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ABSTRACT A fast algorithm based on the gray code kernel (GCK) for computing the conjugate symmetric
sequency-ordered complex Hadamard transform (CS-SCHT) in a sliding window is presented. The proposed
algorithm computes the current projection value from the previously computed ones. In order to obtain
the peculiar computation order of the projection values, we construct the CS-SCHT matrix tree and also
introduce the α-related concept. The properties of the elements of the CS-SCHT matrix are also given
for deriving the GCK sliding CS-SCHT algorithm. The proposed algorithm only needs N/2+log2N − 2
(or log2N − 1) multiplications with j and 4N − 2 (or 2N − 1) real additions for complex (or real) input
data, which is more efficient than the block-based CS-SCHT and other existing sliding complex transform
algorithms, such as the radix-4 sliding CS-SCHT algorithm, sliding FFT algorithm, and sliding DFT
algorithm. A comparison of the proposed algorithm with other sliding transforms in terms of computation
time is also presented to validate the theoretical results.

INDEX TERMS Fast algorithm, conjugate symmetric sequency-ordered complex Hadamard transform, gray
code kernel, sliding algorithm.

I. INTRODUCTION
The discrete orthogonal transforms (DOTs), including
discrete Fourier transform (DFT), discrete cosine trans-
form (DCT), discrete Hartley transform (DHT), and
Walsh-Hadamard transform (WHT), play an important role
in the fields of digital signal processing, filtering and commu-
nications [1], [2]. Many fast algorithms have been developed
for the computation of DFT and WHT (e.g., [3]–[8]). In the
past two decades, special attention has been paid to the
definition of the complex Hadamard transforms and the asso-
ciated fast algorithms and applications [9]–[19]. For exam-
ple, Rahardja and Falkowski proposed a family of unified

complex Hadamard transforms (UCHTs) [9], which find their
applications inmultiple-valued logic design [10] and commu-
nications [11]. Aung et al. introduced the sequency-ordered
complex Hadamard transform (SCHT) [12], which has been
used for spectrum analysis [12], image watermarking [13],
asynchronous CDMA system [14] and image retrieval [15].
Two block-based algorithms, namely, the radix-2 decimation-
in-time (DIT) [12] and decimation-in-sequency (DIS) [16]
algorithms, have been developed for fast computation of
SCHT. More recently, based on the natural-ordered com-
plex Hadamard transform (NCHT) [17], Aung et al. intro-
duced a new transform named the conjugate symmetric
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SCHT (CS-SCHT) [18], which can be used as an alternative
to DFT in some applications that require lower computa-
tional complexity, such as spectrum estimation, since the
spectrum of CS-SCHT is more similar to that of DFT than
to those of other real transforms, such as WHT [6]–[8].
A fast block-based DIS algorithm was also reported in [18]
and [19]. Kyochi and Tanaka then proposed a general factor-
ization method for CS-SCHT [20]. Pei et al. [21] proposed
a conjugate symmetric discrete orthogonal transform, which
is a generalized version of CS-SCHT. The applications of
CS-SCHT to signal processing and image denoising were
presented by Jabeen et al. [22], [23].

When dealing with the spectrum of a nonstationary
process, such as a speech, radar, biomedical, or commu-
nication signal, we need to use the so-called sliding dis-
crete orthogonal transform (sliding DOT) [24]–[62]. Many
fast algorithms have been reported in the literature for
computing sliding DOTs. These algorithms can generally
be categorized into two types as follows: recursive meth-
ods [24], [25] and nonrecursive methods [26]–[62]. In the
recursive methods, the sliding DOTs are implemented by
frequency sampling structures. However, since the poles of
their corresponding recursive filters lie exactly on the unit
circle (or, in practice, close to the unit circle), these methods
are very sensitive to round-off errors, which may result in
filter instability [63]. The nonrecursive methods are more fre-
quently utilized. They include 1) the structures of the radix-2
and radix-4 fast algorithms, namely, sliding FFT [26]–[31],
sliding WHT [32]–[34], sliding SCHT [35], and sliding
CS-SCHT [36], [37]; and 2) the first-, second-, andN /4-order
shift properties of DOTs: sliding DFT [38]–[49], sliding DCT
[50]–[55], sliding DHT [56], [57], sliding discrete fractional
transforms [58], [59], and sliding WHT [60]–[62]. Recently,
special attention has been paid to the fast computation of
the sliding WHT [32]–[34], [60]–[62] due to the requirement
of real-time pattern matching in many applications, such as
video block motion estimation [62]. A fast algorithm for the
sliding WHT was proposed in [32], which decomposes a
length-N WHT into two length-N /2 WHTs plus 2N −2 addi-
tions with a memory size of N (log2N − 1),. This algorithm
was further improved by Ben-Artzi et al. [61] who proposed
the gray code kernel (GCK) algorithm, which requires 2N
additions and a memory size of 2N . Ouyang and Cham [33]
presented a more efficient algorithm for computing the slid-
ing WHT, which computes the length-N WHT from one
length-N /4 WHT and 3N/2 + 1 additions with a memory
size of 3N /2 for real input data. More recently, by using the
structures of the radix-2 and radix-4 DIS fast SCHT [12], [16]
andCS-SCHT algorithms [18], [19],Wu et al. proposed some
fast algorithms for computing the sliding SCHT [35] and
sliding CS-SCHT [36], [37].

The computational complexities of various sliding trans-
forms are shown in Table 5 of [37], from which we can see
that the computational complexity of sliding DFT [39], [40]
is higher than sliding FFT [26], [27] and the computa-
tional complexity of GCK sliding WHT [61] is higher than

radix-2 and radix-4 sliding WHTs [32]–[34]. Two questions
have then arisen: Does a GCK sliding CS-SCHT algorithm
exist in parallel with both sliding DFT algorithm and GCK
sliding WHT algorithm? If the answer is ‘‘yes’’, then is the
computational complexity of GCK sliding CS-SCHT still
higher than that of the radix-4 sliding CS-SCHT [37]? The
paper answers the two questions.

The contributions of the paper include: (1) A fast GCK slid-
ing CS-SCHT algorithm that is surprisingly more efficient
than the radix-4 sliding CS-SCHT [37] in terms of computa-
tional complexity. This phenomenon is opposite to the sliding
DFT case and the sliding WHT case; (2) As the GCK sliding
CS-SCHT algorithm calculates the current projection value
based on the previously computed ones, the computation
order of the projection value is very important. In this paper,
we find the computation order of the projection value and
it is very different from those of the sliding DFT and the
sliding WHT.

The paper is organized as follows. In Section II, preliminar-
ies regarding the sliding CS-SCHTs are given. The construc-
tion of the CS-SCHT matrix tree is presented in Section III.
We demonstrate some properties of the CS-SCHT matrix
in Section IV. The proposed sliding CS-SCHT algorithm
is described and a comparison of the results with those of
other algorithms are provided in Section V and Section VI,
respectively. Section VII concludes the paper.

II. PRELIMINARIES
In this section, we first give the generalized definition
of sliding DOT, and then give the definition of sliding
CS-SCHT.

Consider M input signal elements xi, where i =

0, 1, . . . ,M−1, which are divided into overlapping windows
of size N (M > N ), then, sliding DOT is defined as

yN (k, i) =
N−1∑
l=0

xi+lwlψN (k, l), (1)

where wl is a window function, and {ψN (k, l)} is an orthogo-
nal basis set. yN (k, i) represents the kth orthogonal transform
projection value for the ith window. Eq. (1) can also be
expressed as the following matrix-vector form

yN (i) = 9NWNxN (i), (2)

where

9N =


ψ(0, 0) ψ(0, 1) · · · ψ(0,N−1)
ψ(1, 0) ψ(1, 1) · · · ψ(1,N−1)
...

...
. . .

...

ψ(N−1, 0) ψ(N−1, 1) · · · ψ(N−1,N−1)

,
(3)

WN = diag
[
w0 w1 · · · wN−1

]
, (4)

xN (i) =
[
xi xi+1 · · · xi+N−1

]T
, (5)

yN (i) =
[
yN (0, i) yN (1, i) · · · yN (N − 1, i)

]T
, (6)

56030 VOLUME 6, 2018



J. Wu et al.: Fast GCK Algorithm for the Sliding CS-SCHT

where diag(.) denotes a diagonal matrix formed from its vec-
tor argument, T denotes the transpose operation,9N andWN
are orthogonal transform matrix and window matrix,
respectively,

Let wm be a rectangle windowing function, from (2), the
forward and backward sliding CS-SCHTs for
length-N = 2p, p ≥ 1, can be respectively defined as

yN (i) = HNxN (i), (7)

xN (i) =
1
N
HH
N yN (i), (8)

where HN is the order-N CS-SCHT matrix and the super-
script H denotes the Hermitian transpose operation. Similar
to (1), we can also express (7) as follows

yN (k, i) =
N−1∑
l=0

xi+lhN (k, l), (9)

where yN (k, i) represents the kth CS-SCHT projection value
for the ith window and hN (k, l) are the elements of HN [18]

hN (k, l) = (−1)
∑p−1

r=0 gr lr (−j)
∑p−1

r=0 fr lr ,

0 ≤ k, l ≤ 2p − 1 and p = log2 N , (10)

TABLE 1. Binary representations of gr and fr (N = 16).

where lr is the r th bit of the binary representation of the
decimal integer l, i.e., (l)10 = (lp−1, lp−2 . . . , lr . . . , l1, l0)2.
Since gr and fr are complicated, we explain them together
with an example for N = 16, which is shown in Table 1.
Note that gr and fr are shown in column 4 and column 8,
respectively. Column 2 expresses decimal k in binary form,
that is, (k)10 = (k3k2k1k0)2; column 3 obtains

(
k̃3k̃2k̃1k̃0

)
2

through bit reversal of (k3k2k1k0)2, that is,
(
k̃3k̃2k̃1k̃0

)
2
=

(k0k1k2k3)2; and column 4 obtains (g3g2g1g0)2, whose r th bit
value is gr , by finding the gray code of

(
k̃3k̃2k̃1k̃0

)
2
. Note

that gray code is a binary numeral system in which two
successive values differ in only one bit. c(k) in column 5 is
the decimal expression of

(
k̃3k̃2k̃1k̃0

)
2
. Then, c(k) is divided

by 2 to obtain column 6. Column 7 shows that d(k) is the
highest power of 2 that is not larger than c(k)/2; for example,

if c(k)/2 = 6, then 4 is the highest power of 2 that is not larger
than c(k)/2. Column 8 obtains (f3f2f1f0)2, whose r th bit value
is fr , through binary expression of decimal d(k).
From (10), we have

H1 = [1] , H2 =

[
1 1
1 −1

]
,

H4 =


1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j

 ,

H8 =



1 1 1 1
1 1 j j
1 j −1 −j
1 −1 −j j

1 1 1 1
−1 −1 −j −j
1 j −1 −j
−1 1 j −j

1 −1 1 −1
1 −1 j −j
1 −j −1 j
1 1 −j −j

1 −1 1 −1
−1 1 −j j
1 −j −1 j
−1 −1 j j


.

(11)

Let

HN =

[(
hrN (0)

)T
,
(
hrN (1)

)T
, . . . ,

(
hrN (N − 1)

)T]T
, (12)

H1/m
N =

[
hcN (0),h

c
N (1), . . . ,h

c
N (N/m− 1)

]
=

[(
h1/mN (0)

)T
,
(
h1/mN (1)

)T
, . . . ,

(
h1/mN (N − 1)

)T]T
,

m = 2, 4, 8, (13)

where hrN (k) and hcN (k), k = 0, 1, . . . ,N − 1, are the
kth row and kth column of the CS-SCHTmatrix, respectively,
and h1/mN (k), k = 0, 1, . . . ,N − 1, is the kth row of H1/m

N .
From (7), (9), and (12), we have

yN (k, i) = hrN (k)xN (i)

for k = 0, 1, . . .N − 1; i = 0, 1, . . . ,M − N ,

N = 2p, p ≥ 2, (14)

where M is the length of the input data sequence.
For the real input data, yN (k, i) satisfies the following

conjugate symmetry property:

yN (N − k, i) = y∗N (k, i), k = 1, 2, . . . ,N/2− 1, (15)

where the subscript ∗ denotes complex conjugation.
Specifically, the idea of GCK sliding CS-SCHT algorithm

is to compute yN (k ′, i+n) by using yN (k ′, i), yN (k, i+n) and
yN (k, i), where i+ n and i denote the current window and the
previous window, respectively. k ′ and k are sequency values
obeying k ′ 6= k and 0 ≤ k ′, k ≤ N − 1.
From (14), we have

yN (k ′, i) = hrN (k
′)xN (i)

yN (k, i) = hrN (k)xN (i)
yN (k ′, i+ n) = hrN (k

′)xN (i+ n)
yN (k, i+ n) = hrN (k)xN (i+ n)

(16)
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FIGURE 1. Tree structure for the CS-SCHT matrix construction

for k ′, k = 0, 1, . . .N − 1; i = 0, 1, . . . , M–N , N = 2p,
p ≥ 2.

From (16), we can see that if we want to express
yN (k ′, i + n) in terms of yN (k, i + n), the most import point
is to find the relation between hrN (k

′) and hrN (k). In order
to obtain this relation, we should first find how to construct
the CS-SCHT matrix in row format, which is shown in the
following Section III.

III. THE CONSTRUCTION OF CS-SCHT MATRIX TREE
In [18], Aung et al. proposed a decomposition method
for the CS-SCHT matrix. Wu et al. [36], [37] derived a
new relationship between the CS-SCHT and WHT matrices.
In this section, we present a novel method for constructing
the CS-SCHT matrix, which is described in the following
theorem.
Theorem 1: The CS-SCHT matrix can be constructed by

hrN (k)

=


[
1 1

]
⊗ hrN/2(k/2), k = 0, 2, 4, 6, . . . ,N − 2;[

1 −1
]
⊗ h1/2N (k) , k = 1, 3, 5, 7, . . . ,N − 1;

(17)

h1/2N (k)

=



[
1 j

]
⊗ h1/4N (k) ,

k = 1, 5, 9, 13, . . . ,N − 7,N − 3;[
1 −j

]
⊗ h1/4N (k) ,

k = 3, 7, 11, 15, . . . ,N − 5,N − 1;

(18)

h1/4N (k)

=



[
1 1

]
⊗


h1/4N/2 ((k + 1)/2) ,

k = 1, 9, 17, . . . ,N − 7;

h1/4N/2 ((k − 1)/2) ,

k = 7, 15, 23, . . . ,N − 1;

[
1 −1

]
⊗


h1/4N/2 ((k + 1)/2) ,

k = 5, 13, 21, . . . ,N − 3;

h1/4N/2 ((k − 1)/2) ,

k = 3, 11, 19, . . . ,N − 5;

(19)

where ⊗ is the Kronecker product.

The proof of Theorem 1 is given in Appendix A. The
tree structure of the order-8 CS-SCHT matrix construction
is shown as an example in Fig. 1. In the CS-SCHT matrix
tree, for the length-N = 2p CS-SCHT, we have p + 1 layers
nodes, which we call the 0th, 1th, . . . , mth, . . . , pth nodes,
respectively. The values αm ∈ {1,−1, j,−j} are shown on
the left- or right-hand side of the arrows, which are between
the mth and (m+1)th nodes.
From Theorem 1 and Figure 1, we can see that hrN (k

′) is
related to hrN (k) only for some specific k ′ and k . How to find
these k ′ and k?
Similarly to [61], with some modifications, we first intro-

duce some definitions that are used in Section IV.
Definition 1: The sequence α = α1, α2, . . . , αp, with

αi ∈ {+1,+j,−1,−j}, that uniquely defines a kernel hrN (k)
is called the α-index of hrN (k), k = 0, 1, . . . ,N − 1.
Definition 2: Two kernels hrN (k

′) and hrN (k), for k
′, k =

0, 1, . . . ,N − 1 and k ′ 6= k , are α-related if their α-indices
differ in only one value.
Definition 3: An ordered set of kernels hrN (k), for k =

0, 1, . . . ,N − 1, that are consecutively α-related form a
sequence of Gray Code Kernels (GCKs). The sequence is
called a Gray Code Sequence (GCS).
In order to express more explicitly the α-related relation

between hrN (k
′) and hrN (k), which are the row vectors of

CS-SCHT matrix HN , we use hN (k, l) in (10), which are
the elements of CS-SCHT matrix HN . Some of their useful
properties are reported in the following section.

IV. PROPERTIES OF hN (k, l )
In this section, we describe all the properties of hN (k, l), for
k, l = 0, 1, . . . ,N−1. The relation between hN (k ′, l+n) and
hN (k ′, l), hN (k, l), hN (k, l + n) exists only for some specific
k ′ and k to be determined. Let us take N = 16 for example,
from Eq. (10) and Table 1, we can see that k , especially its
binary expression (k3k2k1k0)2, is one-to-one correspondent to
the binary expression (g3g2g1g0)2 and (f3f2f1f0)2. Therefore,
the problem of finding some special k ′ and k is convert to
finding some special cases of gr and fr shown in (10).

First, we find the relationships of the corresponding gr
(or fr ) for some special values of k . We mainly consider two
relationships:
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1) The relationships of gr (or fr ) between k = 0 and k =
1, 2, 4, . . . ,N /4, N /2, N − N /4, . . . , N − 4,N − 2,N − 1;
2) For other values of k , we focus on those that have the

same value as fr and for which the values of gr satisfy the
consecutive GCS.
a) When k is odd, we choose k to have the same value as fr,

while the corresponding values of gr constitute a consecutive
GCS in the following order in the computation of hN (k, l):

1→ N − 1→ 3→ N − 3→ 5

→ N − 5→ · · · → N/2− 1→ N/2+ 1; (20)

Let us consider N = 16, for example. The corresponding
values of gr constitute a consecutive GCS:

1100→ 1000→ 1010→ 1110→ 1111

→ 1011→ 1001→ 1101

The α-indices of the corresponding hrN (k) also constitute a
consecutive GCS:

{1, 1, j,−1} → {1, 1,−j,−1} → {1,−1,−j,−1}

→ {1,−1, j,−1} → {−1,−1, j,−1}

→ {−1,−1,−j,−1} → {−1, 1,−j,−1} → {−1, 1, j,−1} .

b)When k is even, we choose k to have the same value as fr,
while the corresponding values of gr constitute a consecutive
GCS, in the following order, in the computation of hN (k, l):

2→ N − 2→ 6→ N − 6
→ · · · → N/2− 2→ N/2+ 2

4→ N − 4→ 12→ N − 12
→ · · · → N/2− 4→ N/2+ 4
· · ·

N/4→ 3N/4
N/2.

(21)

Note that each row is computed separately. Let us again
consider the case where N = 16. The corresponding values
of gr constitute three consecutive GCSs:

0110→ 0100→ 0101→ 0111
0011→ 0010
0001.

The corresponding α-indices of hrN (k) also constitute three
consecutive GCSs:

{1, j,−1, 1} → {1,−j,−1, 1}

→ {−1,−j,−1, 1} → {−1, j,−1, 1}
{j,−1, 1, 1} → {−j,−1, 1, 1}
{−1, 1, 1, 1} .

By combining (20) and (21), we can continuously compute
hN (k, l) using the following order of k:

0→ 1→ N − 1→ 3→ N − 3→ 5→ N − 5
→ · · · → N/2− 1→ N/2+ 1

0→ 2→ N − 2→ 6→ N − 6
→ · · · → N/2− 2→ N/2+ 2

0→ 4→ N − 4→ 12→ N − 12
→ · · · → N/2− 4→ N/2+ 4
· · ·

0→ N/4→ 3N/4
0→ N/2.

(22)

Note that the order of k is determined by the order of the
consecutive GCS of gr .
From (22), we find the order of k ′ that may allow comput-

ing hN (k ′, l) from hN (k, l) for all the k ′ = 0, 1, . . . ,N−1. Let
us take the first row of (22) for example, we should compute
hN (1, l) from hN (0, l), and then compute hN (N − 1, l) from
hN (1, l), and then compute hN (3 l) from hN (N −1, l), and so
on. However, there are still two questions left:

The first one is: are there any relations between hN (1, l)
and hN (0, l), between hN (N − 1, l) and hN (1, l), between
hN (3, l) and hN (N − 1, l)? If the answer is yes, then, we can
compute hN (k ′, l) from hN (k, l) by using the order of k
shown in (22) and thus compute hN (k, l) for all indexes k =
0, 1, . . . ,N − 1 in sequency domain.
The second question is that from (22), besides the relation

between hN (k ′, l) and hN (k, l), what are the relations between
hN (k ′, l + n) and hN (k ′, l)? Once they are known, we can
implement the sliding process in time domain.

In order to deal with the above two questions, we derive the
following three properties. The first question can be solved by
Property 1 and Property 2, and the second one can be solved
by Property 3.
Property 1:

(a) hN (0, l) = 1; (23-1)
(b) hN (N/2, l) = (−1)l; (23-2)
(c) hN (k, l) = jbl/nc, k = N/(4× n),

n = 1, 2, 4, 8, . . . ,N/4; (23-3)

Property 2:

hN (k + (N − mN/(2n)) , l)
= (−1)bl/nchN (k, l) ,

k = (m− 1)N/(4n)+ 1, (m− 1)N/(4n)
+ 2, . . . , (m+ 1)N/(4n)− 1;

m = 1, 3, 5, 7, . . . , 2n− 1; n = 1, 2, 4, . . . ,N/8, N/4.
(24)

It can be deduced from (24) that

hN (N − k, l) = (−1)bl/nchN (k, l) , k = mN/(4n);
m = 1, 3, 5, 7, . . . , 2n− 3, 2n− 1;
n = 1, 2, 4, . . . ,N/8,N/4. (25)
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FIGURE 2. Relationship figure of N = 4, 8, 16, 32.

Property 3: The relationship between hN (k, l+n) and
hN (k, l) for l ∈ [0, n−1]∪ [2n, 3n−1] ∪ . . .∪ [N −2n,N −
n − 1], and the relationship between hN (k, l + N − n) and
hN (k, l) are given by

hN (k, l + n)
= (−1)(m−1)/2 hN (k, l),
k = (m− 1)N/(4n)+ 1, . . . ,mN/(4n)− 1;
m = 1, 3, 5, . . . , 2n− 1; n = 1, 2, 4, . . . ,N/8

(26-1)
hN (k, l + n)
= − (−1)(m−1)/2 hN (k, l),
k = mN/(4n)+ 1, . . . , (m+ 1)N/(4n)− 1;
m = 1, 3, 5, . . . , 2n− 1; n = 1, 2, 4, . . . ,N/8

(26-2){
hN (k, l + n) = jmhN (k, l),
hN (k, l + N − n) = (−j)m hN (k, l),
k = mN/(4n);
m = 1, 3, 5, . . . , 2n− 1; n = 1, 2, 4, . . . ,N/8,N/4

or m = 2, 4, 6, . . . , 2n− 2; n = N/4 (26-3)

The proofs of Properties 1-3 are given in Appendix B.

V. GRAY CODE KERNEL ALGORITHM
FOR SLIDING CS-SCHT
In this section, we present a GCK algorithm for computing
the sliding CS-SCHT, that is, computing yN (k ′, l + n) from
yN (k ′, l), yN (k, l + n), and yN (k, l). From (16), we can see
that the relations between yN (k ′, l + n) and yN (k ′, l) can
be derived from hN (k ′, l + n) and hN (k ′, l); the relations
between yN (k ′, l) and yN (k, l) can be derived from hN (k ′, l)
and hN (k, l). Note that the properties of hN (k, l) are shown
in Section IV.

In this section, we show that yN (k ′, l + n) can be com-
puted by the following three Theorems. Theorem 2 for-
mulates the relationship between the 0th row and kth row
(k = 1, 2 . . . ,N /4). Theorem 3 formulates the relation-
ships between conjugate rows; that is, the kth row and
(N-k)th row. Theorem 4 formulates other relationships that
cannot be expressed by Theorem 2 or 3.
Theorem 2 (The 0th Row):

(a) yN (0, i)−yN (0, i+1) = yN (N/2, i)+ yN (N/2, i+ 1);

(27-1)

(b) yN (0, i)− yN (0, i+ N/(4k))

= yN (k, i)− jyN (k, i+ N/(4k))

for k = 1, 2, 4, . . . ,N/8,N/4. (27-2)

Theorem 3 (Conjugate Row):

yN (k, i)− jmyN (k, i+ n)

= yN (N − k, i)+ jmyN (N − k, i+ n),

for k = mN/(4n), m = 1, 3, 5, . . . , 2n− 1;

n = 1, 2, 4, . . . ,N/8,N/4 (28)

Theorem 4 (Other Relationships):

(a) yN (k, i)− (−1)(m−1)/2 yN (k, i+ n)

= yN (k + (N − mN/(2n)), i)

+ (−1)(m−1)/2 yN (k + (N − mN/(2n)), i+ n),

for k = (m− 1)N/(4n)+ 1, . . . ,mN/(4n)− 1,

m = 1, 3, 5, . . . , 2n− 1; n = 1, 2, 4, . . . ,N/8

(29-1)

(b) yN (k, i)+ (−1)(m−1)/2 yN (k, i+ n)

= yN (k + (N − mN/(2n)), i)

− (−1)(m−1)/2 yN (k + (N − mN/(2n)), i+ n),

for k = mN/(4n)+ 1, . . . , (m+ 1)N/(4n)− 1,

m = 1, 3, 5, . . . , 2n− 1; n = 1, 2, 4, . . . ,N/8

(29-2)

The proofs of Theorems 2-4 are given in Appendix C. Fur-
thermore, the proof of Theorems 2 utilizes Property 1; the
proof of Theorems 3 utilizes Properties 1-3; the proof of
Theorems 4 utilizes Properties 2 and 3.
To visualize clearly the relationships in (27)-(29) between

the rows, we provide in Figure 2 some examples for N = 4,
8, 16, 32. In Figure 2, i denotes the ith row, and a line between
two numbers indicates that there is a relationship between the
two corresponding rows. The arrow indicates the direction of
computation that we have chosen. The paths indicate that all
the rows have relationships between each other. However, not
all of the relationships should be exploited in the following
computation. For example, (29-1) is not used in our com-
putation. The paths with arrows indicate that we exploit the
relationship. The paths without arrows indicate that we do not
use the relationship.
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To simplify the expression of our sliding CS-SCHT algo-
rithm, we should change the expression forms of (28)
and (29-2).

Eq. (28) is equivalent to

yN (N − k, i)+ jk/k0yN (N − k, i+ N/(4k0))

= yN (k, i)− jk/k0yN (k, i+ N/(4k0)),

k = k0, 3k0, 5k0, . . . ,N/2− k0;

k0 = 1, 2, 4, 8, . . . ,N/8,N/4 (30)

The following equation can be derived from Eq. (29-2),

yN (k + 2k0, i)+ (−1)(m−1)/2 yN (k + 2k0, i+ N/(8n))

= yN (N − k, i)− (−1)(m−1)/2 yN (N − k, i+ N/(8n)),

k = k0, 3k0, 5k0, 7k0, . . . ,N/2− 3k0;

n = 1, 2, 4, 8, . . . ,N/8; k0 = 1, 2, 4, 8, . . . ,N/8;

m = (k + k0)/(2n), and m is positive odd integer (31)

The proofs of (30) and (31) are given in Appendixes D and E,
respectively.

In the process of computation, we choose the 0th projec-
tion as the starting point, and then compute as many other
projections as possible. From the order of k in (22), we can
calculate yN (k, i), for k = 1, 2, 3, . . . ,N −1, of the length-N
CS-SCHT from yN (0,i) as follows:

yN (0, i)
+k0
−−−−→

T2
yN (k0, i)

+(N−2k0)
−−−−→

T3
yN (N − k0, i)

−(N−4k0)
−−−−→

T4
yN (3k0, i)

+(N−6k0)
−−−−→

T3
yN (N − 3k0, i)

−(N−8k0)
−−−−→

T4
yN (5k0, i)

+(N−10k0)
−−−−→

T3
yN (N − 5k0, i)

· · · · · ·

+10k0
−−−−→

T3
yN (N/2+ 5k0, i)

−8k0
−−−−→

T4
yN (N/2− 3k0, i)

+6k0
−−−−→

T3
yN (N/2+ 3k0, i)

−4k0
−−−−→

T4
yN (N/2− k0, i)

+2k0
−−−−→

T3
yN (N/2+ k0, i); k0 = 1, 2, 4, . . . ,N/8;

yN (0, i) −−−−→
T2

yN (N/4, i)−−−−→
T3

yN (3N/4, i);

yN (0, i) −−−−→
T2

yN (N/2, i). (32)

Let us take N = 8 for example. The computation order is as
follows:

y8(0, i)
+1
−−−−→

T2
y8(1, i)

+6
−−−−→

T3
y8(7, i)

−4
−−−−→

T4
y8(3, i)

+2
−−−−→

T3
y8(5, i);

y8(0, i)−−−−→
T2

y8(2, i)−−−−→
T3

y8(6, i);

yN (0, i)−−−−→
T2

yN (4, i).

(33)

The pseudocode of the algorithm is shown in Table 2, and the
computation details of Length-4 and Length-8 CS-SCHT are
shown in Table 3. The whole process of deriving the GCK

TABLE 2. Pseudocode of the proposed GCK sliding CS-SCHT algorithm.

sliding CS-SCHT algorithm for N = 8 is also given in
supplement document for understanding the algorithm more
intuitively.

VI. COMPLEXITY ANALYSIS AND COMPARISON RESULTS
The computational complexity of the proposed algorithm is
analyzed as follows:

1. Additions: For eachwindow in the computation of (32),
we need 4 additions for a complex signal and 2 addi-
tions for a real signal. Thus, we need a total of 4N
additions for a complex signal and 2N additions for a
real signal for computing all k values of yN (k, i+N /4)
from yN (k, i), for k = 0, 1 . . . ,N − 1.

2. Multiplication with j: For a complex signal, (27-1) is
used only once in the computation of (32), (27-2) is
used log2N − 1 times, and Theorem 3 is used N/4 +
N/8 + . . . + 2 + 1 = N/2 − 1 times. Therefore,
N /2+log2N − 2 multiplications with j are required.
Note that Theorem 4 does not require multiplication
with j. For a real signal, because yN (k, i) satisfies the
conjugate symmetry property (15), there is no need to
apply Theorem 3 in (32). Therefore, only log2N − 1
multiplications with j are required. The GCK method
requires only two signal vectors to be stored in mem-
ory; therefore, it needs 4N words of memory for a
complex signal and 2N words of memory for a real
signal.

A. COMPARISON OF THE PROPOSED ALGORITHM WITH
SOME EXISTING SLIDING ALGORITHMS IN TERMS OF
COMPUTATIONAL AND MEMORY COMPLEXITIES
In [35]–[37], we provided a detailed comparison of the
radix-2 and radix-4 sliding SCHTs and radix-4 sliding
CS-SCHT with sliding FFT, sliding DFT, and sliding WHT
in terms of computational complexity. Therefore, in this
paper, we only compare with the sliding complex Hadamard
transform algorithms. The comparison results are shown
in Table 4. The proposed GCK algorithm reduces signifi-
cantly the number of real additions compared to the block
CS-SCHT algorithm [18], [19], but its memory require-
ment is twice as large. The proposed algorithm is of
lower computational complexity than the radix-4 sliding
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TABLE 3. Fast GCK algorithm for length-4 and length-8 CS-SCHTs. T2, T3, and T4 indicate the use of Theorem 2, Theorem 3 and Theorem 4, respectively.

TABLE 4. The computational and memory complexities of the proposed GCK algorithm, radix-4 sliding CS-SCHT algorithm [36], [37], block-based
CS-SCHT algorithm [18], [19], sliding FFT algorithm [26], [27], and sliding DFT algorithm [39], [40]. Muls(j) denotes the number of multiplications by j , Adds
denotes the number of real additions, and Me denotes the size of the memory (in words). Superscripts CS and RCS denote CS-SCHT and Real CS-SCHT,
respectively.

CS-SCHT [36], [37], sliding FFT [26], [27], and the sliding
DFT [39], [40]. The proposed algorithm is of lower mem-
ory complexity than the radix-4 sliding CS-SCHT [36], [37]
and the sliding FFT [26], [27]. For comparison purposes,
Table 4 lists the numbers of multiplications with j and real
additions.

B. COMPARISON OF THE PROPOSED ALGORITHM WITH
SOME EXISTING SLIDING ALGORITHMS IN TERMS OF
COMPUTER RUN TIME
In this section, we compare the computer run time of the pro-
posed algorithm with those of other similar sliding complex
transform algorithms, including the radix-4 sliding CS-SCHT
algorithm [36], [37], the sliding FFT algorithm [26], [27]
and the sliding DFT algorithm [39], [40]. These algorithms
have been implemented in the C++ programming lan-
guage and executed on a Thinkpad T440 machine with
an Intel Core I5-6360U 2.00 GHz CPU and 8 GB RAM.
The run time of these algorithms have been calculated
using GCC complier version 4.2.1. The operating system is
macOS 10.12.3.

FIGURE 3. The audio data used in the experiment.

Figure 3 shows the experiment data, that is, a piece of audio
signal consisting of M = 32000 samples. The audio signal
is then divided into overlapping windows of size N = 16,
and we obtain M − N + 1 length-N signals, which are
then subject to various sliding complex transform algorithms.
The time shown in the right-hand side of Fig. 4 represents
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FIGURE 4. Comparison of the computer run time (ms) of the proposed
GCK CS-SCHT algorithm with those of the radix-4 sliding
CS-SCHT algorithm [36], [37], sliding FFT algorithm [26], [27], and sliding
DFT algorithm [39], [40] on an Intel core I5 CPU using the GCC compiler.

the average over 100 repeated executions of the algorithm.
According to this figure, the proposed GCK CS-SCHT algo-
rithm requires 10.3% less time compared to the radix-4 slid-
ing CS-SCHT algorithm [36], [37], 33.3% compared to the
sliding FFT algorithm [26], [27], and 28.1% compared to the
sliding DFT algorithm [39], [40].

Note that the results show that there are some fluctuations
in the computation time. Since we use single-threaded compi-
lation, therefore, we think the reason is that the computation
time is sensitive to the CPU cache. The 100 experiments are
executed automatically by batch shell script and the time of
each experiment is less than 270 ms, therefore, the process
scheduling and switching are frequent and CPU cache pages
are frequently paged out.

VII. CONCLUSION
In this paper, we have presented a fast gray code kernel
algorithm for computing the sliding CS-SCHT. The proposed
algorithm computes the current projection value from the pre-
viously computed ones, where the peculiar computation order
is obtained by using the α-related concept in the constructed
CS-SCHT matrix tree. Then, the GCK sliding CS-SCHT
algorithm is derived by using the properties of the elements
of the CS-SCHT matrix. The arithmetic complexity order of
the proposed algorithms is N , and improvement by a factor
of log2N is achieved over the block-based algorithm for the
length-N CS-SCHT. The proposed algorithm is also more
efficient than that of other sliding complex transforms such
as the radix-4 sliding CS-SCHT algorithm, the sliding FFT
algorithm and the sliding DFT algorithm.

APPENDIX A
PROOF OF THEOREM 1
In this appendix, we provide the proof of Theorem 1. First,
we present some basic concepts. Let k be an integer that is
less than N = 2p. Its binary representation is

k =
p−1∑
r=0

kr2r . (A1)

Let G = (gp−1, gp−2, . . . , g0) and F = (fp−1, fp−2, . . . , f0),
where gr is a binary gray code of the bit reversal of kr and
fr is the r th binary bit of the highest power of 2 in c(k)/2,
where c(k) is the decimal number that is obtained through a
bit-reversed conversion of the decimal k . Then, we have

fs =


0, if s = p− 1
1, if s = p− 2− t
0, otherwise,

(A2)

where t is the minimal value between 0 and p − 2 such that
kt = 1.

gp−1 = k0, gp−r = (kr−1 + kr−2) mod 2, for 2 ≤ r ≤ p.

(A3)

Proof of (17): The elements of hN (k) are given by

hN (k, l) = (−1)G•L(−j)F•L = (−1)
∑p−1

r=0 gr lr (−j)
∑p−1

r=0 fr lr .

(A4)

If k is even, using (A1), we have

k =
p−1∑
r=1

kr2r . (A5)

It can be deduced from (A2) and (A3) that

gp−1 = fp−1 = 0. (A6)

For 0 ≤ l ≤ N/2− 1, we have

hN (k, l + N/2)

= (−1)
∑p−1

r=0 gr (l+N/2)r (−j)
∑p−1

r=0 fr (l+N/2)r

= (−1)gp−1 (−j)fp−1 (−1)
∑p−1

r=0 gr lr (−j)
∑p−1

r=0 fr lr

= hN (k, l). (A7)

Letting k ′ = k/2, the binary representation of k ′ is

k ′ =
p−2∑
r=0

kr+12r and k ′p−1 = 0. (A8)

The elements of hN/2(k ′) are given by

hN/2(k ′, l) = (−1)
∑p−2

r=0 g
′
r lr (−j)

∑p−2
r=0 f

′
r lr , (A9)

where

g′p−2 = k1, g′p−r = (kr−1 + kr−2) mod 2, for 3 ≤ r ≤ p.

(A10)

Because

gp−1 = 0;

gp−2 = (k1 + k0) mod 2 = k1;

gp−r = (kr−1 + kr−2) mod 2, for 3 ≤ r ≤ p. (A11)

Comparing (A10) with (A11), we obtain

g′r = gr , for 0 ≤ r ≤ p− 2. (A12)
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In addition, we can easily verify the following relationship:

f ′r = fr , for 0 ≤ r ≤ p− 2. (A13)

Therefore,

hN/2(k ′, l) = hN (k, l), for 0 ≤ l ≤ N/2− 1. (A14)

Combining (A7) and (A14) yields the first equation in (17).
If k is odd (i.e., k0 = 1), we have

gp−1 = 1 and fp−1 = 0. (A15)

It can be easily verified that

hN (k, l + N/2) = −hN (k, l). (A16)

Moreover, using the definition of H1/2
N , we obtain

h1/2N (k, l) = hN (k, l) , for 0 ≤ l ≤ N/2− 1. (A17)

Combining (A16) and (A17) yields the second equation
in (17). �
Proof of (18): For k = 4n+ 1, 0 ≤ n ≤ N/4− 1, we have

k0 = 1 and k1 = 0. (A18)

Thus,

gp−2 = 1

fp−2 = 1 and fr = 0 if r 6= p− 2. (A19)

Using (A17), for 0 ≤ l ≤ N/4− 1, we have

h1/2N (k, l + N/4)

= hN (k, l + N/4)

= (−1)gp−2 (−j)fp−2 (−1)
∑p−1

r=0 gr lr (−j)
∑p−1

r=0 fr lr

= jhN (k, l) = jh1/2N (k, l) . (A20)

Moreover,

h1/4N (k, l) = h1/2N (k, l) for 0 ≤ l ≤ N/4− 1. (A21)

Combining (A20) and (A21) yields the first equation of (18).
For k = 4n+ 3, 0 ≤ n ≤ N/4− 1, we have

k0 = k1 = 1. (A22)

Thus,

gp−2 = 0

fp−2 = 1 and fr = 0 if r 6= p− 2. (A23)

We can deduce that

h1/2N (k, l + N/4) = −jh1/2N (k, l) . (A24)

Using (A21) and (A24), we obtain the second equation
of (18). �
Proof of (19): The proof of (19) is similar to those of (17)

and (18); the detailed derivation is omitted here.

APPENDIX B
PROOFS OF PROPERTIES 1-3
Proof of Property 1: (23-1) is easily to obtain from (10).

The proofs of (23-2) and (23-3) are as follows.
Let k = N/2m = 2p−m for 2≤ m ≤ p. From (A2), we have

fm−2 = 1 and fr = 0 if r 6= m− 2, (B1)

and

gm−1 = gm−2 = 1 and gr = 0, otherwise. (B2)

Using (B1) and (B2), we obtain

hN (N/2m, l) = (−1)lm−1+lm−2 (−j)lm−2 = j
⌊
l/2m−2

⌋
, (B3)

where bxc denotes the lower integer part of x. The proof is
complete. �
Proof of Property 2: Let n = 2s for s = 0, 1, . . . , p − 2,

m = 2t −1 for t = 1, 2, . . . , s, and k ′ = k+ (N −mN/(2n)).
We have

N − mN/(2n) = 2p − (2t − 1)2p−s−1

= 2p−s−1 +
p−1∑

r=p+t−s−1

2r . (B4)

For (m− 1) N4n + 1 ≤ k ≤ (m+ 1) N4n − 1, we obtain

(2t − 2)2p−s−2 + 1 ≤ k ≤ 2t2p−s−2 − 1, (B5)

or equivalently,
p+t−s−3∑
r=p−s−1

2r+1≤k≤
p+t−s−3∑
r=0

2r =
p−s−2∑
r=0

2r +
p+t−s−3∑
r=p−s−1

2r .

(B6)

Letting k = (kp−1, kp−2, . . . , k0), from (B8), we obtain

kr =


kr , if 0 ≤ r ≤ p− s− 2
1, if p− s− 1 ≤ r ≤ p+ t − s− 3
0, if p+ t − s− 2 ≤ r ≤ p− 1,

(B7)

that is,

k =
p−s−2∑
r=0

kr2r +
p+t−s−3∑
r=p−s−1

2r , (B8)

and there exists at least one r0 between 0 and p− s− 2 such
that kr0 = 1.
On the other hand,

k ′ =
p−s−2∑
r=0

kr2r +
p+t−s−3∑
r=p−s−1

2r + 2p−s−1 +
p−1∑

r=p+t−s−1

2r

=

p−s−2∑
r=0

kr2r +
p−1∑

r=p+t−s−2

2r =
p−1∑
r=0

k ′r2
r , (B9)

where

k ′r =


kr , if 0 ≤ r ≤ p− s− 2
0, if p− s− 1 ≤ r ≤ p+ t − s− 1
1, if p+ t − s− 2 ≤ r ≤ p− 1.

(B10)
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By the definitions of gr and fr , we have

fr = f ′r for r = 0, 1, . . . , p− 1. (B11)

We can deduce from (A3) that

gp−r = g′p−r for 1 ≤ r ≤ p− s− 1, (B12)

gp−r = g′p−r for p− s+ 1 ≤ r ≤ p− 1. (B13)

For r = p− s, we have

gp−(p−s) = gs = (kp−s−1 + kp−s−2) mod 2

= (1+ kp−s−2) mod 2

g′p−(p−s) = g′s = (k ′p−s−1 + k
′

p−s−2) mod 2 (B14)

= kp−s−2 mod 2. (B15)

It can be deduced from (B14) and (B15) that

gp−(p−s) + g′p−(p−s) = 1. (B16)

Therefore,

hN (k + (N − mN/(2n)) , l)

= (−1)
∑p−1

r=0 g
′
r lr (−j)

∑p−1
r=0 f

′
r lr

= (−1)
∑p−1

r=0 gr lr+lp−s−2gp−slp−s (−j)
∑p−1

r=0 fr lr

= (−1)lp−shN (k, l) = (−1)bl/2
schN (k, l)

= (−1)bl/nchN (k, l) (B17)

The proof of Property 2 has been completed. �
Proof of Property 3:We have

hN (k, l + n) = (−1)
∑p−1

r=0 gr (l+n)r (−j)
∑p−1

r=0 fr (l+n)r

= (−1)
∑p−1

r=0 grnr (−j)
∑p−1

r=0 frnr hN (k, l) . (B18)

For n = 2s, 0 ≤ s ≤ p− 2, the above equation becomes

hN (k, l + n) = (−1)gs (−j)fshN (k, l) . (B19)

To obtain the relationship hN (k, l + n) = hN (k, l), we must
have

gs = fs = 0. (B20)

According to (A2), there are two cases that lead to fs = 0:
(1) kp−s−2 = 0;
(2) kp−s−2 = 1 and there exists at least one s0 > s such

that kp−s0−2 = 1.
Since

gs =
(
kp−s−1 + kp−s−2

)
mod 2, (B21)

we need one of the following two relationships to hold to
obtain (B20):

(a) kp−s−2 = kp−s−1 = 0,
(b) kp−s−2 = kp−s−1 = 1 and there exists at least one i ≥ 3

such that kp−s−i = 1.
If n = 1 (i.e., s = 0), then all the values between 1 and

N/4− 1 satisfy (B20).
If n = N /4 (i.e., s = p− 2), only k0 = k1 = 0 is possible.

Then, we have k = 4, 8, . . . ,N/2− 4.

If n = 2s, for 1 ≤ s ≤ p−3, the values of k(1 < k < N/2)
that satisfy (B21) can be expressed as

k =
p−s−3∑
r=0

kr2r+kp−s−22p−s−2+kp−s−12p−s−1+
p−2∑
r=p−s

kr2r .

(B22)

Corresponding to case (a), we have

k =
p−s−3∑
r=0

kr2r +
p−2∑
r=p−s

kr2r . (B23)

The range of k in (B23) can be determined as follows: The
first interval is

1 ≤ k ≤ 2p−s−2 − 1⇔ 1 ≤ k ≤ N/(4n)− 1.

Other intervals can be obtained by adding any integer r
between 2p−s and 2p−1 − 2p−s to the first interval, that is,

r + 1 ≤ k ≤ N/(4n)− 1+ r, 2p−s ≤ r ≤ 2p−1 − 2p−s.

Thus, we can express (B23) as

k = (m− 1)N/(4n)+ 1, . . . ,mN/(4n)− 1;

m = n = 1 or m = 1, 5, 9, . . . , 2n− 7, 2n− 3;

n = 2, 4, 8, . . . ,N/8. (B24)

Corresponding to case (b), we have

k =
p−s−3∑
r=0

kr2r + 2p−s−2 + 2p−s−1 +
p−2∑
r=p−s

kr2r . (B25)

The first interval is

2p−s−2 + 2p−s−1 + 1 ≤ k

≤ 2p−s−2 − 1+ 2p−s−1 + 2p−s−2

⇔ 3N/(4n)+ 1 ≤ k ≤ N/n− 1.

Other intervals are given by

r+3N/(4n)+1≤k≤N/n−1+r, 2p−s≤r≤2p−1−2p−s.

Thus, we can express (B25) as

k = mN/(4n)+ 1, . . . , (m+ 1)N/(4n)− 1;

m = 3, 7, 11, . . . , 2n−5, 2n−1; n = 2, 4, 8, . . . ,N/8.

(B26)

The ranges of k for other cases can be determined in a similar
manner; we give only a brief description below. To obtain the
relationship hN (k, l + n) = −hN (k, l), we must have

gs = 1 and fs = 0. (B27)
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To obtain (B27), we need one of the following two relation-
ships to hold:

(a) kp−s−2 = 0 and kp−s−1 = 1;
(b) kp−s−2 = 1 and kp−s−1 = 0, and there exists at least

one i ≥ 3 such that kp−s−i = 1.
The ranges of k that correspond to (a) and (b) are respec-

tively given by

k = (m− 1)N/(4n)+ 1, . . . ,mN/(4n)− 1;

m = 3, 7, 11, . . . , 2n− 5, 2n− 1; n = 2, 4, 8, . . . ,N/8;

(B28)

k = mN/(4n)+ 1, . . . , (m+ 1)N/(4n)− 1;

m = n = 1 or m = 1, 5, 9, . . . , 2n− 7, 2n− 3;

n = 2, 4, 8, . . . ,N/8. (B29)

By combining (B24) with (B28), we obtain (27-1), and by
combining (B26) with (B29), we obtain (27-2).

To obtain the relationship hN (k, l+n) = jhN (k, l), wemust
have

gs = fs = 1. (B30)

To obtain (B30), we need

kp−s−2 = 1 and kp−s−1 = 0,

where p − s − 2 is the minimal value between 0 and p − 2
such that kp−s−2 = 1.
To obtain the relationship hN (k, l + n) = −jhN (k, l),

we must have

gs = 0 and fs = 1. (B31)

To obtain (B31), we need

kp−s−2 = 1 and kp−s−1 = 1,

where p − s − 2 is the minimal value between 0 and p − 2
such that kp−s−2 = 1. �

APPENDIX C
PROOFS OF THEOREMS 2-4
By the definition of yN (k, i), we have

yN (k, i) = hrN (k)xN (i) =
N−1∑
l=0

hN (k, l)xi+l

=

n−1∑
l=0

hN (k, l)xi+l +
N−n−1∑
l=0

hN (k, l + n)xi+n+l .

(C1)

Similarly,

yN (k, i+ n) = hrN (k)xN (i+ n)

=

N−n−1∑
l=0

hN (k, l)xi+n+l

+

n−1∑
l=0

hN (k, l + N − n)xi+N+l . (C2)

From (C1) and (C2), we have

yN (k, i)− yN (k, i+ n)

=

n−1∑
l=0

hN (k, l)xi+l −
n−1∑
l=0

hN (k, l + N − n)xi+N+l

−

N−n−1∑
l=0

(hN (k, l)− hN (k, l + n)) xi+n+l, (C3)

yN (k, i)+ yN (k, i+ n)

=

n−1∑
l=0

hN (k, l)xi+l +
n−1∑
l=0

hN (k, l + N − n)xi+N+l

+

N−n−1∑
l=0

(hN (k, l)+ hN (k, l + n)) xi+n+l, (C4)

yN (k, i)− jyN (k, i+ n)

=

n−1∑
l=0

hN (k, l)xi+l − j
n−1∑
l=0

hN (k, l + N − n)xi+N+l

−

N−n−1∑
l=0

(jhN (k, l)− hN (k, l + n)) xi+n+l, (C5)

yN (k, i)+ jyN (k, i+ n)

=

n−1∑
l=0

hN (k, l)xi+l + j
n−1∑
l=0

hN (k, l + N − n)xi+N+l

+

N−n−1∑
l=0

(jhN (k, l)+ hN (k, l + n)) xi+n+l . (C6)

Proof of Theorem 2:
(a) For k = 0, we deduce from (C3) that

yN (0, i)− yN (0, i+ 1)

= hN (0, 0)xi − hN (0,N − 1)xi+N

−

N−2∑
l=0

(hN (0, l)− hN (0, l + 1)) xi+1+l (C7)

By applying (23-1) to (C7), we obtain

yN (0, i)− yN (0, i+ 1) = xi − xi+N . (C8)

Setting k = N /2 in (C4) and applying (23-2) yields

yN (N/2, i)+ yN (N/2, i+ 1)

= hN (N/2, 0)xi + hN (N/2,N − 1)xi+N

+

N−2∑
l=0

(hN (N/2, l)+ hN (N/2, l + 1)) xi+1+l

= xi + (−1)N−1xi+N +
N−2∑
l=0

(
(−1)l + (−1)l+1

)
xi+1+l

= xi − xi+N (C9)

By comparing (C8) with (C9), we obtain the first formula of
Theorem 2.
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(b) Letting n = N/(4k), k = 1, 2, 4, . . . ,N/8,N/4, and
using (23-1) yields

yN (0, i)− yN (0, i+ n)

=

n−1∑
l=0

hN (0, l)xi+l −
n−1∑
l=0

hN (0, l + N − n)xi+N+l

−

N−n−1∑
l=0

(hN (0, l)− hN (0, l + n)) xi+n+l

=

n−1∑
l=0

(xi+l − xi+N+l) (C10)

Using (23-3), we have

hN (k, l + n) = jb(l+n)/nc = j× jbl/nc = jhN (k, l). (C11)

By substituting (C11) into (C5) and using (23-3), we obtain

yN (k, i)− jyN (k, i+ n)

=

n−1∑
l=0

hN (k, l)xi+l + j2
n−1∑
l=0

hN (k, l)xi+N+l

=

n−1∑
l=0

jbl/nc(xi+l − xi+N+l) =
n−1∑
l=0

(xi+l − xi+N+l).

(C12)

Similarly,

yN (N − k, i)+ jyN (N − k, i+ n)

=

n−1∑
l=0

hN (N − k, l)xi+l+j
n−1∑
l=0

hN (N−k, l+N−n)xi+N+l

+

N−n−1∑
l=0

(jhN (N − k, l)+ hN (N − k, l + n)) xi+n+l

=

n−1∑
l=0

(−j)bl/nc (xi+l − xi+N+l) =
n−1∑
l=0

(xi+l − xi+N+l)

(C13)

From (C10), (C12) and (C13), we can obtain (27-2). �
Proof of Theorem 3:
(a) From (C5), we have

yN (k, i)+ (−j)myN (k, i+ n)

=

n−1∑
l=0

hN (k, l)xi+l + (−j)m
n−1∑
l=0

hN (k, l + N − n)xi+N+l

+

N/n−2∑
r=0

(r+1)n−1∑
l=rn

(
(−j)mhN (k, l)− hN (k, l + n)

)
xi+n+l

=

n−1∑
l=0

hN (k, l)xi+l + (−j)m
n−1∑
l=0

hN (k, l + N − n)xi+N+l

+

N/n−2∑
r=0

n−1∑
l=0

((−j)mhN (k, l + rn)

+hN (k, l + rn+ n))xi+n+l+rn
(C14)

Applying (26-3), (C14) becomes

yN (k, i)+ (−j)myN (k, i+ n)

=

n−1∑
l=0

hN (k, l)xi+l + (−j)m
n−1∑
l=0

hN (k, l + N − n)xi+N+l .

(C15)

Using (23-3), it can be deduced from (C6) that

yN (N − k, i)+ jmyN (N − k, i+ n)

=

n−1∑
l=0

(−1)bl/nchN (k, l) xi+l

+ jm
n−1∑
l=0

(−1)b(l+N−n)/nchN (k, l + N − n) xi+N+l

+

N−n−1∑
l=0

(jm(−1)bl/nchN (k, l)

+ (−1)b(l+n)/nchN (k, l + n))xi+n+l

=

n−1∑
l=0

hN (k, l) xi+l − jm
n−1∑
l=0

hN (k, l + N − n) xi+N+l

+

N/n−2∑
r=0

n−1∑
l=0

(−1)br+l/nc

×
(
jmhN (k, l + rn)− hN (k, l + rn+ n)

)
xi+n+l+rn

(C16)

Using (26-3), (C16) becomes

yN (N − k, i)+ jmyN (N − k, i+ n)

=

n−1∑
l=0

hN (k, l) xi+l − jm
n−1∑
l=0

hN (k, l + N − n) xi+N+l .

(C17)

Comparing (C15) with (C17), we obtain (28). �
Proof of Theorem 4:
(a) From (C3), we have

yN (k, i)− yN (k, i+ n)

=

n−1∑
l=0

hN (k, l)xi+l −
n−1∑
l=0

hN (k, l + N − n)xi+N+l

−

N/n−2∑
r=0

n−1∑
l=0

(hN (k, l+rn)− hN (k, l+rn+n)) xi+n+l+rn

=

n−1∑
l=0

hN (k, l)xi+l −
n−1∑
l=0

hN (k, l + N − n)xi+N+l, (C18)

where (26-1) has been utilized in the last step of the above
equation.
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From (C4), we have

yN (k + (N − mN/(2n)), i)

+ (−1)(m−1)/2yN (k + (N − mN/(2n)), i+ n)

=

n−1∑
l=0

hN (k + (N − mN/(2n))), l)xi+l + (−1)(m−1)/2

×

n−1∑
l=0

hN (k + (N − mN/(2n)), l + N − n)xi+N+l

+

N/n−2∑
r=0

n−1∑
l=0

×

(−1)(m−1)/2hN (k + (N − mN/(2n)),
l + rn)+ hN (k + (N − mN/(2n)),
l + rn+ n)

 xi+n+l+rn

(C19)

Using Property 2 for

k = (m− 1)N/(4n)+ 1, (m− 1)N/(4n)

+ 2, . . . , (m+ 1)N/(4n)− 1;

m = 1, 3, 5, 7, . . . , 2n− 1; n = 1, 2, 4, . . . ,N/8,N/4,

(C19) becomes

yN (k + (N − mN/(2n)), i)

+ (−1)(m−1)/2 yN (k + (N − mN/(2n)), i+ n)

=

n−1∑
l=0

hN (k, l) xi+l − (−1)(m−1)/2

×

n−1∑
l=0

hN (k, l + N − n) xi+N+l

+

N/n−2∑
r=0

(−1)r
n−1∑
l=0

((−1)(m−1)/2hN (k, l+rn)

− hN (k, l+rn+n))xi+n+l+rn

=

n−1∑
l=0

hN (k, l) xi+l − (−1)(m−1)/2

×

n−1∑
l=0

hN (k, l + N − n) xi+N+l, (C20)

where (26-1) has been utilized in the last step of the above
equation.
Combining (C18) and (C20) leads to (29-1).
(b) From (C4), we have

yN (k, i)+ (−1)(m−1)/2 yN (k, i+ n)

=

n−1∑
l=0

hN (k, l)xi+l + (−1)(m−1)/2

×

n−1∑
l=0

hN (k, l + N − n)xi+N+l +
N/n−2∑
r=0

n−1∑
l=0

×((−1)(m−1)/2hN (k, l+rn)+ hN (k, l+rn+n))xi+n+l+rn
(C21)

Using (26-2), (C21) becomes

yN (k, i)+ yN (k, i+ n) =
n−1∑
l=0

hN (k, l)xi+l + (−1)(m−1)/2

×

n−1∑
l=0

hN (k, l + N − n)xi+N+l

(C22)

From (C3), we have

yN (k + (N − mN/(2n)), i)

− (−1)(m−1)/2 yN (k + (N − mN/(2n)), i+ n)

=

n−1∑
l=0

hN (k + (N − mN/(2n)), l)xi+l − (−1)(m−1)/2

×

n−1∑
l=0

hN (k + (N − mN/(2n)), l + N − n)xi+N+l

+

N/n−2∑
r=0

n−1∑
l=0

 (−1)(m−1)/2 hN (k+(N − mN/(2n)), l+rn)− hN (k + (N
−mN/(2n)), l+rn+n)

xi+n+l+rn
(C23)

Using Property 2, we have

yN (k + (N − mN/(2n)), i)

− (−1)(m−1)/2 yN (k + (N − mN/(2n)), i+ n)

=

n−1∑
l=0

hN (k, l)xi+l + (−1)(m−1)/2

×

n−1∑
l=0

hN (k, l + N − n)xi+N+l

+

N/n−2∑
r=0

(−1)r
n−1∑
l=0

((−1)(m−1)/2hN (k, l + rn)

+ hN (k, l+rn+n))xi+n+l+rn

=

n−1∑
l=0

hN (k, l)xi+l

+ (−1)(m−1)/2
n−1∑
l=0

hN (k, l+N−n)xi+N+l, (C24)

where (26-2) has been utilized in the last step of the above
equation.

Combining (C22) and (C24) leads to (29-2). �

APPENDIX D
PROOF OF (30)
We replace n by N /(4n) in (28), which yields

yN (mn, i)− jmyN (mn, i+ N/(4n))

= yN (N − mn, i)+ jmyN (N − mn, i+ N/(4n)),

m = 1, 3, 5, . . . ,N/(2n)− 1; n = 1, 2, 4, . . . ,N/8,N/4

(D1)
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Set k = mn, we have

yN (N − k, i)+ jmyN (N − k, i+ N/(4n))

= yN (k, i)− jmyN (k, i+ N/(4n)),

for k = 1, 2, 3, 4, . . . ,N/2− 1;

n = 1, 2, 4, 8, . . . ,N/8,N/4;

m = k/n, and m is a positive odd integer. (D2)

Eq. (D2) is equal to

yN (N − k, i)+ jk/nyN (N − k, i+ N/(4n))

= yN (k, i)− jk/nyN (k, i+ N/(4n)),

for k = n, 3n, 5n, . . . ,N/2− n;

n = 1, 2, 4, 8, . . . ,N/8,N/4; (D3)

Set n = k0 in (D3), we obtain (30). �

APPENDIX E
PROOF OF (31)
We replace n by N /(8n) and k by k−(N−4mn) in (29-2), and
then choose part of the k (fromN−2mn+1, . . . ,N−2mn+n),
which yields

yN (k − (N − 4mn), i)

+ (−1)(m−1)/2 yN (k − (N − 4mn), i+ N/(8n))

= yN (k, i)− (−1)(m−1)/2 yN (k, i+ N/(8n)),

for k = N − 2mn+ 1, . . . ,N − 2mn+ n;

m = 1, 3, 5, . . . ,N/(4n)− 1; n = 1, 2, 4, . . . ,N/8.

(E1)

(E1) is equal to

yN (2mn+ k0, i)+ (−1)(m−1)/2 yN (2mn+ k0, i+ N/(8n))

= yN (N − 2mn+ k0, i)

− (−1)(m−1)/2 yN (N − 2mn+ k0, i+ N/(8n)),

for k = N − 2mn+ k0; k0 = 1, 2, 4, 8, . . . ,N/8;

m = 1, 3, 5, . . . ,N/(4n)− 1; n = 1, 2, 4, . . . ,N/8.

(E2)

Replacing k by N-k in (E2), we obtain (31). �
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