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ABSTRACT Green computing has become a hot issue for both academia and industry. The fifth-
generation (5G) mobile networks put forward a high request for energy efficiency and low latency. The cloud
radio access network provides efficient resource use, high performance, and high availability for 5G systems.
However, hardware and software faults of cloud systems may lead to failure in providing real-time services.
Developing fault tolerance technique can efficiently enhance the reliability and availability of real-time cloud
services. The core idea of fault-tolerant scheduling algorithm is introducing redundancy to ensure that the
tasks can be finished in the case of permanent or transient system failure. Nevertheless, the redundancy
incurs extra overhead for cloud systems, which results in considerable energy consumption. In this paper,
we focus on the problem of how to reduce the energy consumption when providing fault tolerance. We first
propose a novel primary-backup-based fault-tolerant scheduling architecture for real-time tasks in the cloud
environment. Based on the architecture, we present an energy-efficient fault-tolerant scheduling algorithm
for real-time tasks (EFTR). EFTR adopts a proactive strategy to increase the system processing capacity
and employs a rearrangement mechanism to improve the resource utilization. Simulation experiments are
conducted on the CloudSim platform to evaluate the feasibility and effectiveness of EFTR. Compared with
the existing fault-tolerant scheduling algorithms, EFTR shows excellent performance in energy conservation

and task schedulability.

INDEX TERMS Energy efficiency, fault tolerance, real-time, scheduling, cloud, 5G.

I. INTRODUCTION

The increasing requirements of communication quality have
promoted the evolution of mobile communication technolo-
gies. 5G networks are expected to provide ubiquitous connec-
tivity and real-time interaction. It is forecasted that there will
be more than 50 billion connected devices in 2020 [1]. The
mobile communication data in 2020 will be approximately
1000 times more than that in 2010 [2]. To achieve similar
energy consumption, the energy efficiency (usually mea-
sured in bits/Joule) should be increased by 100x times [3].
According to the statistics, the power consumption of tra-
ditional base stations (BSs) account for 72% of the total
power consumption of radio access networks (RAN), but the
energy efficiency of BS is only about 50% [4]. BSs usually
have excessive computing capacity to deal with the traffic

during peak hours. However, the resource utilization is low
during off-peak hours. Besides, the ancillary equipments in
distributed BSs consume large amount of energy. Spurred
by both economic and environmental considerations, green
computing has become a research priority in the design of
information systems [S]-[7].

Cloud radio access network (C-RAN), which centralizes
the baseband processing into cloud data centers, is a candi-
date solution for 5G [8]. In C-RAN, baseband unit (BBU)
pool is responsible for the signal processing, and remote
radio heads (RRHs) are distributed to receive and transmit
the data from/to user equipments (UEs). BBU and RRHs
are connected via high-speed optical fronthaul. Centralized
signal processing considerably reduces the energy consump-
tuion of cooling devices and other supporting equipments
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in BSs. Scalable computing can dynamically adjust the sys-
tem resources according to the workload demands in the
cloud environment [9]. Centralized deployment can improve
the BS utilization by sharing resources under dynamic traffic
load.

As a new paradigm of delivering computing services,
cloud computing has the features of dynamic scalabil-
ity, measured service and on-demand resource provisioning
[10]-[12]. These features largely depend on virtualization.
With virtualization, physical hosts can be divided into several
virtual machines (VMs) [13]. As the mainstay of computing
resources, cloud-based BBU pool takes charge of most task
processing. It is of paramount importance to improve the
energy efficiency of BBU servers. The elasticity of cloud
computing raises challenges for C-RAN to increase the
resource utilization. In addition, with the tremendous increase
of network traffic, it is another tricky problem of how to meet
the deadline constraints of real-time user requests.

Nowadays more and more real-time services are realized
through wireless communication systems, e.g., Internet of
Things (IoT), vehicular networks [14], and video stream-
ing [15]. The timeliness of services should be guaranteed.
In real-time systems, the computational results should be
produced not only correctly but also timely [16]-[18]. The
consequences of missing deadlines are different for different
real-time systems [19]. For hard real-time systems, missing
deadlines can result in catastrophe consequence. While for
soft real-time systems, violation of time constraints usually
results in service quality degradation, but the system can
continue running [20].

In large-scale cloud data centers, node failures are com-
mon [21]. Therefore, fault tolerance is a mandatory mecha-
nism of wireless networks. Since one computing instance’s
failure may cause some tasks to violate the deadline con-
straints, C-RAN should ensure the timeliness of real-time
tasks even in case of failure. Fault-tolerant scheduling is an
effective method to increase the system reliability. Primary-
backup (PB) model is a popular fault-tolerant scheme. In the
PB model, each task is duplicated and the two copies (i.e., pri-
mary copy and backup copy) are sent to different computing
nodes for fault tolerance. Fundamentally, PB model utilizes
the redundancy technology to improve the reliability of the
system [22].

To the best of our knowledge, no previous work has been
done on dynamic energy-efficient fault-tolerant scheduling
for real-time tasks in cloud-based 5G networks. In this paper,
the UEs’ tasks that we concern are independent, aperiodic,
and non-preemptive. Both energy conservation and fault
tolerance is considered while meeting the real-time require-
ments. We first analyze the schedulability of real-time tasks
and then try to reduce the energy consumption. In addition,
we sufficiently consider the dynamics and elasticity of cloud
computing, e.g., VM migration and VM creation. When the
current system cannot guarantee the timing requirements,
new VMs are added. Proactive strategy is adopted to select
proper new VMs. Simulation results show that proactive

53672

strategy and rearrangement mechanism bring substantial
improvement in energy efficiency and tasks guarantee ratio.

The rest of this paper is organized as follows. Related work
is described in Section II. Section III presents the system
model, including architecture framework, power model, and
VM migration. Scheduling criteria are also analyzed here.
Section IV describes the EFTR algorithm in detail. Section V
demonstrates the experiments to evaluate the performance of
EFTR. Finally, we make conclusions in Section VI.

Il. RELATED WORK

Energy-efficient techniques of wireless networks have been
studied from the aspects of mobile devices, communica-
tion infrastructures, and cloud data centers. Many researches
are focused on the former two cases [23]-[26]. This work
focuses on energy saving in cloud data centers through task
scheduling.

Since finding the optimal allocation of tasks in unipro-
cessor and multiprocessor systems is an NP-complete prob-
lem [27], many varieties of heuristics for scheduling tasks
have been devised. For scheduling preemptive periodic
tasks in uniprocessor systems, Liu and Layland [28] pro-
posed the Rate-Monotonic (RM) algorithm, which priori-
tizes tasks in proportion to their frequency and is proved to
be the optimal fixed-priority algorithm. To precisely judge
the schedulability of tasks with priorities on uniprocessor,
Joseph and Pandya [29] put forward the sufficient and nec-
essary condition, called the Completion Time Test (CTT).
Rate-Monotonic First-Fit (RMFF), which extends the RM
algorithm from uniprocessor to multiprocessor with first-fit
bin-packing heuristic, was designed by Dhall and Liu [30].
Some works have been done on task scheduling in C-RAN.
Xia et al. [7] proposed an iterative coordinate descent algo-
rithm to find the scheduling solution for minimizing the
network power consumption of downlink C-RAN. Wang
and Cen [31] proposed a real-time scheduling algorithm for
periodic preemptive tasks in C-RAN. Zhang et al. [32] put
forward the near-far C-RAN (NFC-RAN) architecture com-
posed of near edge computing (NEC) and far edge computing
(FEC). Task assignment between NEC and FEC is elaborated
to increase the task completion rate. However, fault tolerance
has not been studied in these algorithms.

Bertossi et al. [33] put forward a multiprocessor-
based fault-tolerant algorithm FTRMFF using PB model.
The FTRMFF algorithm considers both backup overbook-
ing and deallocation [34] to reduce system overhead.
Guo and Xue [35] proposed the QFTRMFF algorithm, which
strives to optimize the QoS levels of tasks after the FTRMFF
scheduling. Unfortunately, these works are designed for
homogenous systems and not suitable for heterogeneous
systems. The computing resources in C-RAN have vari-
ous processing capabilities [36]. In addition, the tasks in
above works are preemptive, i.e., a task can take the place
of another executing task if their execution time overlaps.
However, we consider non-preemptive tasks in this paper.
Besides, some scheduling algorithms consider tasks with
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FIGURE 1. Structure of C-RAN.

inter-dependence [37]-[39], but we focus on independent
tasks. Dependent tasks can be transformed to independent
tasks by setting new start times and deadlines [40].

The aforementioned methods fall into the category of static
scheduling. 5G systems allow users to transmit and receive
data in a timely manner and require on-line scheduling
[41]-[43]. Such dynamic processing cases raise higher
demands on scheduling since tasks are independent and no
priori knowledge about the upcoming tasks is given [44].
Luo et al. [45] proposed DYFARS, which leverages PB model
to provide fault tolerance and enhances the reliability without
additional costs. Zhu et al. [46] proposed a QoS-aware fault-
tolerant scheduling algorithm (QAFT) to increase the QoS
levels of real-time tasks. QAFT reduces system overhead
by advancing primary copies and delaying backup copies.
However, above fault-tolerant algorithms do not consider
virtualization, which is the fundamental technique of cloud
computing.

Recently, Wang et al. [47] put forward a fault-tolerant
elastic scheduling algorithm for real-time tasks in clouds

called FESTAL. FESTAL takes virtualization into account,
and uses backup overlapping to realize high system utiliza-
tion. However, the FESTAL algorithm fails to take energy
saving into account. Nonetheless, it provides a general
method for task scheduling in the fault-tolerant context.

Ill. SCHEDULING MODEL

A. ARCHITECTURE FRAMEWORK

C-RAN is composed of BBU pool, RRHs, and fronthaul
links, as shown in Fig. 1. After receiving requests from UEs,
RRHs send pre-processed baseband signals to BBU pool for
further processing. Each RRH is connected with a BBU pool
via fronthaul link. BBU pool takes over most of the signal
processing previously done in BSs. BBU pool consists of
computing servers or physical hosts. Different from tradi-
tional distributed system, UEs’ tasks are executed by VMs
rather than by physical hosts. Each host contains several VMs
which are responsible for executing tasks.

Fig. 2 shows the architecture framework of fault-tolerant
scheduling in the BBU pool. Multiple users submit their tasks
to the system. When a new task arrives, firstly it is sent to
Global Scheduler. After analyzing the information gathered
from all computing nodes, Global Scheduler makes decisions
according to the scheduling algorithm and sends the primary
and backup copies of the task to different VMs. Then the
primary copy is executed if the VM is idle, or waits in the local
queue if the VM is busy. When the primary copy is finished
successfully, the backup copy is deleted and the resource
occupied by the backup copy is reclaimed. Local Scheduler
is in charge of rearranging the order of the local queue
if any backup copy is deallocated from the VM. Resource
Manager decides how VMs should be added or migrated if
the current processing capacity is unable to meet the timing
requirements.

The power consumption of C-RAN is typically composed
of three parts: RRH power consumption, fronthaul power

| Local Scheduler |
t [+ [ copy [ copy ] M
\o“/ :_'_':::_':::_'::::_':I'
S o  _Local Scheduler i_>m Host 1
wer\ o | L Leopy [eomy] |
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user7 i Resource Manager '~~~ | ___ .
T ' COpJ,\ i Local Scheduler
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FIGURE 2. Fault-tolerant scheduling architecture of BBU pool.
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consumption, and BBU pool power consumption [48]. This
work focuses on energy saving in virtualized BBU pool
through task scheduling.

B. SCHEDULING CRITERIA

In the BBU pool, each task from UE is sent to a physical host
and executed by a VM on the host. The k-th VM on j-th host 4;
is denoted by vmi. C; and Cji, which are measured by Million
Instructions per Second (MIPS), denote the processing capac-
ity of h; and vm respectively. In this paper, primary-backup
model is employed to realize fault tolerance. In this model,
each task #; has two copies: primary copy tiP and backup
copy tlB . The VMs that accommodate th and tiB are denoted
by vm(tilD ) and vm(tl.B ) respectively. tf is executed before tl.B .
When th is finished, the task is executed successfully and
tlB is removed from vm(tf). Task t; arrives at a; and must
finish before its deadline d;. /; is the length of the task and is
measured by Million Instructions (MI). The execution time of
task 7; on vmy is denoted by eji (t;) = I;/Cik. sf and fl-P denote
the start time and finish time of th . sf and fiB denote the start
time and finish time of tl.B . The start and finish times of copies
are decided by the scheduling algorithm. The backup copy
has two statuses: active and passive. A passive backup copy is
executed only when the system encounters failure, whereas an
active backup copy is always executed even without system
faults. The status of tiB is decided by:

iffiP > s?;

otherwise.

active,
st(t?) =

. ey
passive,

Fig. 3 gives an example. The horizontal axis represents
time. tfg and t2B adopt passive backup scheme while tf adopts
active backup scheme because f < slf, f2P < sg and

f3P > s133 . The active backup copy #3’ is composed of redundant
part tfR (shaded area) and non-redundant part th (unshaded
area). The redundant part tfR overlaps with the primary
copy tf in the time axis.
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FIGURE 3. lllustration of primary and backup copies.
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It is assumed that if the host host(tiP ) that accommo-
dates th encounters failure, all VMs on the host, including
vm(tf ), break down. The fault-tolerant scheduling algorithm
should guarantee that if a primary copy fails, its coresponding
backup copy can still finish before deadlines. The proposed
algorithm can tolerate at most one fault at any point of time.
If tolerating multiple faults at one time instant is required,
we can divide the hosts into several isolated groups, and apply
the algorithm to each group [49].

PB approach is accomplished by introducing redundancy,
i.e., the computing resource occupied by backup copies.
Except for resource reclaiming, backup-backup (BB) over-
lapping [33] is adopted in this work to reduce system over-
head. BB overlapping allows backup copies on the same
VM to share the same time interval, thus reducing the VMs
needed. Fig. 3 illustrates BB overlapping between & and 5.
18 and 1% are both passive backup copies. If host h; fails, 12
is invoked. There is no conflict between t? and tf because
when #]’ finishes at f5, 8 is deallocated.

The overlapping criteria and scheduling principles are ana-
lyzed below. It is assumed that #; is a newly arrived task. All
other copies have been scheduled before its arrival.

1) PRIMARY COPY

The only criterion for scheduling primary copy is that no
overlapping is allowed. Because if two primary copies over-
lap, there must be execution time conflict; if a primary copy
overlaps with a backup copy th , they also have conflict when
host(tf ) fails and th gets invoked.

2) BACKUP COPY
Theorem 1: Backup copy cannot be scheduled on the
host where the corresponding primary copy is located,
i.e., host(t?) # host(t?).
Proof: Prove by contradiction. Suppose that host(tlB) =
host(tl-P ). Regardless of whether vm(tlB) = vm(tiP ) or not,
if host(t) fails, both vm(t") and vm(t?) break down. Thus,

tiB cannot be invoked and fault tolerance is infeasible. O
Theorem 2: Backup copy cannot overlap any primary
copy.

Proof: Prove by contradiction. Suppose that tl.B overlaps
a primary copy tf) . When host(tiP ) fails, tlB must execute.
No matter when the failure happens, tlB is bound to execute
the entire task, thus incurring time conflict between tiB and tf .
Therefore, tiB cannot overlap tjP . |
Theorem 3: Backup copy cannot overlap backup copy if
their primary copies are on the same host, i.e., tlB cannot
overlap t]B if host(tip )= host(t}D ).
Proof: Prove by contradiction. Suppose that tl.B overlaps
tf and host(1f) = host(1]). When host(t]') fails, both 1/
and tf fail. tiB and th must execute, and execution time
conflict between tlB and t]B is inevitable. Therefore, tiB cannot
overlap ¢5. (|
Theorem 4: Redundant part of active backup copy cannot
overlap any backup copy, i.e., tlBR cannot overlap th .
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Proof: Prove by contradiction. Suppose that 28 over-
laps th . When host(t]P ) fails, t]B is invoked. But tlB always
executes, thus resulting in time conflict between tiBR and th .
Therefore, tiBR cannot overlap th. O

Theorem 5: Active backup copies cannot overlap with
each other.

Proof: Prove by contradiction. Suppose that tiB over-
laps 18, and both tiB and 8 are active. Then there must be
overlapping between tiBR and tf , or between tlB and t]BR, which
violates Theorem 4. Therefore, tiBR cannot overlap th. O

C. POWER MODEL

SPECpower benchmark [50] measures the power and per-
formance characteristics of server-class computer equipment.
For most servers, the data reflects linear relationship between
power consumption and processor utilization. Therefore,
the power model raised by Beloglazov et al. [51] is adopted in
this paper. The power consumption is defined in the following
equation:

P(t) =a - Ppuax + (1 — o) - Py - u(t), (2)

where P, is the power consumed when the server is 100%
loaded; « is the fraction of power consumed when the server
is idle; and u(z) is the CPU utilization which varies with time
due to different workloads.

Suppose there are N VMs on host #;, the CPU utilization
of h; is:

N

uy =y GO ®

P

where Cjx(t) equals Cji if vmjy is busy, or 0 if vy is idle.

The idle power « - P,y includes the power consumed
by disk, memory, network interface, etc. For example, for
PowerEdge R710 (Intel Xeon X5570, 16 cores x 2.93 GHz,
8 GB), the idle power is 65 W and 100% active power is
220 W. The fraction of power consumed when the server is
idle is 29.55%. We analyzed the data on SPECpower bench-
mark and calculated the ratios between idle power and 100%
active power (i.e., the power consumption when the server
is idle divided by the power consumption when the server is
fully utilized). « is set to the average ratio 30% in this paper.
Thus, the energy consumption for each host over a period of
time is defined as:

15}

n
E = f P(t)dt = 0.3Pmax(t2 — 11) + 0.7Pmax / u(t)dt.
n n
“

The energy consumption of vmj; to execute primary copy
th is:
Ci i
Ej(tF) = 0.7P e~ 1 = 0.7P g —. )
G Cik
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The energy consumption of vmj; to execute backup copy
18 is:
1
Cir
0.7P ¢(f-P — B, if st(tB) = active;
EpaBy=y"" "G ’ (6)
0, otherwise.

D. VIRTUAL MACHINE MIGRATION

Live migration of virtual machines refers to the technique of
moving running VMs between physical hosts with negligible
downtime [52]. An important motivation of VM migration is
to consolidate the computing resource, thus increasing system
utilization. The existing algorithms for dynamic VM con-
solidation which aim to reduce energy consumption rarely
consider the cost of live migration.

It is assumed that the data of VMs is stored on network
attached storage (NAS) and only memory migration is con-
sidered in this paper. Pre-copy [53] is a widely used approach
for VM migration. In this approach, all memory is transmitted
from the source host to the destination host at the first stage,
and dirty pages of memory are iteratively transferred until the
memory dirtying rate exceeds a threshold or the remaining
dirty memory is small enough. The performance of VM live
migration mainly depends on the memory size, memory dirty-
ing rate, and network transmission rate. According to [54],
the total network traffic (Megabyte) of migration is:

1— kn+l

n n
Vmig = Z Vi= Z Vmem)\i = Vmemﬁa @)
i=0 i=0

where n is the total number of iterations, V; is the data
transferred at each round, V., is the size of VM mem-
ory, and A is the ratio of memory dirtying rate to network
transmission rate. In this paper, V,;, is set to the typical
value 1.3V0m.

Some works have been done on the cost of VM migration
[54]-[56]. The results show that the energy consumption
indicates linear relationship with the data volume transferred.
Liu et al. [54] found that the energy consumption of live
migration is largely independent of the data transmission
rate in a wired network. They concluded that the energy
consumption increases linearly with the network traffic of
VM migration and gave the energy cost (Joule) model:

Epig = 0.512V,i + 20.165. 8)

In order to meet the requirement of fault tolerance, there
are some constraints of VM migration [47]. We briefly list
the constraints here:

o VM migration should not cause any task’s primary and
backup copies to be located on the same host;

e« VM migration should not cause two primary copies
to be located on the same host if their backup copies
overlap.

Actually, these constraints are essentially identical to the first
and third restricted conditions for backup copies.
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FIGURE 4. Illustration of backup schedulability test.

IV. ENERGY-EFFICIENT FAULT-TOLERANT

SCHEDULING ALGORITHM

A. SCHEDULABILITY TEST

Suppose that #; is a newly arrived task. Before scheduling,
we need to perform the schedulability test to check whether
t!" and 12 are schedulable on some VMs.

To check schedulability of tl.P on vmjy, we need to permute
the primary and backup copies on vm; with the increasing of
their start times. Suppose N primary and backup copies are
assigned on vm; and the time slots occupied by them within
interval [a;, d;] are: [s1, fil, [s2, f2I, -+ -, [sn, fv]. s, and f,
are the start and finish times of the n-th copy (1 < n < N),
and g; < 51 < s < < sy < fv =< d;. Since
primary copy should not overlap any copy, these time slots
cannot be utilized by th . For the purpose of computational
completeness, we extend the time slots to [sg, fol, [s1, /11, [s2,
Bl oo, Isns N [svet, fvg1] where so = —o0, fo = a;,
sy+1 = d;j and fy+1 = +00. We need to scan these time slots
from left to right to locate the minimum index n (0 < n < N)
satisfying the following condition:

Snrl —Jfn = ejk(ti)' 9

If such index n exists, then tl.P is schedulable on vmj; and the
earliest finish time of tiP on vmjy is f, + eji (t;).

To check schedulability of tlB , BB overlapping should be
considered. The unavailable time slots for tlB include all parts
of primary copies, redundant parts of active backup copies,
and backup parts located before fl.P . Fig. 4 gives an example
about schedulability test for backup copy tiB . The schedula-
bility of ¢ is checked on vm;;. Suppose that ! is assigned
to vmp1 and four backup copies and one primary copy are
located on vy . tfg and tf are passive and tf and tf are active.
The shaded areas are not available for tiB because redundant
parts of active backup copies cannot overlap any copy. The
backup parts located before fiP (.e., [slf R le] and [slz9 s fiP ]) are
not available for tlB either. Because if tlB occupies these time
slots, its status must be active, incurring tl.BR overlaps tf; and
tf , which violates the scheduling principle. Besides, the time
slot occupied by tf is available because it is passive. The
area occupied by téb is unavailable because no overlapping
is allowed for primary copy. So the unavailable time slots for
18 onvmyy are [s%, fB1, 5, fF1, [s5, £ and [, f2].
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Without loss of generality, suppose the unavailable time
slots for tlB on vmj; within interval [sf , di] are [s1, f1l, [s2,
Al lsv.fvland st < sy <sp <o < sy < fyv < di.
For the purpose of computational completeness, we extend
the time slots to [so, fol, [s1, /1], [s2, /21, - - -, [sw, v ], [sn+1s
fv+1] where so = —oo, fy = s¥, sy 41 = d; and fy 41 = +oo.
To find the latest start time of tlB , these time slots should be
scanned from right to left to seek the maximum index n (0 <
n < N) satisfying condition (9). If such index n exists, then tiB
is schedulable on vm; and the latest start time of tl.B on v
i Spp1 — ejr ().

We summarize the above process into function
Schedulabilily(ti*, vmy). In short, function Schedulability
(t?, vmj) returns the earliest finish time of ¢ if ¢ is
schedulable on vmj, and returns +oo otherwise. Function
Schedulability(tig , vmji) returns the latest start time of tlB if
tiB is schedulable on vmjy, and returns —oo otherwise.

B. REARRANGEMENT MECHANISM

In this work, we take the idea in [57] to adjust the execution
sequence of copies. In [57], the backup copy is deallocated
after its corresponding primary copy finishes and the idle
time slot left by the backup copy can be utilized by the
primary copies located on the same VM. This rearrangement
mechanism helps advance the start time of primary copies and
reduce the redundant parts of active backup copies. In order
to further reduce the system overhead introduced by backup
copies, we make improvements on the mechanism by rear-
ranging the backup copies. The pseudocode of rearrangement
is shown in Algorithm 1. When a primary copy finishes and
the corresponding backup copy is deleted, the rearrangement
process gets invoked on the VM which deallocates the backup
copy. Firstly, all primary copies waiting on the VM are
checked if they can move forward (see lines 1-13). Then all
backup copies are checked if they can move backward (see
lines 14-26). It should be noted that such change of execution
order does not violate the scheduling constraints listed in
Section III.

An example of rearrangement is shown in Fig. 5. When tf)
finishes at f; P tf is deallocated from vm,; . The idle time inter-
val left by t]f? is utilized by tf . After checking schedulability,
tf moves forward. Besides, the status of tf becomes passive
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Algorithm 1 Pseudocode of Rearrangement

1 foreach t” on vmj do
startTimeOrigin < s
finishTimeOrigin < fF;

Deallocate tl.P from vmjy;

finishTimeNew <— Schedulability(tf , VI );
Allocate tl.P on vm;

if finishTimeNew < finishTimeOrigin then
sf) < finishTimeNew — ej(1;);

fl.P <« finishTimeNew;

Update the status of tl.B according to (1);

P.
i

o L NN R W

—
>

else

-
-

sf) <« startTimeOrigin;

| [ < finishTimeOrigin;

-
w N

14 foreach t? on vmj do

15 startTimeOrigin < s? ;

16 | finishTimeOrigin < fB;

17 Deallocate tl.B from vm;

18 startTimeNew < Schedulability(tiB, vmji);
19 Allocate 2 on vmjy;

20 if startTimeNew > startTimeOrigin then
21 sf) < startTimeNew;

22 fiP < startTimeNew + ej(t;);

23 Update the status of tiB according to (1);
24 else

25 sf <« startTimeOrigin;

26 fl.P < finishTimeOrigin;

due to the earlier finish time of r}’. Then ¥ moves backward
utilizing the time interval left by tf . This mechanism brings
two benefits. Firstly, primary copies get the chance to fin-
ish earlier. Without the arrangement mechanism, tf cannot
start execute before fZB . Secondly, the energy consumption of
redundant parts is reduced. tf does not consume energy after
its status changes from active to passive, and tg consumes less
energy.

C. PRIMARY AND BACKUP SCHEDULING

For primary copies, they should be executed as early as
possible. While for backup copies, they should be scheduled
as late as possible. More precisely, primary copies should be
assigned to VMs with earliest finish time (EFT) and backup
copies should be assigned to VMs with latest start time (LST).
Besides, both primary and backup copies must comply with
the policy of minimum energy cost (MEC). In this work,
MEC has higher priority than EFT and LST.

The pseudocode of primary and backup scheduling algo-
rithm is presented in Algorithm 2. Suppose #; is a newly
arrived task. The system firstly checks the schedulability of
the primary copy tiP on all VMs (see lines 1-5). If tl.P passes
the schedulability test, the energy consumption of tiP on each
VM is calculated (see lines 6-7). If assigning th to a VM can
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FIGURE 5. lllustration of rearrangement. (a) Before tf finishes. (b) After

tP finishes, t? moves forward. (c) After t; moves forward, tZB moves
backward.

decrease the energy consumption or advance the finish time
on the premise of equal energy consumption, tf is assigned
to the VM (see lines 8-11). If it fails to find a VM to accom-
modate th , then function ScaleUp(tiP ) (described below) is
called to scale up the system by creating new VMs. If the
system expansion remains unable to satisfy the scheduling
requirements, #; will be given up (see lines 12-17). If tf is
successfully allocated, then the algorithm manages to sched-
ule the backup copy tiB . All VMs except for those on h(z‘fD )
are checked if tlB can be executed on them while meeting
the real-time requirement. The VM where tlB gets the latest
start time is selected (see lines 18-23). If assigning tl.B to
existing VMs fails, ScaleUp(tiB) is invoked. If the system
can accommodate tl.B after calling ScaleUp(tlB), then tiB is
allocated to the new VM; else ¢; is rejected (see lines 24-29).

The pseudocode of function ScaleUp(t]) is shown in
Algorithm 3. ScaleUp(t) is triggered by existing system’s
failing to allocate primary or backup copy t/. Suppose
there are N types of VM templates that can be deployed
on the hosts. Their processing capacities (in MIPS) are
c1,¢2, -+ ,cy With ¢1 < ¢» < --- < ¢y, and memories
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Algorithm 2 Pseudocode of Primary and Backup
Scheduling

1 foreach new task t; do

2 fiP <~ +o00; E(tf) <~ +o0;

3 foreach host hj do

4 foreach VM vmyj, on h; do

5 EFT < Schedulability(tf, vmji);
6 if EFT # +o0 then

7

8

Calculate Ej (tf ) according to (5);
if E(F) > Ex (1) || (EGF) == Ex(1])
&& f' > EFT) then

9 vm(tf) <~ vmji;

10 fF < EFT;

1 E(tP) < Ep(tD);

12 | ifvm(t") == Null then

13 Vilpey <— ScaleUp(th);

14 if vmye, # Null then

15 | vm(tl) < vimpey;

16 else

17 L Reject #;;

18 foreach host h; # h(t’) do

19 foreach VM vmyj, on h; do

20 LST <« Schedulability(t?, vmj);
21 if LST # —o0 && s¥ < LST then
2 L vm(t?) < vm;

23 s? <~ LST;

24 | if vim(t®) == Null then

25 Vilpeyw <— ScaleUp(tlB);
26 if vy, # Null then
27 ‘ vm(tiB) < Vipey;
28 else

29 L Reject #;;

(in MB) are my, my, --- ,my withmy <mp < --- <my.rj
is the remaining processing capacity of host 4;. tyy; denotes
the time for creating a VM, and #;,,5; denotes the boot time of
a physical host. po; is the time when host 4; gets powered on.
BW is the bandwidth of the network between different hosts.
ScaleUp(ti*) strives to create new VMs to raise the system’s
processing capability. Running hosts are checked first. The
VM template with minimum processing capacity that satis-
fies both timing requirement and processing capacity con-
straint is selected as a candidate. If ¢ is primary copy and the
expected finish time exceeds the average of a; and d;, the new
VM'’s processing capacity is increased by one level (see
lines 1-7). Because if £ > (a; + d;)/2, t? is very likely to be
active. Besides, creating VMs with excessively low process-
ing capacities makes little sense for subsequent tasks. This
proactive strategy is a trade-off between decreasing energy
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Algorithm 3 Pseudocode of Function ScaleUp(t}")

1 foreach running host h; do
2 Find the minimum processing capacity cj that
satisfies a; + tyy + li/cr < d; && 1j > ¢y
if such ci exists then
if t* is primary copy &&
a; + tyy + li/ck > (a; + d;)/2 then
5 Lk<—k7éN?(k+l):N;

Create vmy,,, with processing capacity cx on h;;
7 Return vmy,e,,;

8 foreach rurning on host h; do
Find the minimum processing capacity cj that
satisfies poj + thos + tvm + li/cr < d; && rj > cy;

10 if such ci exists then
11 if t* is primary copy &&
POj + thost + tym + li/ci > (a; + d;)/2 then
12 Lk<—k;éN?(k+1):N;
13 Create vimy,,, with processing capacity cx on h;;
14 Return vmyey,;

15 foreach host h; do

16 cjm i < minimum VM processing capacity on Aj;
17 | m, < minimum VM memory on /;;
18 Find the minimum processing capacity cj that

satisﬁes a; + 1.3/

min/BW +tym + lifck < di &&
14 Chin >

m
19 if such ¢y exists then
20 foreach VM vm’mm with processing capacity
c i on hj do
21 foreach host hi # h;j do
2 if rp > ¢, then
23 Migrate vie, . from h; to hy and

create viy,,, with processing
capacity cx on hj;
24 Return vmye,,;

25 Find the minimum processing capacity ¢y that satisfies
ai + thost + tvm + li/ck < di;

26 if such cj exists then

27 if t7 is primary copy &&

ai + thost +tym + li/ck > (a;i + d;)/2 then

28 | k< k#N2Ak+1):N;

29 Turn on a new host and create vm,,,,, with
processing capacity ci on the new host;
30 Return vmye,;

31 Return Null,;

consumption and improving system performance. If no suit-
able VM can be allocated to running hosts, then hosts which
are starting up are considered. VM templates are checked if
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they can be pre-allocated to hosts (see lines 8-14). If above
strategies do not work, then the algorithm checks if migrating
a VM from some host and consolidating the spare processing
capability can meet the time and resource requirements (see
lines 15-24). If creating a new VM on existing hosts is still
not feasible, then a new host is turned on and a new VM with
suitable processing capacity is created on it (see lines 25-30).
If all attempts to allocate tl.* fail, Null is returned (see line 31).

V. PERFORMANCE EVALUATION

A. PERFORMANCE METRICS

In this section, we evaluate the overall performance of EFTR.
We compare it with FESTAL, which is an algorithm recently
proposed by Wang et al. [47], baseline algorithm NPEFTR
(non-proactive EFTR), algorithm NPEFTR (non-proactive
EFTR), and NMEFTR (non-migration EFTR). The algo-
rithms for comparison are concisely explained as follows:

o FESTAL. Tt provides a general framework for task
scheduling in the cloud environment and considers both
virtualization and backup overlapping. Different from
EFTR, FESTAL adopts conservative policy instead of
proactive policy, which means FESTAL creates new
VMs with minimum processing capacities satisfying
the energy and resource constraints. FESTAL does not
adopt the rearrangement mechanism. Besides, it does not
consider the energy problem. For ease of comparison,
FESTAL is modified in such a way that it uses the same
scheduling strategy in Algorithm 2.

o NPEFTR. Different from EFTR, NPEFTR does not
adopt the proactive strategy.

e NREFTR. Different from EFTR, NREFTR does not
employ the rearrangement mechanism.

o NMEFTR. Different from EFTR, NMEFTR does not
employ the VM migration technique.

We compare the algorithms based on the following three

metrics:

« Guarantee Ratio is defined to be the ratio of the number
of successfully executed tasks over the total number of
tasks.

o Energy Consumption is defined as the total power con-
sumption.

e VM Count denotes the total number of VMs needed
during the scheduling.

B. EXPERIMENT SETUP

Simulation has the advantage of providing repeatable and
controllable environment. CloudSim [58] is selected as our
simulation platform. CloudSim is an event driven framework
for modeling cloud infrastructures and services. User defined
policies and strategies for managing tasks and resources can
be deployed on the platform. In this paper, three types of
hosts and VMs are available in the cloud data centers. The
maximum power of each host is 200, 250 or 400 W, and
their corresponding processing capacities are 1000, 1500 and
2000 MIPS, respectively. The processing capacities of three
types of VM templates are 200, 300 and 400 MIPS. The time
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needed for creating a VM and turning on a host is 15 and
90 seconds respectively.

The characteristics of tasks, including task size, task count,
interval time and baseDeadline, are shown in Table 1. The
task size (MI) is uniformly distributed between 10° and
2 x 10°. The task arrival rate is in compliance with Pois-
son distribution. 1/A (s) denotes the mean time between
task arrival. The deadline of each task t; is d; = a; + U
(baseDeadline, 4baseDeadline).

TABLE 1. Parameters of tasks.

Parameter

task size (x 105 MI)
task count (x10%)
interval time 1/ (s)
baseDeadline (s)

Value (Fixed)-(Min, Max, Step)
([1,2])

(1)-(0.5, 3,0.5)

2)-(1,7,1)

(300)-(170, 350, 30)

C. PERFORMANCE IMPACT OF TASK COUNT

In this section, we conduct experiments to evaluate the per-
formance impact of task count. Task count increases from
5000 to 30000 with step 5000, and other variables are
constant.

Fig. 6(a) shows the energy consumption impact of task
count. With the increase of task count, more energy is
consumed, because longer execution time is needed and
more VMs are created. EFTR consumes least energy while
FESTAL consumes most energy. This result indicates that
proactive and rearrangement policies play important roles in
saving energy. The performance difference between EFTR
and NPEFTR shows that although the proactive strategy
increases the processing capacities of some new VMs, it does
increase the energy consumption because less VMs are
created (see Fig. 6(c)). The comparison between EFTR
and NREFTR indicates that the rearrangement mechanism
helps efficiently reduce idle power consumption by uti-
lizing the idle time slots left by deleted backup copies.
Besides, the energy consumption of NMEFTR indicates that
VM migration can effectively increase the resource utiliza-
tion. EFTR outperforms FESTAL by 9.02% on average in
energy conservation.

Fig. 6(b) shows that the guarantee ratio impact of task
count is relatively stable and the fluctuation is less than 1%.
This can be ascribed to the elasticity of cloud system. When
more tasks arrive, computing resources can be added from the
infinite resource pool to guarantee that tasks can meet their
deadlines. When the number of tasks are relatively small,
the time delays caused by turning on hosts and creating
VMs have a negative impact on the guarantee ratio. When
the number of tasks are large enough, the system reaches
a balanced state and less new hosts and VMs are needed.
So the guarantee ratio gradually increases to a stable value.
Besides, EFTR and NREFTR have higher guarantee ratios
than other three algorithms. This can be attributed to the
proactive strategy adopted by EFTR and NREFTR, which
increases the system processing capacity to accommodate
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FIGURE 7. Performance impact of task arrival rate. (a) Energy consumption impact of arrival rate. (b) Guarantee ratio impact of arrival

rate. (c) VM count impact of arrival rate.

more tasks. EFTR achieves 3% higher guarantee ratio than
FESTAL.

Fig. 6(c) demonstrates that EFTR needs least VMs among
the five algorithms. Compared with NREFTR, EFTR shows
that the rearrangement mechanism plays an important role in
reducing the system overhead by allowing waiting primary
copies to move forward and waiting backup copies to move
backwards. Compared with NPEFTR, EFTR shows that the
proactive strategy makes good trade-off between increasing
system processing capacity and reducing VM count. The
performance of NMEFTR shows that VM migration can save
about 2% VMs for EFTR. EFTR needs 23.5% less VMs than
FESTAL.

D. PERFORMANCE IMPACT OF TASK ARRIVAL RATE
Parameter intervalTime reflects the task arrival rate. So the
smaller intervalTime is, the more frequently tasks arrive.
We vary intervalTime while keeping other parameters
unchanged to test the influence of task arrival rate.

From Fig. 7(a), we can observe that the energy consump-
tion increases gradually with the decrease of task arrival rate.
This is because larger time intervals between two tasks leads
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to longer finish times of all tasks, thus increasing the overall
energy consumption. Compared with tasks’ execution times,
the change of time interval is relatively small, so the rise in
energy is not obvious. Basically, EFTR needs least energy.
The explanation is the same as that in Fig. 6(a). On average,
EFTR outperforms FESTAL by 10.43% in terms of energy
conservation.

Fig. 7(b) shows that the guarantee ratios of five algorithms
keep slow increasing trend with the decrease of task arrival
rate. The reason is that lower arrival rate means less resource
competition and less system load. Furthermore, the cloud
system has enough time to expand the computing capacities
by adding new hosts or VMs. EFTR and NREFTR with
proactive strategy have higher guarantee ratios than FESTAL,
NPEFTR and NMEFTR.

Fig. 7(c) illustrates that the VM count decreases sharply
when tasks arrive more slowly. When the task load is heavy,
the system has to add more VMs to accommodate the tasks
and to meet the deadline requirements. When the system load
becomes light, the system is capable to execute the tasks and
less new resources are needed. Owing to the proactive and
rearrangement policies, EFTR requires least VMs.
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E. PERFORMANCE IMPACT OF TASK DEADLINE

Task deadline is also a significant factor that affects the
algorithm performance. In this section, we compare the five
algorithms in terms task deadline. With the increase of param-
eter baseDeadline, the tasks have looser deadlines. Parameter
baseDeadline varies from 170 to 350 with step size 30.

As we can see from Fig. 8(a), the energy consumption
becomes larger when baseDeadline increases. Because more
tasks are accepted when deadlines become looser, thus more
VMs are created. When baseDeadline is larger than 230,
the energy consumption of all algorithms decreases. It can be
explained that when more tasks can be finished on existing
VMs, the finish times of tasks become earlier and the growth
of VM count slows down. Moreover, the downward trend
of EFTR is more obvious because it employs both proactive
and rearrangement policies to increase the system efficiency.
Compared with FESTAL, EFTR conserves energy by 9.89%
on average.

Fig. 8(b) shows that the guarantee ratio gets higher with
the increase of deadline. The reason here is obvious — looser
deadlines allow more tasks to finish before their deadlines
with the same system processing capacity. When baseDead-
line is big enough, the guarantee ratio gets close to 100%.
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Besides, EFTR and NREFTR have higher guarantee ratios
than FESTAL, NPEFTR and NMEFTR. This is because
adopting proactive strategy can shorten the execution times
of tasks, thus raising the guarantee ratio.

The slowdown trend of VM count growth is obvi-
ous in Fig. 8(c). The VM counts of EFTR, NREFTR
and NMEFTR increase slowly and even decrease when
baseDeadline is large enough. However, the VM counts of
FESTAL and NPEFTR keep increasing. The effect of proac-
tive strategy is evident here. Besides, EFTR needs the least
number of VMs, which verifies the effectiveness of the rear-
rangement mechanism.

F. OVERHEAD OF VM MIGRATION

In this section, we evaluate the energy overhead of VM migra-
tion in EFTR. As shown in Fig. 9, the overhead caused by
VM migration is generally proportional to the number of
VMs. The energy overhead is negligible compared with the
total energy consumption. However, the positive effect of
VM migration is obvious. From Fig. 6-8, we can see that
with VM migration, the algorithm needs about 2% less VMs,
consumes 3% less energy, and accepts 2% more tasks. The
data indicates that employing the VM migration technique in
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cloud BBU pool is efficient in energy conservation and task
processing.

VI. CONCLUSION

In this paper, we propose an energy efficient fault-tolerant
scheduling algorithm, called EFTR, for real-time tasks in
C-RAN. Fault tolerance is realized based on the primary-
backup model. EFTR algorithm dynamically schedules
primary and backup copies of tasks with timing require-
ments to different virtual machines. The scheduling criteria
and backup overlapping constraints are discussed in detail.
Schedulability test is designed to check whether the primary
and backup copies are schedulable on some VMs. In order to
increase resource utilization, we employ the rearrangement
mechanism to fully utilize the idle time slots. In addition,
EFTR inherits the elasticity of cloud computing and adopts
proactive strategy to increase the system processing capacity.
These policies significantly improve the system schedulabil-
ity and reduce the energy consumption. Through theoretical
analysis and simulation studies, we show that EFTR outper-
forms FESTAL in terms of energy conservation, guarantee
ratio and VM count under different workloads. Meanwhile,
we notice that our algorithm is not suitable for dependent
tasks, which are common in realistic environment. This is
our research focus in further studies.
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