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ABSTRACT The clinical data are often multimodal and consist of both structured data and unstructured
data. The modeling of clinical data has become a very important and challenging problem in healthcare
big data analytics. Most existing systems focus on only one type of data. In this paper, we propose a
knowledge graph-based method to build the linkage between various types of multimodal data. First,
we build a semantic-rich knowledge base using both medical dictionaries and practical clinical data collected
from hospitals. Second, we propose a graph modeling method to bridge the gap between different types
of data, and the multimodal clinical data of each patient are fused and modeled as one unified profile
graph. To capture the temporal evolution of the patient’s clinical case, the profile graph is represented as a
sequence of evolving graphs. Third, we develop a lazy learning algorithm for automatic diagnosis based on
graph similarity search. To evaluate our method, we conduct experimental studies on ICU patient diagnosis
and Orthopaedics patient classification. The results show that our method could outperform the baseline
algorithms. We also implement a real automatic diagnosis system for clinical use. The results obtained from
the hospital demonstrate high precision.

INDEX TERMS Automatic diagnosis, multimodal medical data, graph similarity search, evolving graphs.

I. INTRODUCTION
Today, massive heterogeneous medical data have been col-
lected from various healthcare organizations. Such data often
contain rich knowledge such as diseases, drugs, and treat-
ments. How to model the complex data for supporting effec-
tive analytic tasks on healthcare is a very important and
challenging problem (e.g., [1]–[4]). Many researchers have
focused on using information technologies for healthcare,
and the disease diagnosis-aided system is one of the most
important problems (e.g., [5]–[10]). To our best knowledge,
there is no mature healthcare data analytic system in the
medical industry.

Most existing work collected medical data as electronic
health records (EHR), and adopted data-driven approaches to
support a specific automate diagnosis task (e.g., [9]–[15]).
Such systems can be classified into three categories as
they employ different data modeling techniques: structured
data models (e.g., [11], [12], [16]), semi-structured data

models (e.g., [13], [14]), and graph data models (e.g., [9],
[10], [15], [17]). Such systems have obtained some benefits
such as more accurate diagnosis. However, they suffer from
certain limitations for practical use as they have ignored the
temporal property of clinical records.

Real clinical records of patients tend to be meaningful
only when viewed against their temporal background [18].
Moreover, the temporal dimension is highly present in almost
all critical medical scenarios. Thus, the comparison of patient
cases on the basis of such data can offer valuable information
for automatic diagnosis. To capture the temporal property,
several existing work modeled medical data as time series
data (e.g., [18]–[21]). They have employed several machine
learning algorithms for predictive analytics. Although these
proposals have reported accurate diagnosis, they may fail to
capture both explicit and implicit relationships between vari-
ous medical features. As a consequence, the overall analytical
performance might be degraded.
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To solve this problem, this paper models medical data
as dynamic sequences of evolving graphs. The proposed
data modeling approach could achieve two significant
benefits.
• We build a personalized knowledge graph for each
patient using the clinical data, by extracting entities and
relationships between entities according to a semantic-
rich medical knowledge base [10]. The profile graph
of each patient could capture the explicit and implicit
relationships between various medical features.

• To capture the temporal evolution of the patient’s clinical
case, we propose a novel data model as a sequence
of evolving graphs. Each evolving graph represents a
patient’s visit in each time point. Each node in the graph
represents a medical entity and each edge is the relation-
ship between two entities.

We further investigate how to support effective prediction
analysis. Most existing prediction methods on medical analy-
sis often employ advanced machine learning algorithms such
as Restricted Boltzmann Machine (RBM) (e.g., [22]), Prin-
cipal Component Analysis (PCA) (e.g., [23]), and Gaussian
Process (GP) (e.g., [21], [24]), to train models for diagnosis
and prediction analysis. However, such methods often suffer
from high computational cost for training models on the
entire dataset. There are also some efforts on learning sim-
ilar clinical cases for prediction analysis (e.g., [25]). These
methods however suffer from low accuracy.

In this paper, we propose a new approach to employ the
graph similarity search algorithm in graph sequence predic-
tion. Our proposed method is different from existing work in
that we take the implicit relationships in medical data into
consideration, and capture the temporal evolution property
of patients’ condition. Two main technical obstacles must be
overcome to make the graph sequence prediction scalable in
practice. First, the expressivity of graph model relies heavily
on the comprehensiveness of the medical knowledge base.
We construct the personalized knowledge graph for each
patient by using the historical clinical data. We extract the
related entities and the relationships between entities accord-
ing to the medical dictionary and knowledge graph. Sec-
ond, to search the similar graphs, substantial searching effort
at similarity computation time could lead to unacceptable
latency. To address this problem, we define a novel similarity
measure which attempts to evaluate the similarity between
two sequence graphs. The novel measure can be efficiently
computed in cubic time. To make graph search feasible in
real-time applications, we develop an efficient graph similar-
ity search algorithm. Specially, we design a novel three-level
inverted index and propose a novel search strategy based on
the TA algorithm [26]. In summary, our main contributions
are listed as follows.
• We propose a novel modeling technique to represent
complex medical data as sequence of evolving graphs.
The objective is to take advantage of the rich expression
power of graph models and effectively capture the tem-
poral evolving property of medical data.

• We develop a novel lazy learning algorithm to sup-
port efficient automatic diagnosis based on evolving
graph similarity search. To speed up the graph sim-
ilarity search, a three-level inverted index is built,
to support a better search strategy following a cascade
framework.

• Two real datasets are collected to evaluate the effec-
tiveness of our proposed approach. Both qualitative and
quantitative evaluations demonstrate that our methods
can indeed help doctors understand the patients’ diseases
and provide useful information for both ICU patient
diagnosis by category and Orthopaedics patient clas-
sification. Furthermore, compared with the baselines,
the proposed algorithms based on evolving graphsmodel
have better performance.

The rest of the paper is organized as follows. Section II
reviews the related literature. In Section III, we present
an overview of our proposed method. Section IV describes
our model for representing the complex medical data.
We describe the basic profile graph similarity search algo-
rithm in Section V, and propose an extended lazy learning
approach to obtain more accurate diagnosis in Section VI.
In Section VII, we summarize the experimental evaluation
of our proposed method against the baseline algorithm.
Finally, we conclude the paper and present future work
in Section VIII.

II. RELATED WORK
A. MEDICAL DATA MODELING
Existing medial data modeling methods can be classified into
four categories: structured data models, semi-structured data
models, graph data models, and time-series data models.

Early medical data management systems mainly focus on
storing medical record data in a structured way, such as EMR
(e.g., [11], [16]). These systems are proposed to overcome
the shortcomings of traditional handwriting records that are
difficult to preserve and access. However, they often employ
a simple relational model to store complex medical data,
resulting in serious loss of medical structure information.

To capture the structure information, several semi-
structured databases based on XML have been proposed [13],
[14], [27]. These studies retain the original data structure
using hierarchical models. However, many complicated infor-
mation of the unstructured data are not completely recorded.
As a consequence, such systems fail to support some complex
analysis tasks on multimodal medical data.

Recent works employ the graph model to represent the
complex medical data [9], [10], [15], [17], which can better
represent the data relationships in the real world. The medical
data analysis system based on the graphmodel consists of two
main components: the construction of patient profile graph
and the prediction analysis based on the graph model. Such
systems have obtained some benefits such as more accurate
diagnosis. However, they suffer from certain limitations for
practical use as they have ignored the temporal property of
clinical records.

53308 VOLUME 6, 2018



X. Wang et al.: Automatic Diagnosis With Efficient Medical Case Searching Based on Evolving Graphs

Real clinical records tend to be meaningful only when
viewed against their temporal background [18]. Therefore,
several existing works modeled medical data as time series
data (e.g., [18]–[21]). They have employed several advanced
machine learning algorithms for predictive analysis. While
these proposals have reported to have more accurate diagno-
sis, they fail to capture both explicit and implicit relationships
between various medical features.

B. MEDICAL DATA STORAGE AND SEARCH
Different data searching techniques have been proposed
based on the various data models. Early health data man-
agement systems used traditional relational databases for
storage, and supported several simple data queries [11], [16].
For example, doctors can quickly query a patient’s histori-
cal data using these systems. The aggregation functions of
relational database can also be used to compute the statistics
of patients. However, such systems cannot support complex
analysis tasks.

To support multimodal data, several cross-domain retrieval
techniques have been proposed [28]–[32]. These methods
use the semantic information between multimodal data to
build the linkage between various types of data and support
cross-domain retrieval. These methods are usually applied to
social media data of high correlation; while it is very difficult
to adapt them for supporting medical data with ambiguous
semantic relations. Several methods represent different modal
data as different data types, and design a unified inverted
index to support cross-domain search [33], [34]. Although
these methods can support the query processing of different
modal data, it cannot support complex analysis tasks.

With information explosion, healthcare big data analysis
systems based on cloud computing are developed [35]–[38].
These medical cloud platforms solve extensive data storage
requirements, and support simple data query and analysis.
However, when dealing with complex data analysis require-
ments, they still suffer from lack of appropriate data fusion
and modeling techniques. To our best knowledge, no mature
healthcare data management and analytic system exists in the
medical industry.

C. MEDICAL DATA ANALYTICS
Existing prediction methods generally follow into two
groups: the eager learning approach and the lazy learning
approach [39]. The eager learning approach often employs
advanced machine learning algorithms such as Restricted
Boltzmann Machine (RBM) (e.g., [22]), Principal Compo-
nent Analysis (PCA) (e.g., [23]), and Gaussian Process (GP)
(e.g., [21], [24]), to train models for diagnosis and pre-
diction analysis. Many medical expert systems employed
the eager learning approach, while such systems are rarely
used in practice. Due to the limitations of machine learn-
ing algorithms in dealing with complex and dynamic envi-
ronments, these systems often suffer from low accuracy of
computer-aided diagnosis. The lazy learning approach typ-
ically is done by learning similar clinical cases based on

TABLE 1. Notations.

FIGURE 1. The system framework (Several icon photos in this figure are
obtained from the Baidu search engine in https://image.baidu.com/.)

search algorithms (e.g., [25]). These methods however suffer
from low accuracy, as they often employ simple data models
that results in serious loss of medical structure and semantic
information.

III. OVERVIEW
In this section, we give a formal description of the automatic
diagnosis framework. Table 1 lists the common notations
used in this paper.

As shown in Figure 1, our healthcare data analytics sys-
tem contains three main components: data modeling, data
searching and automatic diagnosis. We first build a semantic-
rich knowledge base using both medical dictionaries and
practical clinical data collected from hospitals. Based on the
knowledge base, we build the graph model to bridge the gap
between different types of data, and the multimodal clinical
data of each patient are fused and modeled as one unified pro-
file graph. To capture the temporal evolution of the patient’s
clinical case, the profile graph is represented as a sequence
of evolving graphs. After that, we develop a lazy learning
algorithm for automatic diagnosis based on graph similarity
search. The details of the three components will be presented
in the following sections.
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FIGURE 2. Construction of the medical knowledge graph.

IV. DATA MODELING
As shown in Figure 1, the data modeling component con-
tains four steps: data collection, medical knowledge graph
construction, data preprocessing, and data modeling.

A. DATA COLLECTION AND KNOWLEDGE GRAPH
CONSTRUCTION
The raw data are collected from hospitals and wearable
devices. We do data preprocessing to filter out the data
of low quality, and then build a semantic-rich knowledge
graph using the remaining data. Figure 2 shows the steps we
employ to build the knowledge graph, and the detailed data
preprocessing techniques and constructing algorithms can be
seen in our previous work [40]. In general, the basic ontol-
ogy of typical knowledge graph includes entity, category,
attribute, and so on. For example, ‘‘Subclass-of’’ is often
used to represent the affiliation relationship between an entity
and a category (e.g., ‘‘Andy Lau, Subclass-of, Singer’’), and
‘‘HasAttribute’’ is used to represent the relationship between
an entity and its attributes (e.g., ‘‘Andy Lau, HasAttribute,
male’’). Our previous work employs both top-down and
bottom-up approaches [41], [42] to build the ontology basis
for knowledge graph [40]. Figure 3 presents the ontol-
ogy basis of our constructed medical knowledge graph.
To effectively modeling the medical data, we extract
six types of entities such as Drug, Symptom, Disease,
TestItem, Disease_Category, and Drug_Category. For each
type of entities, we further extract representative attributes for
it which may take significant roles in diagnosis. As shown
in Figure 3, an entity named drug could have attributes
of DOSE_VAL_RX and DOSE_UNIT_RX. We extract four
other types of relationships as follows.

1) Diagnose: it is used to connect the relationship from the
TestItem to the corresponding Disease.

2) Treat: it is used to connect the relationship from a Drug
to the corresponding Disease.

3) Subcategory-of: it is used to connect the relationship
from a Drug to a Drug_Category and from a Disease to
a Disease_Category.

4) HasSymptom: it is used to connect the relationship
from a Disease to a Symptom.

Note that existing medical dictionaries may lack domain
specific relationships such as the relationship of ‘‘Diagnose’’.
To solve this problem, as shown in Figure 2, our previous
implemented Expert Q&A system [10] can support inferring
the uncertain relationships by collecting answers from medi-
cal experts using crowdsourcing questions.

FIGURE 3. The ontology basis.

B. PATIENT PROFILE GRAPH
This paper employs the graph model to represent a patient’s
medical data, donated by patient profile graph. The patient
profile graph is first introduced in paper [9] without a for-
mal definition. The authors give a simple description that
the graph contains vertices representing entities (e.g., dis-
eases and medication) and edges representing relationships
between entities (e.g., hasValue and diagnose). In this paper,
we focus on the directed patient profile graph whose vertices
and edges are labeled.
Definition 1 (Patient Profile Graph): A patient profile

graph is defined as a 6-tuple g = (V ,E, 6V , 6E , lV , lE ),
V is a finite set of vertices, E ∈ V × V is a set of directed
edges, 6V is a finite alphabet of vertex labels, 6E is a finite
alphabet of edge labels, lV : V → 6V is a labelling function
assigning a label to a vertex, and lE : E → 6E is a labelling
function assigning a label to an edge.

We construct a patient’s profile graph as a personalized
knowledge graph for each patient. Our previous work pro-
posed a disease diagnosis-aided system called ADDS [10]
based on this data modeling technique. For each patient,
we build a semantic-rich knowledge graph using the prac-
tical clinical data collected from hospitals and sensor data
collected from wearable devices. Obviously, the expressivity
of the patient profile graph relies heavily on the comprehen-
siveness of the medical knowledge base.

Based on the medical knowledge graph, we first collect
patients’ clinical data and sensor data. Then, entities are
extracted and represented as vertices in the patient graph.
If two entities have relationships in the knowledge graph,
we add one directed edge between them. Figure 4 shows an
example of the ontology for a patient profile graph. Suppose
a clinical record indicates that doctors suggest to treat the dis-
easewith certain amount of drugs. Then, we use two attributes
DOSE_VAL_RX and DOSE_UNIT_RX to represent the
dose of the drug. In this case, two entities Disease and Drug
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FIGURE 4. The ontology of a patient’s profile graph.

FIGURE 5. A patient’s sequence of evolving graphs.

and two attributes DOSE_VAL_RX and DOSE_UNIT_RX
are represented as four vertices; two directed edges are
added from the Drug entity to two attributes representing
the ‘‘HasAttribute’’ relationships; one directed edge is added
from the Drug entity to the Disease entity representing the
‘‘Treat’’ relationship.

C. PATIENT’s SEQUENCE OF EVOLVING GRAPHS
Clinical data generally capture patients’ visits to hospitals,
and tend to be meaningful only when viewed against their
temporal background. In this paper, we abstract the clinical
data as an evolving graph sequence where each graph repre-
sents a patient’s visit at each time point.
Definition 2 (Evolving Graph Sequence): An evolving

graph sequence of a patient i is defined as Gi =

{gi1, g
i
2, . . . , g

i
j, . . . , g

i
|Gi|}. g

i
j is the profile graph at timestamp

j. |Gi| is the size ofGi representing the total number of patient
profile graphs in Gi.
Figure 5 shows a real example of constructed evolving

graph sequence for a patient. The patient has visited the
hospital for two times respectively on April 8th, 2014 and
May 8th, 2014. We build two profile graphs for these two
visits. The first profile graph contains five vertices and four
edges as follows.
• One vertex of Disease labeled as Diabetes.
• One vertex of Drug labeled as Metformin.
• One vertex of TestItem labeled as GHb.
• Two vertices of attributes, one of which is the attribute
of GHb labeled as L1 and another is the attribute of
Metformin labeled as M1.

• One directed edge from Metformin to the Disease
labeled as Treat.

• One directed edge from GHb to the Disease labeled as
Diagnose.

• Two directed edges from Metformin and GHb to their
attributes both labeled as HasAttribute.

Noted that the clinical data collected from patient’s one
visit to hospital may contain massive information on mul-
tiple diseases. In this paper, we mainly focus on one type
of disease, and eliminate the information of other diseases.
Therefore, each evolving graph sequence contains a set of
continuous patient profile graphs only related to one disease.
In Figure 5, both two profile graphs are related to ‘‘Diabetes’’.

V. MEDICAL DATA SEARCHING
The comparison of patient cases on the basis of medical pro-
file graph can offer valuable information in a variety of tasks,
ranging from differential diagnosis to patients’ recovery pre-
diction. Based on the graph model, it is a straightforward
idea to employ existing graph similarity measures [43], for
evaluating the similarity between two medical cases. How-
ever, such approaches often have the common problem that
they usually require high computational cost. For instance,
computing the graph edit distance can be in NP-hard [44].
In this paper, we propose a novel similarity measure called
graph mapping distance to evaluate the similarity between
two patient profile graphs. The key idea is to transform a
profile graph to a multiset of unit trees.

A. UNIT TREE
Definition 3 (Unit Tree): A unit tree is an attributed,

single-level, rooted, directed tree which can be represented
by a 5-tuple T = (r,L,D, lL , lD), where r is the root vertex,
L is the set of leaves, D is the set of edges from root vertex
to the leaves, lL is a labeling function assigning a label to a
leaf vertex, and lD is a labeling function assigning a label to
an edge. Directed edges exist from the root vertex r to each
vertex in L.

Given a patient profile graph g, for any vertex vi in g
which has out-degree, we can generate a corresponding unit
tree Ti in the following way: Ti = (vi,Li,Di, lLi , lDi ) where
Li = {u|(vi, u) ∈ E}. Thus, a graph can be mapped to a mul-
tiset of unit trees. We call this multiset the tree representation
of the graph g, denoted by T (g).
Lemma 1 [Unit Tree Distance (UTD)]: Given two unit

trees T1 and T2, the distance between them is computed as

λ(T1,T2) = d(r1, r2)+ d(D1,D2)+ d(L1,L2)

where
d(r1, r2) = 0 if l(r1) = l(r2), otherwise d(r1, r2) = 1

d(D1,D2) =
∣∣|D1| − |D2|

∣∣+M (D1,D2)

M (D1,D2) = max{|9D1 |, |9D2 |} − |9D1 ∩9D2 |

d(L1,L2) =
∣∣|L1| − |L2|∣∣+M (L1,L2)

M (L1,L2) = max{|9L1 |, |9L2 |} − |9L1 ∩9L2 |
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FIGURE 6. An example of computing the mapping distance between two
profile graphs g1 and g2.

9D is the multiset of edge labels in D and 9L is the multiset
of vertex labels in L.

B. GRAPH MAPPING DISTANCE
Based on the unit tree representation of graphs, a polynomial
time computable distance is introduced in this subsection.
That is, we define a mapping distance between two profile
graphs based on their multisets of unit tree representations.
Definition 4 [Graph Mapping Distance (GMD)]: Given

two graphs g1 and g2 with their multisets of unit trees
T (g1) and T (g2) of the same cardinality, and a bijection P :
T (g1) → T (g2), the mapping distance between g1 and g2
denoted by λ(g1, g2) is computed as

λ(g1, g2) = λ
(
T (g1),T (g2)

)
= min

P

∑
Ti∈T (g1)

λ(Ti,P(Ti)).

The computation of λ(g1, g2) is equivalent to solving the
assignment problem, which is one of the fundamental com-
binational optimization problems aiming at finding the min-
imum weight matching in a weighted bipartite graph. Given
two multisets of unit trees T (g1) and T (g2) and the weight
of the edge that connects one unit tree in T (g1) to another
unit tree in T (g2) is the distance between the two unit trees.
Figure 6 shows an example to illustrate the bipartite graph
matching problem that must be solved in order to compute
λ(g1, g2). Given two graphs g1 and g2 on the left top of the
figure, their corresponding multisets of unit trees are shown
on the right hand side of the figure. In this case, we show the
optimal matching between the unit trees as solid lines while
other edges joining the unit trees are shown as dotted lines.
To find the optimal matching, we construct a weighted matrix
for each pair of unit trees from two graphs, and apply the
Hungarian algorithm [45] to get the optimal solution in cubic
time. The matrix is shown on the left bottom of the figure,
and cells in red denote the optimal matching between T (g1)
and T (g2), i.e., λ(g1, g2) = 0+ 1 = 1.

C. PROFILE GRAPH SIMILARITY SEARCH
In paper, Wang et al. [46] proposed a two-level inverted
index to support efficient graph similarity searching algo-
rithms. In this paper, we adapt it to support the proposed
profile graph similarity searching, including range query and
KNN query.

FIGURE 7. The framework of profile graph similarity search

1) INDEX CONSTRUCTION
Given a set of profile graphs and their multisets of unit trees.
In the upper-level index, unit trees are used to index all graphs
using inverted lists. This index is made up of two main parts:
an index for all distinct unit trees, and an inverted list below
each unit tree. Each entry in the inverted lists contains the
graph identity and the frequency of the corresponding unit
tree. All lists are sorted in increasing order of the graph size.

In the lower-level index, each unit tree is further broken
into multiple units (i.e., vertices and edges) and indexed
in inverted lists. The index also contains two components:
a label index in increasing order and inverted lists below
labels recording the unit tree identities and the frequencies
of corresponding labels. Entries in each list are first grouped
based on the leaf size of |9L | and then sorted in decreasing
frequencies within each group.

2) PROFILE GRAPH SIMILARITY SEARCH
As shown in Figure 7, based on the two-level index, the pro-
file graph similarity search includes two steps as follows.
• Step 1: Given a query gq, we decompose it into amultiset
of unit trees as T (gq). In the lower level, top-k similar
unit trees to each unit tree of the query can be returned
quickly by using the TA search algorithm.

• Step 2: In the upper level, graph pruning is done based on
the top-k results from the lower level. The CA algorithm
is employed to support continuous graph pruning. In this
step, unit trees for each profile graph can be output
with round-robin scan through the score sorted lists, and
the mapping distance for each seen data graph with the
query is computed incrementally. Obviously, the partial
mapping distance can be naturally used as a lower bound
for graph pruning.

Now we define a monotonic score function for the
TA framework. FromLemma 1, the λ(Tq,Ti) between a query
unit tree Tq and any unit tree from profile graphs Ti can be
computed as{
d(rq, ri)+ 4|Lq| − (2|Li| + ψD + ψL), |Li| ≤ |Lq|
d(rq, ri)− 2|Lq| − (−4|Li| + ψD + ψL), |Li| > |Lq|

where ψD = |9Dq ∩9Di | and ψL = |9Lq ∩9Li |.
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Algorithm 1 The Top-k Unit Tree Searching Algorithm
1: top-k ← ∅
2: for each round do
3: for j = 1; j ≤ N + 1; j++ do
4: Fetch the entry Ti in the jth sorted list
5: if a new entry is found then
6: Compute λ(Tq,Ti)
7: if λ(Tq,Ti) < λkT then
8: Update the top-k heap, i.e., λkT = λ(Tq,Ti)
9: end if
10: end if
11: end for
12: Compute ψ =

∑N
j=1min{Cj,8j}

13: Evaluate θ = 4|Lq| − (28N+1 + ψ) or θ = −2|Lq| −
(−48N+1 + ψ)

14: if λkT ≤ θ then
15: break
16: end if
17: end for

Here, we define two aggregation functions as θ1 = 4|Lq|−
(2|Li| + ψD + ψL) and θ2 = −2|Lq| − (−4|Li| + ψD +
ψL). Given a query unit tree Tq, the value of |Lq| is fixed.
Therefore, the UTD between Tq and each Ti increases when
the value of 2|Li|+ψD+ψL or−4|Li|+ψD+ψL decreases.
It is easy to construct sorted lists from the lower-level index
following the monotonic property of these two aggregation
functions. For each unit label of Tq, we fetch out the inverted
list below this label and split it into two sperate lists with
leaf size no larger than |Lq| and larger than |Lq|. For process-
ing |Li|, we maintain an extra inverted list for all the profile
graphs in order of increasing leaf sizes. When constructing
sorted lists, the size list is also split into two groups. The
group with leaf sizes no larger than |Lq| should be reversely
accessed in a decreasing order. As shown in Algorithm 1,
given a query unit tree Tq with N distinct labels having fre-
quencies of (C1,C2, . . . ,CN ), we have N sorted lists and one
size list. Then, we do sorted access in a round-robin schedule
to each sorted list. If a new unit tree Ti is found, compute
λ(Tq,Ti). We maintain a queue of top-k unit trees with the
lowest λ values. At the end of each round, we calculate the
common number of unit labels as ψ =

∑N
j=1min{Cj,8j},

where 8j is the frequency value at current visited position in
the jth sorted list. Then, the aggregation sore is θ = 4|Lq| −
(28N+1+ψ) or θ = −2|Lq|−(−48N+1+ψ), where8N+1 is
the size value of current visited position in the size list. If the
top-k values are at most equal to θ , then the halting condition
is satisfied; otherwise, go to next round.

Given a query graph gq, for each Tq ∈ T (gq), its top-k
queue is returned from Algorithm 1 in Step 1. Then, for
each unit tree Ti in the queue, a graph inverted list indexed
by Ti can be directly fetched from the upper-level index.
Therefore, k graph lists will be returned for each query unit
tree. Obviously, graphs in sorted lists are naturally ordered
in terms of UTDs according to the top-k values. With the

Algorithm 2 The Graph KNN Query Algorithm
1: top-k ← ∅
2: for each round do
3: for j = 1; j ≤ M; j++ do
4: Fetch the entry gi in the jth sorted list
5: if gi is first found in the jth sorted list then
6: Update the value of ζ (gq, gi) by adding the UTD
7: if ζ (gq, gi) > λkT then
8: Filter out the gi
9: continue
10: end if
11: end if
12: Update the cost matrix between gq and gi
13: if scandepth%h == 0 then
14: for each found and unprocessed graph gn do
15: Compute λL(gq, gn) using the cost matrix
16: if λL(gq, gn) > λkT then
17: Filter out the gn
18: continue
19: end if
20: Compute λ(gq, gn) incrementally
21: if λ(gq, gn) < λkT then
22: Update the top-k heap, i.e., λkT = λ(gq, gn)
23: end if
24: end for
25: end if
26: end for
27: Evaluate ω =

∑M
j=18j

28: if λkT ≤ ω then
29: Process all found and unprocessed graphs
30: Update the top-k heap if a better result is found
31: break
32: end if
33: end for

sorted lists, the CA stage in Step 2 accesses unit trees for
profile graphs using a round-robin scan. Using the summation
of UTDs as an aggregation function, the halting condition and
several aggregation bounds can be directly derived.

The details of KNN query algorithm can be seen in
Algorithm 2. Given a query graph gq withM distinct unit tree
sorted lists, we do sorted access in a round-robin schedule to
each list. If a profile graph gi is first found in the visited sorted
list, compute ζ (gq, gi) ← ζ (gq, gi) + UTDj where UTDj is
the first found unit tree distance of gi in the jth sorted list.
Obviously, ζ (gq, gi) is a lower bound of λ(gq, gi). If ζ (gq, gi)
is greater than the top-k values, the graph gi can be safely
filtered out. At each depth h of visited lists, for all found
and unprocessed graphs, we compute the partial mapping
distance λL . We maintain a queue of top-k graphs with the
lowest λ values. At the end of each round, we evaluate the
aggregation score ω =

∑M
j=18j where 8j is the UTD value

at current visited position in the jth sorted list. If the top-k
values are at most equal to ω, then the halting condition is
satisfied; otherwise, go to the next round.
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Algorithm 3 The Graph Range Query Algorithm
1: resultset ← ∅ and τ
2: for each round do
3: for j = 1; j ≤ M; j++ do
4: Fetch the entry gi in the jth sorted list
5: if gi is first found in the jth sorted list then
6: Update the value of ζ (gq, gi) by adding the UTD
7: if ζ (gq, gi) > τ then
8: Filter out the gi
9: continue

10: end if
11: end if
12: Update the cost matrix between gq and gi
13: if scandepth%h == 0 then
14: for each found and unprocessed graph gn do
15: Compute λL(gq, gn) using the cost matrix
16: if λL(gq, gn) > τ then
17: Filter out the gn
18: continue
19: end if
20: Compute λ(gq, gn) incrementally
21: if λ(gq, gn) ≤ τ then
22: Add the gn into resultset
23: end if
24: end for
25: end if
26: end for
27: Evaluate ω =

∑M
j=18j

28: if τ ≤ ω then
29: Process all found and unprocessed graphs
30: Filter out those graphs with mapping distance larger

than τ
31: break
32: end if
33: end for

The details of range query algorithm is shown in
Algorithm 3. The pruning strategy is similar to Algorithm 2.
The difference is that we filter out graphs with mapping
distances larger than the threshold value of τ , instead of
maintaining a top-k queue. Here, we omit all proofs for
the correctness of three algorithms as they were shown in
previous work [46].

VI. THE LAZY LEARNING APPROACH
We employ the dynamic time warping [47] to measure the
similarity between two evolving graphs, denoted by the graph
alignment distance.
Definition 5 [Graph Alignment Distance (GAD)]: Given

two evolving graphsG1 andG2 with their multisets of profile
graphs, and a bijection P : G1

→ G2, the alignment distance
between G1 and G2 denoted by λ(G1,G2) is computed as

λ(G1,G2) = min
P

∑
g1i ∈G

1

λ(g1i ,P(g
1
i )).

Algorithm 4 The Dynamic Programming Algorithm
1: M ← array[0..n, 0..m]
2: for i = 1; i ≤ n; i++ do
3: M [i, 0]←∞
4: end for
5: for i = 1; i ≤ m; i++ do
6: M [0, i]←∞
7: end for
8: for i = 1; i ≤ n; i++ do
9: for j = 1; j ≤ m; j++ do

10: cost ← λ(g1i , g
2
j )

11: min← min(M [i−1, j],M [i, j−1],M [i−1, j−1])

12: M [i, j]← cost + min
13: end for
14: end for
15: λ(G1,G2)← M [n,m]

FIGURE 8. The framework of lazy learning approach.

The computation of λ(G1,G2) is equivalent to solving
the sequence alignment problem, which is typically solved
using the dynamic time warping algorithm aiming at find-
ing the minimum weight matching in a given cost matrix.
Given two multisets of profile graphs {g11, g

1
2, . . . , g

1
n} and

{g21, g
2
2, . . . , g

2
m}, we construct an n × m weighted matrix M

with each weight computed as λ(g1i , g
2
j ) between each pair

of profile graphs. We apply the dynamic programming to
finding the optimal alignment as shown in Algorithm 4.

Figure 8 shows the framework of proposed lazy learning
approach.We first extend the two-level inverted index to three
levels for supporting efficient prediction analysis. We further
build an extended-level index to store the profile graphs for
each evolving graph. Given a set of evolving graphs and their
sequences of profile graphs, the index is made up of two main
parts: an index for all distinct profile graphs, and an inverted
list below each profile graph. Each entry in the inverted lists
contains the evolving graph identity and the frequency of the
corresponding profile graph.

Given a query Gq, for each profile graph gqi ∈ Gq, its
top-k queue are returned fromAlgorithm 2. Then, all inverted
list indexed by the top-k results can be directly fetched from
the extended-level index, and combined into one sorted list.
Obviously, evolving graphs in the sorted list are naturally
ordered in terms of GMDs according to the top-k values.
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Algorithm 5 The KNN Learning Algorithm
1: top-k ← ∅
2: for each round do
3: for j = 1; j ≤ n; j++ do
4: Fetch the entry Gi in the jth sorted list
5: if Gi is first found in the jth sorted list then
6: Update the value of ζ (Gq,Gi) with GMD
7: if ζ (Gq,Gi) > λkT then
8: Filter out the Gi

9: continue
10: end if
11: end if
12: Update the cost matrix between Gq and Gi

13: if scandepth%h == 0 then
14: for each found and unprocessed graph Gx do
15: Compute λL(Gq,Gx) using the cost matrix
16: if λL(Gq,Gx) > λkT then
17: Filter out the Gx

18: continue
19: end if
20: Compute λ(Gq,Gx) incrementally
21: Update the top-k queue with a better result
22: end for
23: end if
24: end for
25: Evaluate ω =

∑n
j=18j

26: if λkT ≤ ω then
27: Process all found and unprocessed graphs
28: Update the top-k queue if better results are found
29: break
30: end if
31: end for
32: Predict Gq using a majority vote of top-k results

With the sorted lists, we use the CA algorithm to access
profile graphs using a round-robin scan. Using the summation
of GMDs as an aggregation function, the halting condition
and several aggregation bounds can be directly derived.

The details of KNN learning algorithm can be seen in
Algorithm 5. Given a query graph Gq with n sorted lists,
we do sorted access in a round-robin schedule to each list.
If an entry Gi is first found in the visited sorted list, com-
pute ζ (Gq,Gi) ← ζ (Gq,Gi) + GMDj where GMDj is the
first found graph mapping distance of Gi in the jth sorted
list. Obviously, ζ (Gq,Gi) is a lower bound of λ(Gq,Gi).
If ζ (Gq,Gi) is greater than the top-k values, the graph Gi

can be safely filtered out. At each depth h of visited lists,
for all found and unprocessed graphs, we compute the par-
tial alignment distance λL and extract distance λ for further
pruning. We maintain a top-k queue with the lowest λ values.
At the end of each round, we evaluate the aggregation score
ω =

∑n
j=18j where 8j is the GMD value at current visited

position in the jth sorted list. If the top-k values are at most
equal to ω, then the halting condition is satisfied; otherwise,

go to the next round. By obtaining the top-k results, Gq is
predicted by a majority vote of its k neighbors [48].

VII. EXPERIMENTAL STUDY
This section presents the results of the extensive perfor-
mance study of our approach. All the codes are imple-
mented in C++.We conduct the experiments on a server with
32GB memory, running Centos 5.6.

A. DATASETS
Two real datasets are used to evaluate the proposed approach.

MIMIC-III is a public EMR database [49] consisting
of 46,776 records from patients who are admitted to the hospi-
tal between 2001 and 2012. This dataset includes patients’ lab
tests, medications, procedures, demographics, and vital sign
measurements, etc. In this dataset, we use each admission as
a record, which refers to a patient’s one visit to the hospital.
For each admission, we reserve one disease diagnosis code.

OH is a real-world longitudinal EMR dataset from an
Orthopaedic Hospital in China. We conduct experiments in
a sample dataset of the OH dataset with 12,000 admissions
in OH from 2010 to 2014. Patients’ medical data such as
demographics, diagnoses, lab tests, medications and proce-
dures are collected in this dataset. We processed the data and
stored them using similar schemas used by MIMIC-III. For
each admission, there is also one disease diagnosis code.

In this paper, we perform two tasks: (1) Medical case
search by a query sample is to return similar cases similar
disease cases to the query patient; (2) Diagnosis by category
is to predict the disease category of a query patient.

B. MEDICAL CASE SEARCH EVALUATION
For both datasets, we randomly selected 1000 profile graphs
as queries to do the medical case search. The running time is
the average query time of all queries, and the accuracy is the
average precision of all queries.

1) SETTINGS
We denote our proposed profile graph searchmethods respec-
tively as PGS-KNN for KNN query and PGS-range for
range query. For range query, our work is the first focus on
this problem. We evaluate it by setting the range threshold
value of τ as 1, 5, 10, 15, 20.

We compared our PGS-KNN with a baseline algorithm,
namely Feature-KNN. The baseline represents a patient’s
medical data as a feature vector and computes the cosine
similarity between the queries and all samples. We set the
parameter k value as 10, 50, 100, 150, 200.

2) EVALUATION WITH RUNNING TIME
Figure 9 (y-axis is log-scaled) shows that both our pro-
posed medical search algorithms are fast enough to support
real applications. The average query time for medical case
searching in our experiments is less than 2.5 seconds even
for returning a top-200 results. Although the PGS-KNN is
slower compared with the Feature-KNN, it makes sense to
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FIGURE 9. Evaluation results on running time. (a) PGS-range. (b) MIMIC-III. (c) OH.

FIGURE 10. Evaluation results on accuracy. (a) PGS-range. (b) MIMIC-III. (c) OH.

sacrifice a little more time to obtain a higher accuracy in
real applications, as PGS-KNN does. The reason is that the
accuracy of the KNN results will directly affect the accuracy
of final diagnosis. We later show the accuracy comparison
evaluation in Figure 10.

3) EVALUATION WITH ACCURACY
Figure 10 shows the accuracy performance of our meth-
ods compared to the baseline. Figure 10 (a) illustrates
the very high accuracy achieved by the PGS-range, even
when the range threshold value τ grows to a large number
of 20.

For both two real datasets, our proposed PGS-KNN
achieves higher accuracy value compared against the
Feature-KNN, indicating that our consideration of corre-
lation between medical features helps resolve the bias in
EMR data and contributes to more accurate medical case
search. The results can be seen in Figure 10 (b) and (c).

C. BENEFITS FOR AUTOMATIC DIAGNOSIS
We compare our proposed method with the baseline method
in predicting disease category in two real datasets illus-
trated in Figure 11. For both datasets, our method outper-
forms the baseline. This observation indicates that analytical
tasks can benefit from considering the feature correlations
which reduce the information loss caused by feature vec-
tor based methods. PGS-KNN can achieve higher AUROC
value of this task, indicating that our proposed dynamic
graph models contributes to more accurate automatic
diagnosis.

FIGURE 11. Diagnosis by category results. (a) MIMIC-III. (b) OH.

D. EMPIRICAL STUDY
An empirical study was performed with the help of our
previous implemented crowdsourcing based expert Q&A
system [10]. In this experiment, we utilized top-10 results
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FIGURE 12. Expert Q&A platform.

returned from our algorithm. As shown in Figure 12, given
each result and the query medical case, we designed an
appropriate simple yes or no question, which was distributed
into the expert Q&A system for collecting experts’ answers.
Note that, the experts in our system are doctors from real
hospitals.

Three types of questions are generated for the expert
Q&A platform including:
• Q1: Does a returned medical case help the doctors’
diagnoses on the query medical case?

• Q2: Does a returned medical case have the same disease
as the query medical case?

• Q3: Does the patient of the query medical case have the
same disease as the one of the returned medical case?

Experts can choose ‘‘yes’’ or ‘‘no’’ to answer the ques-
tions. We statistically analyzed the collected answers with the
average accuracy rate. The average accuracy rate is defined
in Equation (1).

Pave = Average (P1,P2, . . . ,Pi, . . . ,Pn)

Pi =
|Xi|
|Yi|

(1)

Xi is a number of collected ‘‘yes’’ answers from the expert
system for a question i, and Yi is the total number of collected
experts’ responses. Finally the average accuracy we obtained
is about 62%.

VIII. CONCLUSION
In this paper, we first propose a novel modeling technique
to represent complex medical data as sequence of evolving
graphs. The proposed model could achieve better expressiv-
ity of medical data. Then, we develop a novel lazy learn-
ing algorithm to support efficient automatic diagnosis based
on evolving graph similarity search. We also construct a
multi-level inverted index to speed up the graph similarity
search, and support efficient prediction analysis for automatic
diagnosis. The experimental results show that the proposed
approach has better performance compared against the base-
line. In the future, wewill consider to employ the GPmodel in

graph sequence prediction. Different from typical algorithms
attempting to eagerly train a global GP model on the entire
dataset, we may focus on developing a semi-lazy learning
approach, which is a hybrid of the GP learning and graph
similarity search.
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