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ABSTRACT In recent years, improvement in multi-material additive manufacturing technology has resulted
in technical improvements in multi-material design employed by the automotive industry. Therefore, in this
work, an internal trim part (corresponding to an original product composed of polypropylene) of a vehicle
was divided into four components using a multi-material design method considering PLA composites. The
PLA was reinforced with basalt fibers for realization of the required mechanical properties. The mechanical
properties associated with different fiber content (from 0 to 60%) were determined via tensile tests. To reduce
the mass of the product, an optimization process combining a Kriging surrogate model with a Multi-Island
Genetic Algorithm was used to search for the Pareto solution. The coefficient of determination (R2) and
response surface methodology (RSM) surrogate model were used to confirm the validity and accuracy of the
Kriging model. The values of R2 were all >0.92 and the low error value of both results demonstrated the
effectiveness of the optimization process. Owing to the optimization process, the mass of the PLA composite
product was reduced by nearly 9%. Correlation analysis indicated that x2 has the strongest impact on the
total mass. Therefore, the optimization process proposed for the multi-material optimal design is feasible
and contributes significantly to the attainment of light-weight vehicle parts.

INDEX TERMS Automotive components, biodegradable materials, materials testing, genetic algorithms,
mathematical model.

I. INTRODUCTION
Poly lactic acid (PLA) is the most extensively researched
and one of the best environmentally friendly substitutes for
non-renewable polymers [1]–[3]. Original equipment manu-
facturers (OEMs) have used PLA, as alternatives for fossil
materials, in the production of internal and external auto-
motive body parts of vehicles, owing to the environmental
friendliness of these materials, because intelligence and ecol-
ogy are the trend of automobile industry [4]–[11]. The use of
PLA composites yields a reduction in petroleum consump-
tion and is, hence, beneficial to companies, the environment,
and end-customers [12]. Although Ford Fiesta manufacturers
have played a pioneering role in adopting biopolymers and
biocomposite, few parts are fabricated from renewable mate-
rials [4], [13]–[15]. Fiber reinforcement is typically employed
to overcome the main obstacles that prevent wide-range
application of these materials. Basalt fibers exhibit excellent

mechanical properties and stability compared with glass
fibers and are therefore considered one of the most suitable
natural fibers [16]–[19]. However, studies considering PLA
reinforced by basalt fibers have rarely been reported.

Multi-material design contributes significantly to reduc-
tions in the vehicle mass, especially with the develop-
ment of additive manufacturing processes for automotive
constructions. These processes can generate complex
multi-material parts (rather than the traditional single-
material parts) [20]–[24]. Multi-material design, which is
considered essential for sustainability of the automotive
industry [25], contributes to the realization of product
efficiency and multi-material systems exhibiting good per-
formance [26]. This indicates that the hardness, corrosion
resistance, and environmental adaptability of a single compo-
nent can be defined under the most stringent conditions [27].
Excellent properties have been achieved for PLA composites
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used as raw material for additive manufacturing processes,
such as three-dimensional (3D) printing [28], [29]. Therefore,
in this study, for improved material-function compatibility
and product efficiency of the overall product, an injection-
molded product is divided into several components composed
of different materials.

Multi-material design used in product design has become
a complex multi-disciplinary and multi-stage design pro-
cess [30].Many solutions satisfy the requirements and, hence,
an efficient optimization method is essential. Ideal solu-
tions can be identified by employing optimization methods,
e.g., a Genetic Algorithm (GA). This method is characterized
by a simple currency and strong robustness and has therefore
attracted significant attention in recent years [15], [31]–[34].
However, shortcomings including a poor local search, prema-
ture convergence, and slow convergence rate have limited the
application of GA. Improvements to this method are there-
fore required [31]. Multi-Island Genetic Algorithm (MIGA)
is considered an efficient and reliable algorithm for treat-
ing non-linear and multi-disciplinary problems associated
with the optimization methods [35]–[39]. As in the case
of GA, MIGA is based on the natural evolution course of
several islands. The definition of MIGA is simple and can
be easily enacted. Furthermore, MIGA can avoid the local
optimal solution set and is more effective than the tradi-
tional GA [32]. The surrogate modeling of responses has
become a common method of reducing the computation
time required for the repeated evaluation of responses [40].
By using simultaneous approximations, the constraints and
objectives from different types of analyses can be optimized
in the same loop [38], [41]. The Kriging model can accu-
rately pass through all the sample points lying in the design
space. This model is based on deterministic simulations
where the same inputs always yield the same output, without
noise [38], [42]. The effectiveness and accuracy of MIGA
combined with a Kriging model have been demonstrated
in several studies. Paz et al. [43] used GA and a Krig-
ing model to realize the design of light-weight parameters
in four-dimensional (4D) printing parts. Yang et al. [44]
employed this combination to simulate the riding quality
index and optimize the parameters of the suspension. The
riding quality improved significantly, indicating the univer-
sality and effectiveness of this approach. Similarly, Lee et al.
optimized multiple wing sails using MIGA combined with a
Kriging model. Li et al. [45] have shown that, compared with
GAs, a Kriging metamodel-assisted MIGA converges more
rapidly to the Pareto frontier. Owing to the aforementioned
advantages, in this work, a Kriging model combined with
MIGA is employed as the optimization process for determin-
ing the Pareto solution.

In this work, PLA composites with different content of
basalt fibers are fabricated and the corresponding mechani-
cal properties are determined through standard tensile tests.
Actual operation conditions, to be used as constraints for the
objective function, are formulated by collecting the loading
spectra of the product in a real vehicle subjected to full and

half load. For high product efficiency, the one part is divided
into four components with different kind of PLA compos-
ites. Optimal Latin hypercube experiment design is used to
construct the sample points for building a Kriging model,
which is then compared with RSM model [46]. The accuracy
of each model is evaluated in terms of R2 values. Using
the minimum mass as an objective function with constraints,
the problem is solved using a Multi-Island Genetic Algo-
rithm (MIGA). In addition, a correlation coefficient is used to
express the effect of variables on the objective function. This
optimization process yields materials with improved proper-
ties. Compared with previous studies, this study makes three
contributions: 1) Improved PLA material reinforcing with
different content of short basalt fibers is potential renewable
materials for Eco-Car design that is an important developing
direction. The data of PLA composites in this work is suit-
able for future eco-designs in automotive. 2) In this work,
the method of manufacturing a component with several kinds
of material instead of one material is used basing on the
development of additive manufacturing processes for real-
ization of light-weight products. 3) The results demonstrate
the optimization process combining MIGA and the Kriging
model is effective for multi-material optimal design aimed at
achieving light-weight products.

II. MECHANICAL PROPERTIES
Injection molding-grade PLA, type 290 D made in Taizhou,
Zhejiang province, is supplied by Zhejiang Hisun Biomateri-
als Co. Ltd. The properties characterizing this type of PLA are
summarized as follows: density: 1.25 g/cm3, glass transition
temperature:∼58 ◦C, and melting temperature: 175–180 ◦C.
The Mn and Mw/Mn values are 6.5 × 104 g/mol and 1.38,
respectively. Chopped basalt fibers (initial fiber length: 6mm;
average fiber diameter: 13µm) are purchased from Jilin Tong
Xin Basalt Technology Co. Ltd. A silane treatment for asphalt
paint is applied to the fibers.

Prior to fabrication of the composite, PLA pellets are dried
in a vacuum oven at 70 ◦C for at least 48 h. Although
hydrolysis of basalt fibers is difficult, the fibers are dried in
the oven for 24 h at 110 ◦C to remove residual moisture from
their surface. PLA-based composites with a nominal basalt
fiber content of 10, 20, 30, 40, 50, and 60 wt.% are pre-
pared using a torque rheometer (XSS-300, Shanghai; working
capacity: 50 g). The basalt fiber-reinforced PLA samples and
pure PLA samples are injection-molded (injection pressure:
450 bar, holding pressure: 150 bar, holding time: 17 s) using
a Thermo Scientific HAAKE Mini Jet Pro injection molding
machine. The melt and mold temperatures are set to 205 ◦C
and 25 ◦C, respectively.
The properties of the composites are determined via tensile

tests, performed in accordance with the ISO 527-2 standard.
The tests were conducted at 23± 2 ◦C and 50± 5% relative
humidity (RH) on a WSM-20kN electronic universal testing
machine (Changchun Intelligent Instrument Equipment Co.,
Ltd.; max force: 20 kN, testing precision: ±0.1%). Based on
ISO 527-2, dumbbell-type 5A samples (total length: 75 mm,
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length of 2×4 mm cross-section: 25 mm) are tested (loading
speed: 1 mm/min). At least five specimens of each composite
type are tested. In addition, the tensile strength and tensile
modulus are computed from the stress-strain curves.

FIGURE 1. Tensile property results.

The mechanical properties of the injection-molded spec-
imens are analysed via quasi-static tensile tests. Figure 1
indicates that improved tensile properties can be realized by
using basalt fiber-reinforced PLA composites with high fiber
content. The tensile strength and tensile modulus of pure
PLA are 72 MPa and 1360 MPa, respectively. The strength
and modulus increase with increasing basalt fiber content.
In fact, for a fiber content of 50%, the strength increases
(by a factor of 1.94) to a maximum of 140 MPa and the
modulus increases (by a factor of 2.7) to 5050 MPa. This
indicates that basalt can yield improved tensile properties
of the PLA composites. However, the tensile strength of the
composite with 60% basalt (i.e., 136 MPa) is lower than that
(140 MPa) of the composite with 50% basalt. The same trend
is observed for the tensile modulus; the tensile modulus of the
composite with 60% basalt (i.e., 4350 MPa) is significantly
lower than that (5050MPa) of the composite with 50% basalt.
The properties of the PLA composites are shown in Table 1.

III. LOAD ANALYSIS AND NUMERICAL RESULTS
For replacement of the petroleum-based material in auto-
motive products, internal trim parts, which serve in a more
temperate environment than the external ones, are considered
suitable for fabrication from PLA composites. An internal
trim part composed of PP and located before the AT change
lever is investigated in this work. Knowledge of the actual
load is essential for the analysis and design of PLA-composite
parts. The part is fixed in the auxiliary console using six
screws (as shown in Figure 3).

The durability and structural strength of this part are
assessed via reliability testing of the vehicle. Full load and
half load tests are performed, where the load is measured
by an acceleration sensor located in the middle of the part.
The sampling frequency is set to 500 Hz. The modal fre-
quency is analyzed via FFT (see Figure 3 for the load spec-
trum). As the figure shows, during testing, the product is
subjected to loading in three directions. In the half-load pro-
cess, the Y-direction load, i.e., the maximum load, reaches

FIGURE 2. Configuration of work conditions.

FIGURE 3. Load spectra of full load and half load.

0.86 g (g: gravitational acceleration). The Z-direction load
reaches 2.33 g in full load. The maximum of the two loads,
through the radial four valve chamber (RFVC), is 1.39 g and
2.41 g, respectively. Moreover, based on the mass of the part,
the force on the part is 4.39 N. The part can resist deformation
from three directions. However, the force considered in the
quasi-static finite element analysis is lower than that required
to induce deformation. The stiffness of the part is included
in the boundary conditions associated with the design of the
new product, by using a 100-N force to replace the actual load
from each of the three directions. The maximum displace-
ment under the three-direction force is used to represent the
stiffness of the part (see Figure 4 for the details of the force).
Quasi-static finite element analysis with the 100-N force is
performed independently.

The modal of a part plays the key role in avoiding the main
resonance frequency of a vehicle. The FFT result shows this
frequency. Two types of loads yield similar main resonance
frequency in three directions. The maximal resonance fre-
quency in the X, Y, and Z directions is 14 Hz, 2 Hz, and 2 Hz,
respectively. Furthermore, the modal of the original product
is determined via numerical simulation.

A shell finite element model is first constructed in Hyper-
work software to analyze maximum displacement under the
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TABLE 1. Properties of PLA composites.

FIGURE 4. Loading position and loading direction.

FIGURE 5. Multi-material design process.

three-direction force respectively and the modal of the orig-
inal product with OptiStruct. Material in the analysis is
Polypropylene (PP) with the elastic modulus of 2739 MPa
and the density of 1.21g/cm3. Figure 4 illustrates the 3D
model and prescribed boundary conditions which all DOFs
are fixed. Loading position of three-direction force are set at
center of each surface.

IV. OPTIMIZATION DESIGN
A. MULTI-MATERIAL OPTIMAL DESIGN METHOD
A light-weight structure exhibiting good performance
can be realized via the multi-materials optimal design

method performed with multi-material additive manufac-
turing (MMAM) technology. This method allows objective
material selection for a given application, and the reflex
of choosing the typically employed materials is avoided.
In turn, structures can be simplified, complicated assemblies
removed, and performance improved, while avoiding many
of the difficulties associated with material selection [47].
A multi-material design process can be described as follows:

FIGURE 6. Disassembly of product.

According to the original part, the thickness ofMat1,Mat2,
Mat3 and Mat4 are 2.8mm, 2mm, 1.2mm and 1.8mm respec-
tively. For full-capacity operation of the PLA composites,
the PLA part is separated into four components that can be
fabricated as PLA composites (see Figure 6) with different
basalt fiber (BF) content. With multi-material 3D printing
technology, four components are integrated one component.
The multi-material design is based on the customer require-
ments for the final product. During the functional analysis,
the customer requirements are translated into technical terms.
The interior trim part should have a certain stiffness and avoid
the resonance effect. Customer requirements of this case are
translated in the stiffness and the first-order modal of the
original part.

B. OPTIMIZATION STRATEGY AND
OPTIMIZATION ALGORITHM
Many material combinations satisfy the requirements.
An ideal design is required for finding the minimum mass

53400 VOLUME 6, 2018



F. Ma et al.: MIGA and Kriging Model-Based Design of Vehicle Product Comprising Multi-Material

corresponding to the objective of the product. The optimiza-
tion objective of the product can be expressed as follows:

min f (xi)

s.t. g1(xi) ≤ value1

g2(xi) ≤ value2

g3(xi) ≤ value3

g4(xi) ≥ value4 i = 1, 2, 3, 4 (1)

Xi (i = 1, 2, 3, 4): BF content of the four components,
f (xi): mass of the PLA product, g1(xi), g2(xi), and g3(xi): X-,
Y-, and Z-direction maximum displacements, respectively,
and g4(xi): frequency of the first-order modal. Value1, value2,
value3: X-, Y-, and Z-direction maximum displacements,
respectively, and value4: first-order modal of original prod-
uct. Value1, value2, value3 and value4 are set as constraints
in the optimal process.

In this work, a mathematical model of the optimum design
for the material parameters based on the minimum mass is
used to search for the best combination. During the optimiza-
tion procedure, MIGA is used to find the global optimum in
a given design space.

MIGA is based on a Traditional Genetic Algorithm (TGA),
where the population is divided into several islands. Tradi-
tional genetic operations are separately performed on each
island, and individuals then undergo inter-island migration.
Furthermore, MIGA searches many designs and multiple
locations of the design space. Themain feature distinguishing
MIGA from the traditional genetic algorithms is the fact that
each population of individuals is divided into several sub-
populations referred to as ‘islands’. The selection operation in
MIGA employs the so-called ‘tournament selection’ scheme.
In this process, the best individuals are selected from a small
subset of randomly selected individuals (rather than from the
entire population). This scheme allows for duplicate individ-
uals in the child population.

The performance of the algorithm depends on the parame-
ters. For example, the migration process is determined by the
migration interval (i.e., the number of generations between
each migration) and the migration rate (i.e., the percentage
of individuals migrating from each island). Through MIGA,
a local optimal solution and premature convergence can be
avoided. The parameters of MIGA are listed in Table 2.

C. KRIGING SURROGATE MODEL
Analysis of the sampling results constitutes the main activity
in the search for a Pareto-optimal Solution. In this work, the
computational time is minimized by using the Kriging surro-
gate model as an approximation. The Kriging approximation
model represents one type of unbiased estimation model that
is characterized by minimum variance. This model is capable
of local estimation and provides good fitting for complex
(i.e., highly non-linear) problems. Moreover, the model uses
a sum of a constant and a random process to represent the
response values of the system and is composed of regression
polynomials and a stochastic term. The surrogate model can

TABLE 2. Detailed parameters of MIGA.

FIGURE 7. Implementation procedure.

be described by the following expressions:

y(x) = f (xT )β + Z (x) (2)

f (x) = [f1(x)f2(x) · · · fq(x)]T is the regression polynomial
and β = [β1β2 · · ·βq]T is the regression coefficient. Z (x) is a
stochastic term with a mean value of zero. The Kriging surro-
gate model is established using original points and responses.
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FIGURE 8. Error analysis of the R2 associated with five responses.

The design parameters in this study (i.e., x1, x2, x3, and
x4, see Figure 6) represent the BF fiber content of Mat1,
Mat2, Mat3, andMat4, respectively. In addition, the objective

function f (xi) denotes the mass of the product and g(xi)
is the constraint. The optimization process is implemented
by combining the Kriging model with MIGA, as shown in
Figure 7. This process consists of the following steps:

a) Original points are generated by using the Optimal
Latin hypercube experiment design for the surrogate
model.

b) The Kriging model is used to determine the relation-
ships between the design parameters and the responses
that comprise the objective function and constraint. The
effectiveness is evaluated in terms of R2.

c) The validity of the model is confirmed using sample
points (except for original points).

d) MIGA is used to determine the optimal geometries, and
the accuracy of the process is verified.

V. RESULTS AND DISCUSSION
A. SURROGATE-MODEL IMPROVEMENT
The optimal Latin delta hypercube design enables even dis-
tribution of all the test points as well as very good spatial
filling and equalization in the design space. Compared with
orthogonal experiments, optimal Latin hypercube designs
allow the investigation of more combinations with the same
number of points. The original sample points generated by
the hypercube design are listed in a table. After the response
model is constructed, the error analysis method based on
the coefficient of determination (R2) is used to assess the
prediction accuracy of the surrogate model. Three sets of
sample points are selected for verifying the effectiveness of
the model (see Table 3).

The results in the table show that the prediction of the orig-
inal points by the Kriging model is the same as the response
of the original points. The R2 values indicate that the
model provides an unbiased estimate of the original points.
Nevertheless, the prediction of the other three points yields
the opposite result. The R2 values are all<0.9, indicating that
the precision of the model falls short of the required levels.
This low precision results from (among others) an inadequate
coverage ratio of the original points. The Kriging model
ensures the accuracy of the figures near the original points.
However, the values of the three points used to verify the
model deviate from the original points and, hence, the number
of original points must be increased.

The influence of Poisson’s ratio is small and is therefore
ignored. According to previous studies and finite element
theory, the tensile modulus plays a key role in the simulation
of elastic deformation. Therefore, in this work, we focus
exclusively on this parameter. The functional relationship
between the tensile modulus and the BF content is established
through a non-linear regression equation and the values of the
PLA composites with differing BF content (the content is 0,
1, 2, 3, · · · , 60 ) are determined from:

j(x) = a1 + a2 · x + a3 · x2 · · · an+1xn (3)

j(x) is the tensile modulus and a1, a2, . . . , an+1 are the
polynomial coefficients. Using the least-squares method,
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TABLE 3. Original sample points.

TABLE 4. Original points of improvement model.

the original points for fitting the functional relationship are
determined from

j(x)=13.79179+1.10368 · x − 0.03735 · x2 + 0.00127 · x3

− 0.000013652 · x4 (4)

The accuracy (i.e., effectiveness of the model) is described
relative to R2 and RMSE values of 0.99322 and 0.5246,

respectively. The tensile modulus is expressed in terms
of equation (4), and the 61 original points generated for
the Kriging model are listed in a table (see Table 4).
These points are generated through an optimal Latin
hypercube experiment design, and responses are calculated
via numerical simulation. Eleven of the original sample
points are used to check the accuracy of the model.
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TABLE 5. RSM coefficients and R2.

The effectiveness of the model is determined with test
points. The Kriging model provides quite precise predictions
of the responses associated with the original points and,
hence, R2 is always one. The test points are used to confirm
this precision by comparing the predicted responses with
those of the numerical simulations. As previously reported in
several studies, the response model exhibits good predictive
capability, as evidenced by R2 values larger than 0.9 [48].
As shown in Figure 8, for the design conditions considered,
the R2 of each response is>0.92. This confirms the predictive
capability of the Kriging model and, in turn, its applicability
to the results obtained in this work.

A response surface model is built for comparison with the
Kriging model. The response surface has been used success-
fully in establishing the non-linear input-output relationships,
which are required for the predictive capabilities of themodel.
The RSM, is based on a set of mathematical and statistical
techniques. This model uses multiple regression equations to
express the complex implicit relationship between the objec-
tive and the design variables. The model can be accurately
built with experimental points, and continuity as well as
controllability of the design variables are required. Generally,
a second-order model is used to construct the RSM. For
the case of n variables, the two-order polynomial response
surface model is described by

y(x) = β0 +
n∑
i=1

βixi +
n∑
i

βiix2i +
n∑
i=2

i=1∑
j=1

βijxixj (5)

x denotes the design variables and β is the coefficient.

Unlike the Kriging model, five RSMs are needed for each
response. A genetic algorithm (rather than a least squares
method typically used in other studies) is used to fit the coef-
ficient. The fitness threshold is set as the difference between
the predicted value and the actual value (the corresponding
RSM coefficients are listed in Table 5). The R2 values are
all>0.97 suggesting that, compared with the Kriging model,
the quadratic regression (function) of GA-based RSM has the
same ability to predict the results.

B. OPTIMIZATION OF THE CONFIGURATION AND RESULTS
Using an effective surrogate model, the optimization pro-
cess can be effectively executed with the constraints. The
result computed in the form page is shown in a table
(see Table 6), and the values are set as boundary conditions
for optimization.

The mass objective function and the mathematical opti-
mization model are governed by the following conditions

min f (xi)

s.t. g1(xi) ≤ 9.6

g2(xi) ≤ 7.8

g3(xi) ≤ 0.7

g4(xi) ≥ 160 i = 1, 2, 3, 4 (6)

Based on the optimization strategy, two surrogate
models are used in the process. The Kriging and RSM
models converge at 971 and 986 results, respectively. A plot
of the mass history (see Figure 9) indicates that the mass
of the part fluctuates significantly in the initial stages and
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TABLE 6. Constraints of the optimal process.

TABLE 7. Results and error analysis.

FIGURE 9. History of MIGA searching.

approaches the optimum value as the number of evolutions
increase. Optimization of the minimum mass yields feasibil-
ity of the final design and prevents instability. The Kriging
model results, RSM results, constraints, and material design
results are shown in Table 9. To validate the optimization
results, a rounding method is applied to the parameters of the
numerical simulation (N-S). The accuracy of the results is
represented by residuals. Except for the residuals associated
with the g1(xi), the residuals of the Kriging and RSM models
are all lower than the specified limits (generally, residuals
lower than 5%meet the requirements). This is attributed to the
rounding procedure. However, the values of g1(xi) lie within
the constraints and are, therefore, acceptable. Furthermore,
the mass of the PLA composite product decreases (by ∼9%)
from 253.7 to 232.6 g and 230.4 g (Table 7), indicating that
product-design optimization aimed at achieving light-weight
products can be realized via MIGA.

C. CORRELATION ANALYSIS
The correlation analysis is based on the Pearson and Spear-
man correlation, which is a linear analysis method. As in

sensitivity analysis, with this method, the mode of the impor-
tant parameters can be included in the objective function. The
value of the correlation coefficient (denoted as r) indicates the
correlation between the model parameters and the responses.
The rxy r values can be obtained as follows:

rxy=

∑
(X−X )(Y−Y )√∑

(X−X )2
√
(Y−Y )2

=

∑
xy√∑

x2
√∑

y2
=

SXY
SXSY

(7)

SXY =

∑
(X − X )(Y − Y )

n− 1
(8)

SX =

√∑
(X − X )2

n− 1
(9)

SY =

√∑
(Y − Y )2

n− 1
(10)

The positive value of r corresponds to an increase in
the response with increasing number of input parame-
ters, until a value of one (i.e., the limit of r) is reached.
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FIGURE 10. Correlation coefficient of parameters.

FIGURE 11. Effect of x2 on the f(x).

Negative values have the opposite effect on the objective
function. The results of the correlation analysis are shown in
Figure 10. As the figure shows, the parameters x2 and x3 (with
values of 0.72 and 0.57, respectively) have a positive effect on
the objective function, indicating that the mass increases with
increasing x2 and x3. Compared with x3, x2 has a stronger
impact on the mass, suggesting that the mass may be most
effectively reduced by reducing the value of x2.

VI. CONCLUSIONS
In this study, an internal part of an automotive is designed
with environmentally friendly PLA composites. Themechan-
ical properties of these BF-reinforced PLA composites are
obtained via standard tests. The product design constraints
are analyzed and set through actual load testing. For effective
use of the materials, the original part is divided (via the
multi-materials optimal designmethod) into four components
with different materials. A MIGA-based optimization design
approach is proposed for finding the optimal solution using
Kriging and RSM surrogate models. The conclusions of this
study are as follows:

1) The main mechanical properties of BF-reinforced PLA
approach those of PP used in the original product. More
importantly, BF-reinforced PLA constitutes a suitable
green material for replacing the petroleum-based mate-
rials considered in this case.

2) The Kriging surrogate model is used to determine the
non-linear relationship. The RSM surrogate model is
compared with the Kriging surrogate model. Values of
R2 > 0.92 indicate that good accuracy is obtained by
improving the performance prediction of the original
points. Correlation analysis shows that material 2 has
the strongest impact on the mass.

3) Using the above algorithms, the mass of the PLA com-
posite product is reduced (by ∼9%) from 253.7 to
232.6 g and 230.4 g, indicating that product-design
optimization is possible via the proposed process.
Correlation analysis shows that material 2 has the
strongest impact on the mass.

4) The optimization process proposed for the multi-
material optimal design is feasible and contributes
significantly to the attainment of light-weight vehicle
parts. The results of the improvement indicate the uni-
versality and effectiveness of this approach.

Further, fatigue properties of PLA materials will be
researched and the reliability of the component will be con-
sidered in future component design with PLA composites
as the reliability of component is also a vital property for
automotive part design.
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