis of variance on average χ2
ave in Table 1 across 5 model ensembles of regulation of a circadian network supports the

hypothesis that the model ensembles in Table 1 are significantly different in fit to the profiling data. The 5 model ensembles are listed in Table 1.

the circadian rhythms in mRNAs over 50 hours. An inter-
active display of the network is available in Cytoscape as a
supplement [37].

By collapsing the surface in Fig 2 down into the concen-
tration and time dimensions, the fit of the model ensemble
to RNA profiling data can be more simply examined. The
observed average of the 2,418 putative ccg mRNA profiles
are compared with those predicted by an average over all
2,418 predicted profiles in Fig 3. The resulting agreement is
comparable with that reported for the transcriptional network
alone (See Fig 8 in the previous paper) [6]. We conclude that
an ensemble of genetic networks predicts the mRNA levels
overall of 2,418 putative clock-controlled genes (model used
here where m=4, four positive regulators, a repressor and, six
post- transcriptional regulators).

B. MEASURING THE FIT OF THE MODEL ENSEMBLE TO
THE RNA PROFILING DATA
An ensemble of models fitting this RNA profiling data was
constructed by a particular form of Markov Chain Monte
Carlo called VTENS by allowing the model parameters (Fig
1) to vary over millions of proposals. The progress in the
fit of the model under this random walk is displayed and
converged quite rapidly (Fig 4). There were 31,000 data
points with an average (across models) of χ2

= 60, 597.
The average contribution to the χ2 per data point is 1.83,
which is better than the transcriptional network hypothesis
alone [6]. This is surprising given that 4 of the transcriptional
regulators had measured protein profiles via Westerns rather
than inferred protein profiles in earlier work [6]. The present
circumstances present a stronger test that the model is correct
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FIGURE 7. The best fitting model ensemble reasonably well predicts the combined RNA + Western profiles of all
11 regulators with some scatter. The best fitting model ensemble has one repressor and 11 activators all with Hill
cooperativities of 4. The blue predicted curve represents an average over the model ensemble. The grey and yellow
curves form a pointwise 95% confidence band about the average trajectory over the ensemble as computed from
2000 models in an accumulation run involving 40,000 sweeps for the best model.

by incorporating the protein profiling data into the model
assessment.

C. UNCOVERING THE REGULATORY TOPOLOGY BY
PROTEIN PROFILING OF THE TRANSCRIPTIONAL
REGULATORS
In previous work a variety of hypotheses arose about the
topology of the regulation.We speculated that one of the tran-
scriptional regulators could be a repressor while the remain-
ing transcriptional regulators could be activators. In addition,
the Hill cooperativity of these regulators needed exploration.
Varied hypotheses about the regulation were considered,
in which the presence or absence of a transcriptional repressor
varied and in which the Hill cooperativity of the transcrip-
tional regulators was allowed to vary.While the earlier results
suggested (Fig 11 in [6]) one favored hypothesis (4 activators
and 1 repressor each with Hill Coefficient of 4), among the
array of hypotheses about the regulatory network considered,
no single hypothesis could be selected with high probability
to provide a better fit to the profiling data. At that time
there were no Western data on the transcriptional regulators
available.

The Western profiles on all but one of the transcriptional
regulators is shown in Fig 5. The time point at 4 h was

problematic after 5 independent protein extractions. As a con-
sequence, in addition to loading samples with equal protein
concentrations (using the Qubit method as described in the
Materials and Methods), we normalized the band intensity
at each time point relative to the HIS-3 band intensity at
the same time point in Fig 5. An ensemble of models was
identified under each hypothesis shown in Fig 6, using the
four Western profiles of the transcriptional regulators (See
Materials and Methods). As can be seen, the hypothesis with
4 activators and 1 repressor all with Hill Coefficient of 4
is now strongly supported - the histogram of chi-squared
goodness of fit statistics across the ensemble of the best fitting
model (in yellow) is non-overlapping with the histograms
of other models and has a lower chi-squared goodness of
fit statistic. The limitation on this computational experiment
is that with a different Monte Carlo run a slightly different
distribution for the χ2 can arise, a distribution that is shifted
to the right (worse fit) or left (better fit). To overcome this
limitation we repeated the above experiment 20 times.

To assess the significance of the differences among dif-
ferent model ensembles in Fig 6, each VTENS run was
replicated 20 times (Table 1). As can be seen, the model with
one repressor and four activators and a cooperativity of 4
(what we will call the best model) remains the best model
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FIGURE 8. RNA operons are pervasive in their effects across functional categories in the transcriptome. A regulatory genetic network
for the five transcriptional regulators (WCC, NCU07392 (adv-1) [38], NCU01640 (rpn-4) [39], NCU06108, NCU07155), the six
post-transcriptional regulators (NCU08295, NCU04504, NCU0336, NCU04799, NCU00919, NCU09349) and the putative clock-controlled
genes. The triangle is used to denote the regulator controlling a particular functional category for genes and their encoded products.
The number on the triangle indicates how many annotated genes that are regulated by a particular regulator and participating in a
particular pathway or function (small blue ovals).

ensemble across all replicates. We conclude the use of the
Western profiles allows us to strongly discriminate between
different hypotheses about the regulatory network. An Anal-
ysis of Variance on the χ2 averages in Table 2 revealed that
the hypothesis with 4 activators and 1 repressor and a Hill
Coefficient of 4 was a significant improvement over the other
regulatory models.

D. DOES THE ‘‘BEST MODEL’’ WITH 6 RNA OPERONS +

TRANSCRIPTIONAL NETWORK OFFER A SIGNIFICANT
IMPROVEMENT OVER THE BEST TRANSCRIPTIONAL
NETWORK WITHOUT RNA OPERONS?
There are two possibilities for the structure of the clock
regulatory network. Smith et al. [39] identified 22 tran-
scription factors that were targets of WCC by ChIP-SEQ
in a light response only experiment. It is thus possible that
the clock network is a large flat transcriptional network.
An alternative hypothesis is that there is substantial post-
transcriptional control [6], [16]. We calculated the average
and standard error of the chi-squared goodness of fit values
from the histogram of chi-squared values under the hypothe-
sis of the best transcriptional network with 6 transcriptional
regulators for comparison with the histogram of chi-squared
values under the hypothesis of the best post-transcriptional
network with 12 regulators. Each histogram contained at least

40,000 chi-squared values for each ensemble. Under the
transcriptional network hypothesis there were four activa-
tors, one repressor, and WCC. Under the post-transcriptional
hypothesis there were 12 regulators. The mean chi-squared
under the former was 56,192 +/− 109, and under the latter,
60,597 +/− 76. A KS test of the two distributions of chi-
squared values was significantly different at P < 0.0001,
but this outcome is likely to change as Western profiles of
regulators are added, such as CSP-1 [40]. The maximum
difference between the cumulative distributions in the KS-test
was 0.1257875 [41].

A final test of goodness of fit was made by comparing the
observed profiles of the regulators versus the predictions of
the best fitting model ensemble (Fig 7). As can be seen the
combined RNA profiles and Western profiles was reasonably
well predicted with some scatter by the best model ensemble
with one repressor and 11 activators and a Hill cooperativity
of 4. The oscillations in the regulators under the best ensem-
ble are also apparent.

E. PREDICTING THE TARGET PROFILES AND TARGET
GENES OF RNA-BINDING PROTEINS.
In Table 3 the binding strengths of each RNA-binding pro-
tein were used to characterize their targets in the transcrip-
tome. All of the RNA-binding proteins examined (Table 3)
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TABLE 3. Regulator binding strength and target gene functions. The strength of regulator binding is computed by asking: what is the average of µ’s across
the 40,000 accumulation sweeps that is assigned to a group of genes that have the same function or pathway?

targeted genes connected with the ribosome or ribosome
biogenesis, amino acid biosynthesis, and glycerophospho-
lipid metabolism. Five of the six RNA-binding proteins tar-
geted meiosis and oxidative phosphorylation. The fact that
lhp-1 (NCU8295) and has-1 (NCU9349) encode proteins that
target ribosome related and ribosome biogenesis functions
comes as no surprise [25], [42]. The Has1p protein in S.
cerevisiae is the only DEAD box RNA helicase required
for 40S ribosome subunit biogenesis. It also plays a role
in 60S ribosome subunit biogenesis [43]. In S. cerevisiae
Lhp-1p targets specific mRNA populations as well as com-
ponents of rRNA processing, such as the U3 small nucleolar
RNA (snoRNA) associating with the 90S pre-ribosome [25].
These two RNA-binding proteins are also distinct in that they
have unique putative targets. The N. crassa protein LHP-1 is
predicted to target uniquely RNA polymerase functions and
mismatch repair, and the protein HAS-1 is predicted to tar-
get uniquely homologous recombination and 2-oxycarbolic
acid metabolism. As shown in Fig 8, the six inferred RNA
operons are pervasive in their functional effects. Only two
functional categories in Fig 8 escape the influence of RNA
operons, the proteasome functions and endocytosis. A full
interactive version of Figure 8 is available in Cytoscape as
a supplementary S1 Fig to this publication [37]. A zoomed-
out view of the regulatory network is provided by Cytoscape
in Fig 9.

What is also interesting is that the total number of tar-
gets predicted in the RNA operons is 850 mRNAs which
contrasts to the 1568 genes under transcriptional control.
This means each RNA operon in N crassa has on aver-
age 142 target genes. The range reported for the size of
RNA operons in S. cerevisiae is 40-220 genes [25], [26].
The introduction of the RNA operon hypothesis substantially
closes the gap between the 2,436 putative ccgs and those
that can be reasonably considered as part of a transcriptional
network.

FIGURE 9. The whole regulatory clock network of 2,418 genes was
reconstructed down to the single gene level in Cytoscape. The different
colored edges emanate from different transcriptional and
post-transcriptional regulators. The different clusters are labeled by their
regulator.

IV. CONCLUSION
With the introduction of RNA operons into the transcriptional
network for the clock we have substantially reduced the gap
between the known size of the clock network and that part
explainable by transcriptional control. Over 800 genes are
predicted to be part of 6 RNA operons in the clock network.
Two of these identified RNA operons have functional charac-
teristics similar to those in S. cerevisiae. The relevant putative
RNA-binding proteins are encoded by has-1 and lhp-1, both
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of which are involved in ribosome biogenesis [25], [42].
This mechanism of regulation may also be operational in
the clocks of other model systems. There is evidence of
RNA-binding proteins in mouse, such as Brf1 and Ccr4 [44],
and in Arabidopsis, such as dst1 [45], that are circadian in
expression. Some clock-output pathways have been identified
as targets of a RNA-binding protein LARK in the fly [46].
More recently, RNA-binding proteins, Cirbp and Rbm3, have
been found to be cold-induced and targeted clock-associated
genes [27]. The RNA operon hypothesis may be a general
mechanism by which the clock extends its influence in the
transcriptome [21].

In our previous work we established for the first time that
the clock controlled ribosome biogenesis in N. crassa [17].
This result was reconfirmed five years later in another model
system, the mouse [47]. What is striking about the RNA
operons identified by variable topology ensemble methods
(VTENS) is that all six RNA operons have a connection
to the ribosome or its biogenesis. In particular, the has-1
and lhp-1 target genes are connected with ribosome bio-
genesis (Fig 8). This raises the possibility of another post-
transcriptional mechanism for gene regulation operating in
the clock network. The master clock regulator WCC has the
ability to modulate the translation rate of any protein through
its control of ribosome biogenesis. In particular, there are
over 100 transcription factors that could be affected [48]. This
additional mechanism could easily explain how 2,436 genes
are part of the clock network, and this additional mechanism
can be addressed by modifying Fig 1B to account for this
mechanism and fitted by the VTENS methods introduced
here. Other mechanisms are also being considered, such as
transcription factors that are targets of those transcription
factors or RNA binding proteins in Fig 8. These other mech-
anisms can be tested with a similar framework to Fig 1 and
be evaluated by ensemble methods.

The construction of this larger regulatory network with
post-transcriptional control involved the development of sev-
eral new approaches to genetic network reconstruction. The
key idea to reconstruction of the regulatory network is the
supernet in Fig 1A. Each regulator is considered to be a
candidate regulator of each target gene. Each regulator has
a binding strength to each target. Ensemble methods are then
used to identify the binding strength of each regulator to a
target. The supernet is the key to the implementation of a
variable topology ensemble method of network identification
(VTENS) and resolving the character of regulation in the
clock network.

A second innovation needed for implementing VTENS on
a regulatory network with post-transcriptional control was the
use of a heterogeneous solver for specifying the dynamics
of the genetic network in Fig 1B. While the fast Gaussian
Quadrature (GQ) solver was sufficient in previous work for a
transcriptional network [6], GQ was not sufficiently accurate
here for VTENS using the RNA operons in Fig 1B. The GQ
solver had troubles near the zero time point, which can be
overcome by the use of the ARK solver near time 0 [5].

The VTENS method is broadly applicable to microar-
ray or RNA-seq data or amixture. During the ensemble fitting
the observed trajectories are assigned to different scale factor
classes to render profiling data from different methodologies
onto a common scale provided by the model. The scales
are automatically identified during the fitting process. Each
RNA or protein profile can be placed into its own scale-
factor class for data integration as in earlier ensemble meth-
ods [49]. The VTENS methodology is scalable to genomes,
such as the human genome, involving tens of thousands of
genes in a genetic network(see Fig 4 in [6]). When combined
with new ensemble tools of model-guided discovery, such
as MINE [50], these tools will provide for the simultaneous
choice of experiments and identification of genome-wide
wide regulatory mechanisms.

The use of VTENS allowed us to profile the function
of the RNA-binding proteins targeted (Table 3). There are
now strong predictions of what the regulators are regulating
(Fig 8, Fig 9, or interactive graphic supplement S1 Fig). Some
of the predictions are consistent with the known targets of
homologous RNA-binding proteins in S. cerevisiae. TheRNA
binding proteins are likely to be pervasive in their effects in
the clock network (Fig 8). We now have a path forward for
reconstructing on a genomic scale the regulatory mechanisms
at work in the clock network in particular and regulatory
networks for other complex traits in general. The tools here
will provide a new vista on the genomics of fungi [51].
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