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ABSTRACT The active contour model (ACM) is a popular approach for image segmentation. Many existing
ACMs perform poorly in severe inhomogeneous images. To address this issue, a novel local and global ACM
(LaG_ACM) is proposed in this paper. First, we define a global fitting image formulation that encodes the
global property of an image and a global energy term using the relative entropy between the original image
and the proposed global fitting image formulation. Then, a local image bias field formulation is defined to
extract the local image information and to estimate the bias field. By integrating the proposed local image bias
field formulationwith theACM,we specify a local energy term using themean squared error to accommodate
severe inhomogeneous images. More importantly, we define an adaptive weighting function using image
entropy, which can automatically adjust the weight between the local and global energy terms according to
the degree of intensity inhomogeneity. Finally, the experimental results on images with different degrees of
intensity inhomogeneity validate the favorable performance of the LaG_ACM.

INDEX TERMS Active contour model, image segmentation, intensity inhomogeneity, local and global
energy term, adaptive weighting function.

I. INTRODUCTION

IMAGE segmentation is a challenging task in computer
vision and plays a crucial role in numerous real-world

applications, such as video surveillance [1], object track-
ing [2]–[4], remote sensing image segmentation [5]and med-
ical imaging [6]–[10]. Intensity inhomogeneity caused by
imaging conditions and imaging devices is one of the biggest
challenges for image segmentation since it seriously affects
the segmentation accuracy. In order to address this issue,
many methods have been proposed, in which the active
contour model (ACM) [11]–[16], a framework in computer
vision for delineating an object outline, has shown effec-
tiveness, especially for inhomogeneous grayscale images.
Existing ACMs can be broadly divided into two cate-
gories: the edge-based ACMs and the region-based ACMs.
The edge-based ACMs [17]–[26] define the energy func-
tion using image gradients, and are usually applied to seg-
ment images with strong edges. For example, the geodesic

active contour model [17] and the distance regularized level
set evolution (DRLSE) model [22]. However, this kind
of ACMs is sensitive to noise, and may fail in segment-
ing images with weak edges and complex backgrounds.
To address this problem, the region-based ACMs [27]–[35]
are proposed utilizing region information rather than gra-
dients to define the energy function. Examples include the
Mumford-Shah model [27], the Chan-Vese (CV) model [29]
and the multi-phase model [31]. Even though these models
can guide the evolving curve to stop at weak boundaries that
cannot be detected by the edge-based ACMs, they may fail
to segment inhomogeneous images because of the homoge-
neous assumption in each region.

To solve this problem, the local region-based
ACMs [36]–[48] are proposed, with an energy function
defined based on assuming that the image intensity is
inhomogeneous in a global region but homogeneous in a
small local region. Representative methods in this category
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include the local binary fitting (LBF) model [36], the local
Gaussian distribution fitting (LGDF) model [38], the local
Chan-Vese (LCV) model [39], the local image fitting (LIF)
model [40], the local region-based Chan-Vese model [41] and
the locally linear classification model [42], etc. In particular,
the LBF model proposed by Li et al. [36] has attracted
extensive attention for its good performance in slightly inho-
mogeneous images by embedding the local image intensity
information in the CV model. The LIF model proposed
by Zhang et al. [40] using the defined local image fitting
energy to model local image intensity. Unfortunately, most
of them are not robust to noise and to initialization than
the global region-based models because of using only local
information to construct the energy function. Besides, these
models perform poorly in severe inhomogeneous images.

Recently, a wide variety of hybrid ACMs, incorporating
two models into an energy function, are proposed. The local
and global ACMs [9], [49]–[58] are their typical repre-
sentatives, which define the energy function by combining
the global energy term and the local energy term using
a weight coefficient, and achieve tremendous success in
inhomogeneous intensity image segmentation. For example,
Wang et al. [49] propose the local and global intensity
fitting (LGIF) model by combining the data terms of the CV
model and the LBF model. Yu et al. propose the local and
global fitting energy dynamically (LaG_FED) model in [50]
by defining an entropy based weight function to adjust the
weight between two terms. In [53], Wang et al. propose
the local and global Gaussian distribution fitting (GARAC)
model using the local and global Gaussian distributions with
different means and variances. But the two models both
use a fixed weight coefficient to adjust the contributions
of the local and the global terms, which limits their per-
formance in segmenting inhomogeneous intensity images.
Zhou et al. [9] propose the local and global intensity infor-
mation (LaG_II) model by constructing a weighting function
that adaptively adjusts the weight to improve the perfor-
mance in medical image segmentation. The other repre-
sentatives of the hybrid ACMs are the bias field corrected
ACMs [8], [10], [59]–[63], such as the local intensity
clustering (LIC) model [60] and the multiplicative intrinsic
component optimization (MICO)model [61], the correntropy-
based level set method (CB_LSM) [8], the statistical level set
approach (SLSA) [63] and the adaptive-scale active contour
model (ASACM) [10].

Although tremendous success has been achieved in inho-
mogeneous image segmentation, it is still a conundrum for
ACMs to segment images with severe intensity inhomogene-
ity since the noise, initialization and complex background all
can affect the final segmentation result. In this paper, we pro-
pose a novel local and global ACM (LaG_ACM) for segment-
ing images with severe intensity inhomogeneity. Specifically,
we first define a global image fitting formulation to extract
the image global information, and then propose a new
global energy term based on the relative entropy (also called
Kullback_Leibler divergence) between the original image

and the global fitting image formulation. Then, we define
a local image bias field formulation by incorporating a bias
field corrected model into the ACM and propose a local
energy term based on the mean squared error. In addition,
we define a weighting function based on image entropy that
is related to our previous work [10]. In this paper, we use
image entropy to define a weighting function, but in [10],
image entropy is used to define an adaptive-scale operator.
In particular, the weighting function defined in this paper is
used to adjust the weight between local term and global term,
which avoids the disadvantage of our previous method [10],
which only adjusts the local scale of the energy term using
an adaptive-scale operator (see the comparison experiment
between the two model in Secion IV-C5). Finally, the exper-
imental results on different degrees of inhomogeneous inten-
sity images, such as synthetic images, natural images,
medical images, remote sensing images, infrared images and
sonar images, validate the feasibility and effectiveness of the
proposed LaG_ACM. Furthermore, the experimental results
on severe inhomogeneous intensity images show that the
proposed method outperforms the state-of-the-art methods.

Briefly, the contributions of this paper include:
• A novel global energy term is defined using the relative
entropy between the original image and the propose
global image fitting formulation, which improves the
robustness to noise and to initialization, as well as the
segmentation efficiency of the LaG_ACM.

• A new local image bias field formulation is defined
by incorporating the bias field model into the active
contour model to simultaneously extract the local image
intensity information and to estimate the bias field. As a
result, it improves the segmentation accuracy for severe
inhomogeneous images.

• A novel weighting function is constructed using image
entropy that can adaptively adjust the weight between
the local and the global terms according to the degree
of intensity inhomogeneity. Thus, it accelerates the con-
vergence of the evolving curve and hence the speed of
segmentation.

The rest of the paper is organized as follows: In Section II,
we review three related models and discuss their advantages
and disadvantages. In Section III, we propose our method.
In Section IV, we validate our method by various experiments
on different kind of images with intensity inhomogeneity.
Section V concludes the paper.

II. BACKGROUND AND RELATED WORK
A. CHAN-VESE (CV) MODEL
In [29], Chan et al. propose the CV model by assuming that
the image intensity inside and outside of the evolving curve
are homogeneous. The energy function is defined as:

ECV =
2∑
i=1

λi

∫
�

|I (x)− ci|2Mi(φ) dx

+ u
∫
�

δ(φ)|∇φ| dx + v
∫
�

H (φ) dx, (1)
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where λi(i = 1, 2), u and v are balancing factors controlling
the weights of different terms. ci(i = 1, 2) are constants
describing the image intensity inside and outside the evolving
curve. M1(φ) = H (φ), and M2(φ) = 1 − H (φ) are the
membership functions of the background and the foreground,
respectively. H (φ) and δ(φ) = d

dφH (φ) are the Heaviside
function and the Dirac delta function, respectively. φ is the
level set function. I (x) denotes the value of pixel x. Using
image intensity information rather than boundary gradient,
the CV model can accurately segment images with weak
edges and noise. However, it performs poorly in images with
intensity inhomogeneity because the constant ci(i = 1, 2)
cannot model local intensity distributions of an image.

B. LOCAL INTENSITY CLUSTERING (LIC) MODEL
In [60], Li et al. propose the LIC model based on a local
clustering criterion function, which can simultaneously seg-
ment an inhomogeneous image and estimate its bias field. The
two-phase energy function is defined as:

ELIC =
2∑
i=1

∫ ∫
K (y− x)|I (x)− b(y)ci|2Mi(φ(x))dxdy

+ u
∫
�

1
2
(|∇φ| − 1)2 dx + v

∫
�

|∇H (φ)| dx, (2)

whereK is the truncated Gaussian function to control the size
of the local neighborhood. ci(i = 1, 2) represent intensity in
the local neighborhood. b(y) is the bias field accounting for
intensity inhomogeneity of pixel y. The second and the third
terms are the penalty term and the length regularization term,
and u, v are their balancing factors, respectively.
Due to the local clustering criterion function, the LIC

model performs favorably in slightly inhomogeneous images.
But it may fail to segment severe inhomogeneous images
since its function is sensitive to the initial contours. In par-
ticular, it often converges to non-unique local minima,
and the resulting contour may settle in areas with severe
inhomogeneity instead of the real boundaries. Besides, its
penalty term exhibits unstable behavior, which is described
in Section III-A4.

C. LOCAL AND GLOBAL INTENSITY FITTING (LGIF) MODEL
In [49], Wang et al. propose the LGIF by incorporating the
CVmodel and the LBF model into one energy function using
a fixed weight. The two-phase energy function is defined as:

ELGIF = ω
2∑
i=1

λi

∫
|I (x)− ci|2Mi(φ(x))dxdy

+ (1− ω)
2∑
i=1

∫ ∫
Kσ (x − y)|I (y)− fi(x)|2

×Mi(φ(y))dxdy+ u
∫
�

1
2
(|∇φ(x)| − 1)2 dx

+ v
∫
�

|∇H (φ(x))| dx, (3)

where ω is a weight that controls the contributions of the first
two terms.Kσ is a Gaussian kernel with standard deviation σ .
fi(x)(i = 1, 2) are two functions that fit local image intensities
near the point x inside and outside of the evolving curve,
respectively.

The LGIF model produces significant improvement in
inhomogeneous intensity image segmentation, because it
avoids the disadvantages that the CV model has in segment-
ing images with intensity inhomogeneity and the LBF model
has in its poor robustness to noise and to initialization, but
retains the advantages that the CVmodel has in its robustness
to noise and to initialization and the advantages that the LBF
model has in segmenting images with intensity inhomogene-
ity. Nevertheless, it cannot segment severe inhomogeneous
images with complex background because of using a fixed
weight and the inherent defects of the CVmodel and the LBF
model.

III. PROPOSED METHOD
In this section, we describe the proposed method LaG_ACM.
Its architecture is shown in Fig. 1.

A. ENERGY TERM
The energy function of the proposed method is defined as:

ELaG_ACM = (1− Ψ )EG + ΨEL + ER, (4)

where Ψ is the adaptive weighting function. EG, EL and ER

are the global energy term, the local energy term and the
regularization term, respectively. The detailed definition of
each term is described in the following subsections.

1) GLOBAL ENERGY TERM
The purpose of segmentation is to find the best partition of
image I , so we define a global fitting image (GFI) formu-
lation IGFI to fit the original image I . Let � = {�1 ∪

�2∪, · · · ,∪�N } be the image domain, where �i ∩ �j = ∅

for i 6= j, I = ∪Ni=1�i and �i denotes the ith partition of
image I . For the two-phase case,� is divided into�1(φ ≥ 0)
and �2(φ ≤ 0), respectively, and the global image fitting
formulation is defined as:

IGFI (x) =
2∑
i=1

ciMi(φ(x)), (5)

where ci(i = 1, 2) is the average intensity of the ith object
region. φ is the level set function and φ = 0 is the
zero level set of the evolving curve. M1(φ) = H (φ) and
M2(φ) = 1−H (φ) are membership functions of each region.
H (φ) is the Heaviside function and is defined as:

H (φ) =

{
1, if φ ≤ 0
0, if φ ≥ 0.

(6)

Based on relative entropy, a difference measure operator,
the global energy term is defined as:

EG =
∫
�

(
I (x)log

I (x)
IGFI (x)

+ IGFI (x)log
IGFI (x)
I (x)

)
dx. (7)
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FIGURE 1. Illustration of the architecture of the LaG_ACM. By using image entropy, the weighting function first adaptively adjusts the weight between the
local and the global terms based on the inhomogeneous image intensity. Then the global term accelerates the evolving curve to the boundary and the
local term estimates the bias field and extracts the local intensity information. Finally, the LaG_ACM finishes the segmentation for the image with
intensity inhomogeneity under the effect of the regularization term.

FIGURE 2. Illustration of the weighting function. From left to right: (left) the initial contour (the green
line) and the final segmentation result (the red line) in the original image, (middle) the final contour in
the local entropy image, (right) the value of the weighting function Ψ during segmentation.

2) LOCAL ENERGY TERM
An inhomogeneous intensity image consists of an object,
background and a bias field. If we can accurately estimate
the bias field, the issue of inhomogeneous intensity image
segmentation can be addressed by subtracting the bias field.
Inspired by this observation, we define a local image bias
field (LIBF) formulation to estimate the bias field, which
assumes that the bias field in the image domain is slowly
changing, and the intensity in a local neighborhood is con-
stant. That is:

ILIBF (x) = w(x, y)
2∑
i=1

b(y)θiMi(φ(x)), (8)

where w(u) = βe−|u|
2/2σ 2 (|u| ≤ γ , γ denotes the local

neighborhood radius, and β the normalization constant), is a
truncated Gaussian function controlling the local neighbor-
hood of the local image bias field. b denotes the bias field.
θi denotes the average intensity of the local neighborhood of
the ith region �i. Based on the mean squared error, the local
energy term is defined as:

EL =
1
2

∫ ∫
|I (x)− ILIBF (x)|2 dxdy. (9)

3) WEIGHTING FUNCTION
As mentioned in Section I, the weight in the hybrid
model plays an important role in the segmentation accuracy

and efficiency. In this section, we define a novel weighting
function using image entropy. Fig. 2, is a synthetic image
with intensity homogeneity, and the intensity changes greatly
across the boundary. At the beginning of evolution, the local
entropy near the evolving curve is relatively small. As a result,
the weight is small and the global energy term plays the main
role to accelerate the curve moving towards the boundary.
With the propagation of the curve to the edge, the weight
increases as shown in the right image and the local energy
term gradually plays the main role to extract the local image
intensity. The weighting function Ψ is defined as:

Ψ = mean
(

ξ −min(ξ )
max(ξ )−min(ξ )

)
∈ [0, 1], (10)

where mean denotes the mean operator. ξ is the local entropy,
and is defined as:

ξ = −

∫
x∈{φ(x)=0}

ρ(x)logρ(x) dx, (11)

where ρ denotes the intensity of point x in �x .

4) REGULARIZATION TERM
In order to ensure stable evolution of the level set and to avoid
complex and time-consuming re-initialization, a regulariza-
tion term is indispensible to the ACM, and is defined as:

ER = v
∫
�

|∇H (φ)| dx + u
∫
�

p(|∇φ|) dx, (12)
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FIGURE 3. Segmentation results by the proposed method with different initializations. The green lines and red lines denote the initial contours and the
final segmentation results, respectively.

where u and v are the balancing factors. The first term is
the length regularization term, playing the role to suppress
small isolated region in the final results. The second term
is the penalty term to avoid the re-initialization procedure,
and p(s) is the energy density. Using the traditional penalty
term, a ACM often exhibits unstable behavior as mentioned
in Section II-B since the diffusion rate dp(s) =

p′(s)
s = 1− 1

s
approaches ∞ when s → 0 [22]. To address this issue,
we propose a double-well piecewise polynomial, which is
defined as:

p(s) =


1
2
s2(s− 1)2, if s ≤ 1

1
2
(s− 1)2, if s ≥ 1.

(13)

dp(s) is the diffusion rate defined as:

dp(s) =
p′(s)
s
=

(s− 1)(2s− 1), if s ≤ 1

1−
1
s
, if s ≥ 1.

(14)

From the above two equations, we can see that the novel
penalty term completely avoids the unstable issue because the
diffusion rate dp(s) = 1 instead of dp(s)→∞ when s→ 0.

B. LEVEL SET FORMULATION AND IMPLEMENTATION
To complete the final segmentation, the level set implemen-
tation and numerical implementation are needed to minimize
the LaG_ACM, and they are described next.

1) TWO-PHASE LEVEL SET IMPLEMENTATION
For the two-phase case, the image domain is divided into two
disjoint regions using one level set φ only, and the energy

Algorithm 1 The Algorithm of LaG_ACM
Input:

Read in the image to be segmented and initialize the level
set function φ0 = φ0.
Initialization:

Set the values of standard deviation of the truncated
Gaussian function σ , coefficients µ, ν, time-step 1t , grid
spacing interval h, ε, stop condition coefficients ξ and num-
ber of iteration termination m.
Repeat:

1. Compute the weighting function according to Eq. 10
and Eq. 11;

2. Compute ci, b, θi according to Eq. 19 to
Eq. 21 or Eq. 28 to Eq. 30;

3. Compute Hε and δε according to Eq. 31 and Eq. 32;
4. Update the formulas according to Eq. 16 to

Eq. 18 or Eq. 25 to Eq. 27;
Until: (|L(φi+1)− L(φi)| < ξ ) or the number of iterations is
equal to m.
Output:

The final segmentation contour φ = φi+1.

function is defined as:

ELaG_ACM = (1− Ψ )
∫
�

(
I (x)log

I (x)
IGFI (x)

+ IGFI (x)log
IGFI (x)
I (x)

)
dx

+Ψ
1
2

∫ ∫
|I (x)− ILIBF (x)|2 dxdy

+ v
∫
�

|∇H (φ)| dx + u
∫
�

p(|∇φ|) dx. (15)
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FIGURE 4. Segmentation results of our method with different noise distributions. Row 1: Gaussian white noise with zero mean and different variances
(σG = 0.01,0.02,0.03,0.04,0.05). Row 2: Salt and pepper noise with different noise densities (ς = 0.03,0.06,0.09,0.12,0.15). Row 3: Speckle noise
with zero mean and different variances (σS = 0.1,0.15,0.2,0.25,0.3). We use the Matlab built-in function ‘‘imnoise’’ to add these noises to the original
image.

Using the Euler-Lagrange equation and gradient descent
flow, and keeping all the parameters fixed and minimizing
the above equation with respect to φ, we get the iteration
formulation (see Appendix for derivation):

∂φ

∂t
= δ(φ)((1− Ψ )α1 + Ψα2)+ vδ(φ)div

(
∇φ

|∇φ|

)
+ udiv(dp(|∇φ|)∇φ), (16)

α1 =

(
I (x)

IGFI (x)
− 1− log

IGFI (x)
I (x)

)
(c1 − c2), (17)

α2 = (I (x)− ILIBF (x))(θ1 − θ2)(b⊗ w), (18)

where δ(φ) = dH (φ)
dφ is the Dirac delta function as mentioned

in Section II-A. div denotes the divergence operator, and dp(s)
the diffusion rate mentioned above. ⊗ represents the convo-
lution operator.

Similarly, keeping φ fixed and minimizing with respect
to parameters ci, b, θi, we get the update formulas of the
parameters as follows:

ci =

∫
�
IMi(φ) dxdy∫

�
Mi(φ) dxdy

, (19)

θi =

∫
�
(w⊗ b)IMi(φ) dy∫

�
(w2 ⊗ b2)M2

i (φ) dy
, (20)

and

b =

(
2∑
i=1

IθiMi(φ)

)
⊗ w(

2∑
i=1
θ2i M

2
i (φ)

)
⊗ w2

. (21)

2) MULTI-PHASE LEVEL SET IMPLEMENTATION
It is difficult for a two-phase level set method to segment
multi-object intensity image since the two-phase case can
only divide the intensity into two categories: object and back-
ground. Thus, for multi-object images with intensity inhomo-
geneity, such as in brain Magnetic Resonance Images (MRI),
the multi-phase level set implementation is indispensable.
In particular, the image domain � is divided into N (N > 2)
disjointed regions {�i}

N
i=1 using k level set functions

8 = {φj}
k
j=1(usually k = log2N ), and the energy function
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FIGURE 5. Segmentation results for synthetic images. From top to bottom: original images with corresponding initial contours (the green lines), the final
segmentation results (the red lines) of the DRLSE [22], the CV [29] and the LaG_ACM, respectively.

is defined as:

ELaG_ACM = (1− Ψ )
∫
�

(
I (x)log

I (x)
IGFI (x)

+ IGFI (x)log
IGFI (x)
I (x)

)
dx.

+Ψ
1
2

∫ ∫
|I (x)− ILIBF (x)|2 dxdy

+ v
k∑
j=1

∫
�

|∇H (8)| dx

+ u
k∑
j=1

∫
�

p(|∇8|) dx, (22)

where IGFI and ILIBF are changed to:

IGFI (x) =
N∑
i=1

ciMi(8(x)), (23)

ILIBF (x) = w(x, y)
N∑
i=1

b(y)θiMi(8(x)). (24)

The minimization of the multi-phase LaG_ACM is similar
to that of the two-phase case. Based on the gradient descent
flow and the Euler-Lagrange equation, the final iteration
equation is:

∂φj

∂t
= δ(φj)((1− Ψ )α1 + Ψα2)+ v

k∑
j=1

δ(φj)div
(
∇φj

|∇φj|

)

+ u
k∑
j=1

div(dp(|∇φj|)∇φj), (25)

where α1, α2, ci, b and θi are computed as:

α1 =

(
I (x)

IGFI (x)
− 1− log

IGFI (x)
I (x)

)
∂IGFI

∂φi
, (26)

α2 = (I (x)− ILIBF (x))
∂ILIBF

∂φi
, (27)
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FIGURE 6. Segmentation results for synthetic images with different degrees of intensity inhomogeneity. From left to right: original images with
corresponding initial contours (the green lines), segmentation results using the LBF [36], the LGDF [38], the LCV [39], the LIF [40] and the LaG_ACM,
respectively.

ci =

∫
�
IMi(8) dxdy∫

�
Mi(8) dxdy

, (28)

θi =

∫
�
(w⊗ b)IMi(8) dy∫

�
(w2 ⊗ b2)M2

i (8) dy
, (29)

b =

(
N∑
i=1

IθiMi(8)
)
⊗ w(

N∑
i=1
θ2i M

2
i (8)

)
⊗ w2

, (30)

where the membership functionMi(8(x)) is defined as:

Mi(8(x)) =

{
1, if x ∈ �i

0, else.
(31)

For instance, in the four-phase case, k = 2 and
M1 = H (φ1)H (φ2), M2 = H (φ1)(1 − H (φ2)),
M3 = (1− H (φ1))H (φ2), M4 = (1− H (φ1))(1− H (φ2)).

3) NUMERICAL IMPLEMENTATION
In order to solve Eq. 16 and Eq. 25 numerically on a computer,
the central difference and the forward difference are used
in this paper. Specifically, the level set φ(x, t) is discretized
over a mesh using grid spacing interval h and time step 1t .

Then, we approximate the Heaviside function H (defined in
Eq 6) and the Dirac delta function δ(φ) = d

dφH (φ) as follows:

Hε(φ) =
1
2

[
1+

2
π
arctan

(
φ

ε

)]
, (32)

δε(φ) =
1
π

ε

ε2 + φ2
. (33)

The detailed steps of LaG_ACMare shown in Algorithm 1.
L(φ) is the length of the level set φ. m is a non-negative
constant to terminate the curve evolution. φi is the evolving
curve at the ith iteration.

IV. EXPERIMENTS
The performance of the proposed LaG_ACM is evaluated in
this section. All the experiments are implemented in Matlab
R2017b on a PC with Intel Core i7 3.4 GHz CPU, 24 GB
RAM, and Windows 7 operating system. Besides, we fix the
parameters 1t = 0.1, h = 1, ε = 1 and ν = 1, in all
experiments.

A. DATASETS
Since specialized datasets are not available for evaluating
segmentation results using active contour models, we use the
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FIGURE 7. Segmentation results for two natural images and two medical images. From left to right: original images with corresponding initial contours
(the green lines), segmentation results using the LBF [36], the LGDF [38], the LCV [39], the LIF [40] and the LaG_ACM, respectively.

FIGURE 8. Illustration of P, JS and DC values for images shown in Fig. 7, respectively.

images appeared in previous papers based on active contour
mode to conduct comparison experiments. Besides, to facil-
itate future research in the direction of active contour model
and to more comprehensively evaluate the proposed method,
we also conduct comparison experiments on some images in
dataset MRSA-10K [64], [65], which is designed for saliency
detection methods. We do not use all the images in the dataset
since many images are not suitable for active contour mod-
els. Furthermore, we also use the brain Magnetic Resonance
Images dataset [66] to evaluate the proposed method for
segmenting medical images.

B. EVALUATION MEASURES
To quantitatively analyze the final segmentation results,
several commonly used evaluation measures in the field of

pattern recognition and machine learning are used in this
paper. In particular, as shown in Table 1, three measures
are used to evaluate segmentation accuracy: Precision (P),
Jaccard similarity (JS) and Dice coefficient (DC). The arrow
symbol ↑ shown in the table means that, the larger the mea-
sure, the better the accuracy.

C. MODEL EVALUATION AND PERFORMANCE
COMPARISON
In the following subsections, effectiveness assessments and
comparison experiments are conducted on images with
different degrees of intensity inhomogeneity, for example,
synthetic images, natural images, medical images, remote
sensing images, infrared images and sonar images to validate
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FIGURE 9. Comparison experiments on three infrared images and three remote sensing images with local and global ACMs. From left to right: original
images with corresponding initial contours (the green lines), segmentation results of the LGIF [49], the LaG_FED [50], the GARAC [53], the LaG_II [9] and
the LaG_ACM, respectively.

the robustness to noise and to initialization, segmentation
accuracy and segmentation efficiency of the proposedmethod
LaG_ACM. For each compared method, we use the original
parameter settings included in the source code.

1) ROBUSTNESS EVALUATION
The robustness to initialization is tested on two natural images
and one medical image as shown in Fig. 3. The green lines
denote different initial contours that can be set inside, outside
or across the object edge with different shapes, and the red
lines denote the final segmentation results. From the results,
we see that the proposed method is robust to different initial-
izations for images with intensity inhomogeneity.

Fig. 4 shows the segmentation results of our method for a
synthetic image with different kinds of noise distributions.

TABLE 1. Definitions of evaluation measures.

Row 1 to Row 3 are, respectively, images corrupted with
Gaussian noise, salt and pepper noise and speckle noise with
different levels, which are obtained using the Matlab built-in
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FIGURE 10. From left to right: original images with initial contours of two level set functions: φ1 and φ2 (the red lines denotes φ1, while the blue lines
denotes φ2), final segmentation results, joint segmentation regions, white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF), using our
method, respectively.

FIGURE 11. Comparison with bias field corrected ACMs: From left to right: the values of Jaccard
similarity (JS) for WM, GM, and CSF using the LIC [60], the MICO [61], the CB_LSM [8] and the LaG_ACM,
respectively.

function ‘‘imnoise’’ to add these noises to the original image.
We observe that our method produces similar results at dif-
ferent noise levels for different kinds of noise distributions.

2) COMPARISON WITH EDGE-BASED ACMs
Since the DRLSE [22] model and the CV [29] model are
famous for their segmentation speed in homogeneous images
with strong edges, a comparison experiment with the DRLSE
and the CV is conducted on six synthetic images used in
previous papers to validate the segmentation speed of the
LaG_ACM. As shown in Fig. 5, almost all the three mod-
els can accurately generate the segmentation except for the
third image to the fifth image using the DRLSE method.
Table 2 shows the corresponding running time and the num-
ber of iterations of each method. It can be observed that the

TABLE 2. Running time and number of iterations for images shown
in Fig. 5.

proposed method is much faster than the other models since
the weighting function can adaptively adjust the weight to
accelerate the convergence.
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FIGURE 12. Comparison results on natural images. From left to right: original images with corresponding initial contours, segmentation results of
SLSA [63], LHIF [56], ASACM [10] and LaG_ACM, respectively.

3) COMPARISON WITH LOCAL REGION-BASED ACMs
Fig. 6, shows the comparison results on four synthetic images
with different degrees of intensity inhomogeneity between
our method and four existing local region-based ACMs,
the LBF [36], the LGDF [38], the LCV [39] and the LIF [40].
It can be seen that with the increase of the degree of image
intensity inhomogeneity, the segmentation results using the
other four methods become worse. Especially for the fourth
image with severe intensity inhomogeneity, all the four meth-
ods fail to extract the correct contour of the object, which
validates the conclusion mentioned in Section I that the local
region-based ACMs are suitable for segmenting images with
slight intensity inhomogeneity but not for images with severe
intensity inhomogeneity. In contrast, the evolving curves of
our method can always stop at the real edges of objects.

To further show the superior performance of our method,
as shown in Fig. 7, another comparison experiment on two

natural images and two medical images with the above four
methods are conducted. The evaluation measures in Table 1
for segmenting the above images are shown in Fig. 8. We see
that our proposedmethod gives higher segmentation accuracy
compared to that of other models. This is because the local
term of our model can accurately estimate the bias field and
avoid the negative effects caused by it.

4) COMPARISON WITH HYBRID ACMs
In Fig. 9, we use three infrared images and three remote
sensing images with severe intensity inhomogeneity to show
the superiority of the proposed method compared to the
LGIF [49], the LaG_FED [50], the GARAC [53], and the
LaG_II [9]. From the segmentation results, we see that
our method outperforms other methods, especially for the
third and sixth images. For other images, the other four
methods obtain over-segmentation or under-segmentation.
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FIGURE 13. Comparison results on different weights. From left to right: original images with three different initial contours, segmentation results using
w = 0, w = 0.5, w = 1 and w = Ψ , respectively.

FIGURE 14. Illustration of the values of Ψ during segmentation of images shown in Fig. 13.

For example, the segmentation results of the second image
using the LGIF and the LaG_II show that the region between
the two chimneys (second row in Fig. 9) is under-segmented,
and the segmentation result of the first image using the
GARAC shows that the feet of the two persons on the right
are over-segmented. Table 3 shows the evaluation measures.
We observe that our method gives a higher segmentation
accuracy compared to that of the other four models, because
the local image bias field formulation can accurately extract
the local intensity information and estimate the bias field.

Fig. 10 shows the joint segmentation results of brain Mag-
netic Resonance Images (MRI) [66], which consist of three
types of tissues: white matter (WM), gray matter (GM) and
cerebrospinal fluid (CSF). Considering one level set func-

TABLE 3. The values of precision (P) for images shown in Fig. 9. The best
results are shown in bold.

tion can only segment two types of tissues, we use two
level set functions φ1 and φ2 according to Eq. 22 in this
experiment. We observe that the proposed method success-
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FIGURE 15. Bias-correction results on a medical image and a natural texture image. From left to right: original images, initial contours, final
segmentation results, bias fields and corrected images, respectively.

fully extracts the three parts of the human brain. Fig. 11
shows the values of Jaccard similarity (JS) for WM, GM and
CSF using the LIC [60], the MICO [61], the CB_LSM [8]
and the LaG_ACM, respectively. It can be seen that our
method performs better than the other methods for brain MRI
segmentation.

5) COMPARISON WITH THE STATE-OF-THE-ART ACMs
To further evaluate the proposed method, we compare our
method with three state-of-the-art methods including the
local hybrid image fitting (LHIF) model [56], the SLSA
model [63] and the ASACM model [10] on images of
MRSA-10K [64], [65] as shown in Fig. 12. The segmentation
results show that the three state-of-the-art methods obtain
over-segmentation and under-segmentation. In contrast, our
method can always accurately segment the four severe inho-
mogeneous images since our local term can accurately eval-
uate the bias field and avoid the negative effects. In addition,
the defined weighting function can achieve better regular-
ization than our previous method ASACM and obtain better
performance.

D. ABLATION ANALYSIS
1) EFFECTIVENESS OF THE WEIGHTING FUNCTION
In Fig. 13, the effectiveness of the weighting function Ψ
is validated on a sonar image with severe intensity inho-
mogeneity by comparing the segmentation results using a
fixed weight and a weighting function Ψ . From the seg-
mentation results using only the local term shown in the
fourth column, we see that the local term has low robustness
to initialization since different initializations give different
segmentation results. Although the integration of the local
term and the global term improves the performance of the
model, it still cannot guarantee accuracy since the weight may
not be set properly, which can be seen from the results in

the third column. In contrast, using the adaptive weighting
functionΨ , the LaG_ACM achieves consistent final segmen-
tation results for different initialization as shown in the fifth
column. Fig. 14 shows the values of Ψ during segmentation.
In addition to improving accuracy, Ψ also improves the seg-
mentation efficiency.

2) EFFECTIVENESS OF THE BIAS FIELD TERM
Fig. 15 shows the bias-corrected results on a medical image
and a natural texture image using ourmethod. From the fourth
and the fifth columns, we see that b in Eq. 8 successfully
estimates the bias field and avoids the influence of intensity
inhomogeneity. To more clearly show the difference between
the original images and the corrected images, their histograms
are shown in Fig. 16.

FIGURE 16. Histograms for images shown in Fig. 15.

V. CONCLUSIONS
In this paper, we propose a novel local and global ACM
(LaG_ACM) for segmenting images with intensity inhomo-
geneity. Specifically, we first construct a global fitting image
formulation and define a novel global term based on rel-
ative entropy between the original images and the global
fitting image formulation to enable the proposed method to
be robust to noise and to initialization. Then, by integrating
the proposed local bias field fitting images formulation with
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the active contour model, a local term based on the mean
squared error is defined, which helps to estimate the bias field
and eliminate the influence of the inherent intensity inho-
mogeneity of the original image. More importantly, we pro-
pose a novel weighting function based on image entropy to
adaptively adjust the weight between the two terms, which
significantly improves the segmentation speed. Finally, our
method is evaluated by segmenting different types of inho-
mogeneous images. Comparison experiments with state-of-
the-art models also validate the performance of the proposed
method.

One shortcoming of the proposed method is that it per-
forms poorly in segmenting color images [67] since it only
uses intensity information to construct the energy function.
In the future, we plan to tackle such an interesting problem.

APPENDIX
For two-phase level set, the minimization of the energy func-
tion ELaG_ACM (φ) in Eq. 16 and Eq. 25 is equivalent to
solving the steady-state solution of the gradient flow equation
as bellow:

∂φ

∂t
= −

∂ELaG_ACM

∂φ
,

where ∂E
LaG_ACM

∂φ
=

∂EG
∂φ
+
∂EL
∂φ
+
∂ER
∂φ

is the Gâteaux derivative
of the global termEG, the local termEL and the regularization
term ER. To solve them, we first add the variation η to the
level set function φ: φ̃ = φ + εη. Then, keeping all the other
parameters ci, b, θi fixed, we can get:

∂EG(φ)
∂φ

= lim
ε→0

[
∂

∂ε

∫
�

(
I (x)log

I (x)
IGFI (x)

+ IGFI (x)log
IGFI (x)
I (x)

)
dx
]

= lim
ε→0

[ ∫
�

(
−

I (x)
IGFI (x)

+ 1+ log
IGFI (x)
I (x)

)
× (c1 − c2)ηδε(φ̃) dx

]
=

∫
�

(
−

I (x)
IGFI (x)

+ 1+ log
IGFI (x)
I (x)

)
× (c1 − c2)ηδε(φ) dx,

∂EL(φ)
∂φ

= lim
ε→0

(
∂

∂ε

1
2

∫ ∫
|I (x)− ILIBF (x)|2 dxdy

)
= lim

ε→0

(
−

∫
(I (x)− ILIBF (x))(θ1 − θ2)

× (b⊗ w)ηδε(φ̃) dx
)

= −

∫ (
(I (x)− ILIBF (x))(θ1 − θ2)

× (b⊗ w)ηδε(φ)
)
dx.

Since ∂E
R(φ)
∂φ

has been already analyzed in [22], we will not go
into them. So the Euler-Lagrange equation can be obtained:

(1− Ψ )
(
−

I (x)
IGFI (x)

+ 1+ log
IGFI (x)
I (x)

)
(c1 − c2)δε(φ)

−Ψ (I (x)− ILIBF (x))(θ1 − θ2)(b⊗ w)δε(φ)

− vδε(φ)div
(
∇φ

|∇φ|

)
− udiv(dp(|∇φ|)∇φ) = 0.

Finally, we can obtain the gradient descent flow as follows:

∂φ

∂t
= δε(φ)((1− Ψ )α1 + Ψα2)+ vδε(φ)div

(
∇φ

|∇φ|

)
+ udiv(dp(|∇φ|)∇φ),

α1 =

(
I (x)

IGFI (x)
− 1− log

IGFI (x)
I (x)

)
(c1 − c2),

α2 = (I (x)− ILIBF (x))(θ1 − θ2)(b⊗ w).

The multi-phase case can be derived similarly.
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