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ABSTRACT In the context of industry 4.0, the main way to realize the intelligent manufacturing is to
build a smart factory integrated with the advanced technologies, such as the Internet of Things (IoT),
cloud computing, and artificial intelligence (AI). With the aim to emphasize the role and potential of cloud
computing and AI in improving the smart factories’ performances, such as system flexibility, efficiency,
and intelligence, we comprehensively summarize and explain the AI application in a cloud-assisted smart
factory (CaSF). In this paper, a vertically-integrated four-tier CaSF architecture is presented. Also, the key
AI technologies involved in the CaSF are classified and described according to the logical relationships
in the architecture hierarchy. Finally, the main issues and technical challenges of AI technologies in the
CaSF systems are introduced, and some possible solutions are also given. The application of the AI in smart
factories has accelerated the implementation of the industry 4.0 to the certain extent.

INDEX TERMS Artificial intelligence, cloud computing, Industry 4.0, smart factory.

I. INTRODUCTION
Due to the rapid development of information technol-
ogy, computer science, and advanced manufacturing tech-
nology, the manufacturing production has been changing
from automated production to digitalized and intelligent
production [1]. Nowadays, the traditional single and mass
production cannot meet market demands for the multiple
varieties, small batches, and personalized customization [2].
Therefore, the change from the traditional manufacturing
model to the intelligent production model is an urgent issue.
In the context of Industry 4.0, the main way to realize the
intelligent manufacturing is to establish a smart factory based
on the Cyber-Physics Systems (CPS) [3]. The CPS needs
the technical support in various aspects, such as IoT,
big data, cloud computing, and artificial intelligence (AI)
technologies [4], [5].

Smart factories based on the cloud computing have a
large number of low-cost resources of storage and com-
puting, which can enable the dynamic reconstruction and
optimized distribution, and provide reliable support for
the application of industrial big data [6]. Shu et al. [7]

proposed a cloud-integrated CPS that provides solutions
for complex industrial applications from three aspects:
virtual resource management, cloud resource scheduling,
and lifecycle management. Wang et al. [8] demonstrated
a cloud-based personalized smart factory application for
candy packaging. By using the private cloud and indus-
trial wireless network, the smart production devices can be
directly connected to the client terminals to achieve product
customization and production. A large number of studies
have shown that cloud computing provides an effective solu-
tion for resource sharing and information exchange in intel-
ligent manufacturing systems, but only a few studies have
specifically integrated the AI technologies into the systems.

Recently, the AI has attracted a lot of attention in various
fields including the smart manufacturing. Namely, signif-
icant progress has been achieved in many fields, such as
image processing, natural language processing and speech
recognition [9], [10]. The development of a new generation
of AI technologies has also brought new opportunities and
challenges to the smart factories. Considering a smart factory
as a large information system, it is possible to apply the
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AI technologies at different levels of the CaSF. Thus, the
AI can be applied to the smart factories to a large extent.
Deploying the AI technologies in smart factories has
produced many significant changes including the follow-
ing: 1) smart devices that integrate the AI technologies,
such as machine vision, are more accurate and reliable;
2) collaborative mechanisms with autonomous decision-
making and reasoning capabilities exhibit more reasonable
dynamic behaviors; and 3) data processing methods based
on the advanced AI algorithms, such as deep learning, are
more accurate and efficient. Therefore, the application of
AI technologies has provided a new construction direction of
smart factories.

In this work, we improve the traditional manufacturing
model by combining the AI with the CaSF. Three main
contributions of this work are as follows.

• A four-layer CaSF architecture equipped with the
AI technologies is proposed; the proposed architecture
consists of four layers, namely the smart device layer,
network layer, cloud layer, and application layer. The
integration of these four layers constitutes a unified and
coordinated smart factory environment.

• The typical AI technologies in the CaSF are classi-
fied according to the standard of architecture hier-
archy. Namely, the classification is applied to the
device’s perception and action, optimized network trans-
mission, powerful storage, computing on the cloud,
and the data-driven and knowledge-driven system
applications.

• The main issues and challenges of the AI technologies
in a smart factory are analyzed and discussed.

The rest of the paper is organized as follows. Section II
presents a CaSF architecture and briefly points out the inte-
grated AI technologies. Section III classifies and describes
the typical AI technologies and their applications in the
proposed architecture. Section IV presents the main tech-
nical challenges and corresponding solutions of the smart
factory. Lastly, Section V gives a brief summary of this
work.

II. SMART FACTORY ARCHITECTURE
In the context of the Industry 4.0, the smart factories have
been widely researched, and the construction model has also
been extensively discussed. Still, there is no a universal
implementation standard. Wang et al. [11] used the prin-
ciple of vertical integration in the Industry 4.0 and pre-
sented a highly-flexible and reconfigurable manufacturing
system. Based on that, Chen et al. [12] further integrated
the industrial wireless networks and cloud computing to
improve the information availability and effectiveness of the
multi-agent manufacturing systems. Wan et al. [13] proposed
the architecture for dynamic resource management in the
smart factory, which provides a solution to resource alloca-
tion and scheduling in the complex manufacturing environ-
ments. In addition, Tang et al. [14] presented a cloud-assisted
self-organizing intelligent manufacturing system. The listed

studies discuss the construction model of a smart factory
from different perspectives and provide a reliable reference
for related research. However, these system architectures are
mainly concerned with the interaction of information and
physical systems. There are not many artificial intelligence
technologies involved, and the intelligence of the system
needs to be improved. Therefore, in our proposed smart fac-
tory architecture, more attention is focused on the application
of artificial intelligence technologies. In general, a smart
factory is built on the basis of digital and automated manufac-
turing systems by integrating the advanced technologies, such
as industrial wireless networks, cloud computing, and AI,
to optimize the resources utility and system management
to achieve the flexible organization, dynamic reconstruction
and optimized production with the aim to meet the changing
market demands.

Deploying the AI technologies in smart factories improves
the manufacturing system performance in terms of percep-
tion, communication, data processing, and analysis [15].
As shown in Fig. 1, the smart factory architecture that we pro-
pose consists of four layers, the smart device layer, network
layer, cloud layer, and application layer, which correspond
to the physical smart manufacturing resources, industrial
wireless sensor networks, cloud platforms, and services of
system applications. In order to realize the proposed smart
factory, we carefully study the integration and application of
the related AI technologies.

III. KEY TECHNOLOGIES
The smart factory we propose here represents a flexible,
extensible and reliable intelligent manufacturing system,
which can autonomously perceive the information of the
physical world and understand its meaning, and interact
with the environment accordingly. To build such a highly-
informative and intelligent system, the application of the
AI technologies is indispensable. As shown in Table 1, the
related AI technologies are classified from the perspective of
different layers in the smart factory.

A. SMART DEVICE LAYER
This layer consists of the smart devices in the product produc-
tion cycle, such as robotic arms, automated guided vehicles
(AGVs), conveyor belts, and smart products, which denote
the basis of the smart factory. The multi-variety and individ-
ualized production model and a high demand for products
quality have set new standards for the perception and action
capability of the system devices. Therefore, the AI applica-
tions such as machine vision and path planning need to be in
focus.

1) MACHINE VISION FOR INTELLISENSE
Recently, machine vision has become more and more used
in the intelligent manufacturing field. On the one hand,
machine vision has a significant effect on improvement of the
accuracy, efficiency, and reliability of the product measure-
ment. Fan and Jing [16] proposed a vision-based shaft parts
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FIGURE 1. The CaSF architecture.

measurement system based on the image processing algo-
rithm which simultaneously ensures the accuracy and robust-
ness of the system. Bao et al. [35] proposed a method for
dimension measuring based on the machine vision, which
ensures a high-reliability, efficient and accurate measure-
ment even when images are disturbed by the external noise.
Therefore, the application of machine vision in the image
processing algorithms can significantly improve the accuracy
of industrial products meeting the market demand for high
quality and improving the stability and intelligence of physi-
cal devices simultaneously.

On the other hand, quality testing and rapid classifica-
tion of products are also very important. Kong et al. [36]
proposed a method for detection of scratches on the prod-
uct’s surface based on machine vision, which achieves
quality monitoring under the complex conditions. Xia and
Weng [37] presented an industrial sorting robot system
based on machine vision that can obtain edge information
on the workpiece and identify its shape from the image,
and then calculate the coordinates of the central space of
the workpiece and complete the workpiece sorting pro-
cess. The listed studies show that application of machine
vision enables the realization of a manufacturing system that
can conduct the complex product inspection and classifi-
cation tasks to achieve a flexible and efficient production
model.

2) PATH PLANNING FOR INTELLIGENT MOVEMENT
With the development of industrial robot technology,
the number of mobile robots used in the factories has con-
stantly been increasing. In the complex manufacturing envi-
ronment, the optimization of a mobile robot path not only
influences system efficiency but also is closely related to the
system energy consumption, time cost, and other related fac-
tors. Therefore, the path planning has always been in the focus
of smart factories optimization. Zhang and Zhou [18] pro-
posed an improved heuristic search method by comparing the
classical path search methods with the traditional path plan-
ning strategies, which solves the problem of multi-robot path
adaptability and conflict between time and space. Further,
Yu et al. [38] proposed a path planning scheme for mobile
robots based on a fast-convergent ant colony algorithm,which
improves the heuristic factor and helps to avoid the blind
pursuit of targets by using the multiple robots to achieve
an adaptive adjustment and shorten the searching time.
In addition, Li et al. [19] proposed a path planning method
for mobile robots based on a genetic algorithm and gene rear-
rangement, which not only shortens the path length but also
ensures that robots do not intersect with any obstacle. The
listed studies show that by integrating the AI algorithms, such
as heuristic search, genetic algorithm, and particle swarm
optimization algorithm, into the robot systems, the smart
factories with multiple robots can form a stable and orderly
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TABLE 1. Applications of AI at various layers of the smart factory.

intelligent system which makes the production process more
flexible and efficient.

Compared with the traditional factories, the multi-robot
manufacturing systems are characterized by higher reliabil-
ity, lower cost, and higher efficiency. Moreover, these sys-
tems can solve large-scale, complex problems that require
coordination among robots. The methods for path plan-
ning optimization include not only the detection and search
of path conditions by an individual robot but also the

resolution of contradictory conflicts among multiple robots,
which imposes higher requirements for resource coordination
and scheduling in the system. Although AI algorithms pro-
vide many good solutions, they are limited by various factors,
so the in-depth research needs to be continued.

Machine vision and path planning are typical applications
of artificial intelligence at equipment layer of the smart fac-
tory, and the two are closely linked. The former significantly
improves the perception of smart devices. At the same time,
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the improvement of device sensing performance is beneficial
to the path planning of mobile robots such as AGVs and
robotic arm. In general, machine vision and path planning lay
the foundation for the high intelligence of the smart device
layer.

B. NETWORK LAYER
The network layer is mainly composed of the industrial wire-
less sensor networks (IWSNs) and related technologies, and
it represents an important part of the smart factory. In the
high-information manufacturing environment, the device-to-
cloud (D2C) and device-to-device (D2D) communication
are becoming more frequent. The increase in the number
of smart devices also poses new challenges to the system
network, such as network resource distribution and load
balancing [39]. Therefore, stable data transmission and
real-time information sharing require a flexible and reliable
network environment. Due to these new challenges, the tra-
ditional industrial networks are no longer convenient, and the
application of the AI in the industrial networks brings a new
opportunity to the IWSNs.

1) COGNITIVE WIRELESS SENSOR NETWORK
In the smart factory, the increase in data nodes number and
data volume raises the requirements for dynamic performance
and scalability of the network. As a strong AI technology,
the cognitive computing can effectively enhance learning and
cognitive ability of the network, significantly improving the
quality and efficiency of network transmission in complex
manufacturing systems [40]. Due to the excellent perfor-
mance in network optimization, the cognitive wireless sensor
networks are receiving more and more attention.

Network transmission in the manufacturing environment
shows comparatively large uncertainty and dynamic, so the
learning and reasoning ability represents the major chal-
lenge of the existing network environment. The machine
learning algorithms, especially neural networks which are
specifically popular in the tasks involving classification,
learning, and optimization, facilitate the extensive learning
and optimization of networks. Ahad et al. [41] presented
a comprehensive survey of the application of neural net-
works in wireless networks, highlighting the remarkable ver-
satility of neural networks. Specifically, Zorzi et al. [20]
proposed a cognitive network model based on a genera-
tive deep neural network, which combines the knowledge
extracted from the network data with different machine learn-
ing algorithms to realize specific network tasks. In addition,
Gheisari and Meybodi [21] proposed a learning and reason-
ing method for cognitive wireless sensor networks based on
the Bayesian network to maximize the network awareness
and improve the transmission quality. The aforementioned
studies show that by integrating the cognitive computing in
a multi-node complex industrial environment, the applica-
bility and adaptability of wireless networks can be effec-
tively improved. Although the remarkable results of cog-
nitive wireless networks in the manufacturing environment

FIGURE 2. The architecture of a software-defined industrial wireless
network based on the game theory.

have not generally been achieved yet, they still provide a
reliable research direction for network optimization of smart
factories.

2) GAME THEORY FOR SOFTWARE-DEFINED NETWORK
Due to the increase in the number and types of network ser-
vices deployed in the manufacturing systems, the automatic
optimization and reconfigurability of the network should be
considered. As shown in Fig. 2, a software-defined network
(SDN) can lower the requirements for hardware using the
centralized software control to improve network flexibility
and scalability, which facilitates network management and
meets the high dynamic network requirements of smart fac-
tories. A software-defined IWSNs denotes both industrial
applications and extensions to the existing advanced wireless
communication technologies, as well as an innovation in the
traditional industrial network communications [42], [43].

With the continuous improvement in distributed wireless
sensor networks, the role of the game theory model is grow-
ing. The game theory itself is a utility-maximizing and multi-
agent decision theory that enables agents to interact with
each other, which can help to understand and predict the
performance of complex sensor network systems needed to
optimize the signal transmission and communication [44].
Ma et al. [22] combined the non-cooperative game theory
and charging mechanism to realize the load balancing and
variable-width channel allocation strategy for the wireless
sensor networks, which improved the resource utilization and
network transmission efficiency. Akkarajitsakul et al. [23]
put the focus on uncertainty and Bayesian game, and used
the Bayesian gamemodel to analyze the uncertainty of nodes’
behavior and validated the Nash equilibrium of the dynamic
Bayesian game model. Therefore, it was shown that game
theory could effectively solve the problems such as network
overload and resource utilization imbalance which helps to
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achieve the reasonable distribution of network resources and
dynamic load balancing in the multi-agent industrial wireless
network environment [45].

By integrating the game theory and SDN, the software-
defined IWSNs can further enhance the network performance
and optimize the resource scheduling. As shown in Fig. 2,
on the SDN control plane, data transmission of the forwarding
plane and reasonable network bandwidth resource allocation
are controlled by a game theory model, and the subgames
further adjust the different resource requirements between
the smart devices in the bottom layer. Thus, network data
transmission and resource distribution are optimized, and
system flexibility and stability are improved simultaneously.

Cognitive network and game theory are important opti-
mization directions of the smart factory network layer. The
two are related and different. In the distributed deployment
manufacturing environment, the data transmission density of
D2D and D2C is high. The game-based SDN can effectively
solve the problem of load balancing between data nodes
and rationalization of network resource utilization. Cognitive
computing enhances the learning and reasoning ability of the
network, and can effectively cope with the high dynamics
and uncertainty of the network. Therefore, the organic com-
bination of the two can significantly improve the network
transmission performance of smart factories.

C. CLOUD LAYER
In the CaSF system, the integration and analysis of man-
ufacturing data denote the main task. With the powerful,
flexible and available storage and computing resources on
the cloud platform, the information contained in the big data
can be discovered [46], [47]. The distributed and parallel
data processing architecture provides an effective solution
for large-scale manufacturing data and high-complexity com-
puting tasks, and the virtualization of resources improves
the resources intelligent management and distribution on the
cloud. Hence, the integration ofAI algorithms and cloud com-
puting has effectively improved the data processing efficiency
and quality of service (QoS) of the platform.

1) INTELLIGENT ALGORITHMS FOR DISTRIBUTED AND
PARALLEL COMPUTING
The continuous growth of manufacturing data brings more
valuable production information, which can be used to opti-
mize the production process. However, large-scale, large-
volume data also require higher data processing capability.
Thus, the traditional data processing methods cannot meet
industrial requirements due to the massive manufacturing big
data. Therefore, the massive-data processing should be based
on the cloud-based distributed and parallel computing [48].
The maturation and development of AI algorithms enable
different algorithms to be applied to the parallel architectures
to optimize the calculation and storage of big data.

The integration of the AI algorithms and distributed par-
allel architecture improves system data-processing capa-
bility, reduces time delay, and lays a foundation for big

data application. Aly et al. [24] proposed a new distributed
training method that combines a widely-used big data pro-
cessing framework named the MapReduce and traditional
machine learning techniques, making the analysis and infor-
mation extraction from the industrial big data faster. The
parallel computing methods based on the MapReduce frame-
work can process complete data efficiently, but in many
cases the data collected by the system are incomplete, and
incomplete data bring the obstacles in data processing and
analysis. Based on the parallel data processing architecture,
Zhang et al. [25] used the rough set theory to introduce three
different methods based on a parallel matrix to deal with
the large-scale incomplete data. A large number of studies
show that integration of intelligent algorithms provides the
much-needed flexibility, scalability and fault tolerance to the
distributed and parallel computing systems.

To fully extract the valuable information from themanufac-
turing big data, the advanced AI learning algorithms should
be used in a distributed and parallel computing architecture
because they can significantly increase the speed and effi-
ciency of information extraction. Wuest et al. [26] proposed
a learning method that combines the cluster analysis and
support vector machine (SVM), and effectively overcomes
high complexity and dimensionality of the manufacturing
data. Li et al. [49] proposed a deep convolution calculation
model that significantly improves the training efficiency of
big data. Therefore, a distributed parallel computing archi-
tecture provides the basis for the application of industrial
big data, and the introduction of the AI algorithms improves
the efficiency and performance of data processing, and their
combination promotes the development of industrial big data.

2) RESOURCE VIRTUALIZATION AND INTELLIGENT
MANAGEMENT
In order to meet different dynamic demands for resources of
multi-tasks, such as those related to the computing and stor-
age in a large-scale distributed smart factory, the virtualiza-
tion technology virtualizes hardware resources into a resource
pool according to the principle ‘‘turn off the redundant, turn
on the demanded’’, i.e., forms a cloud infrastructure with high
flexibility and reliability [50], [51]. As shown in Fig. 3, the
tasks in the manufacturing system send the resource-request
signals to the cloud according to the current requirements,
and then, the system responds to the commands and allocates
resources from the flexible resource pool as needed. Virtual-
ization of resources greatly increases the resources utilization
and system flexibility and scalability simultaneously.

In a complex manufacturing environment, the resource
distribution mechanism on the cloud affects not only the
production efficiency but also the energy consumption. Unco-
ordinated resource allocation can even cause disruptions in
the production process.With the AI development, many intel-
ligent algorithms have been studied and applied to the coor-
dinated distribution and scheduling of cloud resources [52].
Liu et al. [27] proposed a resource allocation mechanism
based on reinforcement learning. The cloud acquires the
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FIGURE 3. On-demand scheduling mechanism of a virtualized resource
pool.

autonomous management capability of computing resources
through the online learning, and then, decides whether
to respond to the actual task request for resources allo-
cation. Therefore, an intelligent cloud with learning and
decision-making capability is necessary to manage the elastic
resource pool properly and achieve optimal scheduling of sys-
tem resources. Optimal scheduling of virtualized resources
improves the flexibility and reliability of a smart factory,
and it is also the basic guarantee for system efficient oper-
ation. In addition, the load balancing of cloud physical hosts
also affects the task processing and computational efficiency
of the data center [28], [40]. Compared with the previous
static and temporary load balancing methods, the advanced
AI algorithms improve the system dynamic performance
and ensure the long-term effectiveness of the load balancing
mechanism.

The resource virtualization on the cloud provides the
scheduling of resource allocation on demand. The high flex-
ibility of a resource pool simultaneously facilitates system
maintenance, reduces system cost, and improves resources
utilization. The introduction of AI algorithms makes the
cloud more flexible and intelligent, enabling cloud to make
the autonomous decisions based on the system’s multi-task
requests and optimize the resources distribution. The intelli-
gent cloud not only improves system efficiency and resources
utilization but also ensures system reliability and stability.

Distributed parallel computing and virtualized storage are
two of the main features of the cloud. On the basis of efficient
distributed parallel computing, the fusion of intelligent algo-
rithms can effectively extract high-value information from
a large amount of manufacturing data, which improves the
utilization of data. The virtualization of storage resources
greatly improves the storage capacity of the system, and
the intelligent management of the resource pool can effec-
tively respond to different needs in the manufacturing system.

FIGURE 4. The ontology-based knowledge base modeling method.

Therefore, artificial intelligence support for cloud comput-
ing is the key to data and knowledge-driven manufacturing
model.

D. APPLICATION LAYER
With the continuous update and development of the industrial
big data processing methods and tools, together with the
cloud platform as reliable support, the big data applications
in the smart factory have been developing more and more
rapidly. According to the main driving factors, the application
of manufacturing big data can be divided into data-driven and
knowledge-driven. With the AI expansion, the AI application
in active preventivemaintenance, resource reconstruction and
context awareness service in the smart factories has become
research hotspots, Fig. 4.

1) MACHINE LEARNING FOR ACTIVE PREVENTIVE
MAINTENANCE
With the development of industrial big data, the application
of machine learning in the smart manufacturing field has
become increasingly popular, especially in the manufacturing
knowledge extraction, assisted decision support, and prod-
uct and equipment lifecycle management [53], [54]. More-
over, it has become inseparable from the time and resources
required for the algorithms and ease setup and maintenance.
Currently, the most widely used machine learning methods
are the supervised learning, semi-supervised learning, and
unsupervised learning methods [55], [56]. The intelligent,
active, preventive maintenance mechanism is an effective
way to manage manufacturing systems. Susto et al. [57]
proposed an active preventive maintenance method based on
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a machine learning algorithm, which comprehensively con-
siders the product performance in different aspects and uses
the information on a cost-based maintenance decision system
to minimize the expected cost. By using the appropriate
machine learning algorithms, the information can be effec-
tively extracted from the manufacturing data, which provides
reliable support for the system knowledge utilization. With
the high availability of product manufacturing data at each
stage, machine learning is becoming a more flexible, more
applicable and leaner data analysis tool for cloud-integrated
manufacturing systems.

Nevertheless, with the increase in manufacturing data vol-
ume, the deep learning methods have been more and more
applied to the system’s active preventivemaintenance, such as
intelligent prediction, fault diagnosis, and equipment health-
status analysis, because of higher and more accurate data
feature recovery capability. Wen et al. [29] proposed a new
method for intelligent fault diagnosis based on a convolu-
tional neural network, which uses the convolutional layers
to train the images transformed from the original signal
data; the obtained final prediction accuracy was 99.51%.
Xu et al. [30] and Yan et al. [31] proposed a concept of device
electrocardiogram based on deep learning, which monitors
device’s operational status through the changes in electro-
cardiograms which are used to predict the remaining useful
life of a smart device. Therefore, by applying the deep learn-
ing methods to the large-scale, large-volume manufacturing
data, the intelligent monitoring and accurate prediction of
manufacturing events can be realized, making the production
process more reliable and efficient.

2) ONTOLOGY FOR RESOURCE RECONSTRUCTION
Considering the type and quantity of manufacturing
resources, the description of resources obtained from dif-
ferent perspectives may differ greatly. Ontology provides a
unified conceptual model for domain knowledge descrip-
tion [58]. A set of manufacturing chain values is constructed
by establishing the concept of resources and semantic links
between them to form a domain knowledge base [59], [60].
Namely, the ontology provides a standardized measure
for resource description in a complex manufacturing envi-
ronment, which greatly facilitates knowledge sharing.
Wan et al. [32] proposed an ontology-based CPS resource
reconstruction method from the perspective of rapid iterative
production requirements and reasonable use of resources,
which achieved an agile and efficient manufacturing resource
allocation. Saeidlou et al. [61] used the cloud-based ontology
for the semantic description of manufacturing resources in a
distributed environment to implement the knowledge storage,
reasoning, and retrieval. Zhou et al. [62] proposed a model-
based knowledge-driven self-reconfigurable machine control
system, which uses an ontology representation to describe the
knowledge base and rules to complete the machine’s auto-
matic reconfiguration process. The ontology-based model
has a semantic relationship between resource descrip-
tions, which provides interoperability and flexibility for the

system value applications such as manufacturing resource
reconstruction.

In the cloudmanufacturing, the ontology-based knowledge
base can effectively describe the conceptual level and seman-
tic information of manufacturing resources, which provides
a new technical reference for the utilization and sharing of
manufacturing resources. A brief construction method of an
ontology-based knowledge base is presented in Fig. 4. In the
framework, the manufacturing resources are expressed in the
ontology form, so the real-time status and data of smart
devices can be associated with the ontology models. More-
over, the knowledge base realizes the separation of ontology
models from related applications. Thus, when the knowledge
model is applied to the different scenarios, its integrity will
not be destroyed because it has good dynamic performance
and separability. Based on the ontology models, the rules
between relevant concepts need to be defined to establish
a semantic network of manufacturing knowledge, and then,
the inference engines (such as the Jena inference tool of java
architecture) are used to mine the knowledge value hidden
within the data and concept rules [63], [64].

3) CONTEXT AWARENESS SERVICE
With the development of smart devices and AI algorithms,
the personalized services based on a context awareness such
as intelligent human-machine interaction and intelligent posi-
tioning service have become more popular [65]. The real-
time personalized services have improved not only system
efficiency, but also the QoS. In the CaSF, cognitive com-
puting enables the system to understand the environment
and react in real time through the learning of manufacturing
data to provide manufacturing context awareness services,
which significantly improves the system self-adaptability and
intelligence [66].

By using the abundant storage and computing resources
on the cloud, Wan et al. [33] proposed a context-aware
cloud robot architecture for smart factory material handling.
This architecture uses the intelligent decision-making mech-
anisms, cloud-enabled simultaneous positioning, and map-
ping of AGVs to implement the context awareness and
dynamic load balancing, which increases system efficiency
and reduces energy consumption. Stipancic et al. [34] devel-
oped a cognitive robot model to achieve the real-time percep-
tion and reasoning, which significantly improves the robot
adaptivity, self-recovery, and scalability. Therefore, the con-
text awareness services not only can optimize the production
process but also reduce system complexity and improve its
intelligence. Specifically, the context-aware systems have the
capability of environmental awareness and decision-making
in real time, so that they can meet rapidly changing and
personalized production needs.

Active preventive maintenance, resource reconfiguration
and context awareness service are typical applications of
artificial intelligence in smart factories. With the rise of
industrial big data, the machine learning methods represented
by deep learning provide directions for active preventive
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maintenance of smart factories. At the same time, through the
knowledge extraction of manufacturing data, the ontology-
based resource reconstruction method effectively improves
the utilization rate of manufacturing resources. In addition,
context-aware services based on cognitive computing further
enhance the real-time and high efficiency of the system.
In general, these intelligent applications effectively improve
the intelligence and service quality of smart factories.

IV. ISSUES AND POSSIBLE SOLUTIONS
The integration of AI technologies in smart factories has
improved the flexibility, reliability, and efficiency of manu-
facturing systems. However, there are still some problems and
technical challenges worth of discussing.

A. HIGHLY-INTELLIGENT DEVICES
Smart devices denote the basic part of a smart factory, which
means that their efficient operation is the precondition and
guarantee for the system data acquisition, dynamic recon-
struction, and resource scheduling. With the integration of
AI technologies in smart factories, the intelligence require-
ments of the equipment are further enhanced. In a large-scale
and heterogeneous smart factory, the manufacturing data are
diverse and noisy, but in most cases, only the collection and
analysis of one or several parts of valid data are required.
On the contrary, we should determine which data to use when
storing a large amount of data. Namely, invalid data collection
increases network latency and reduces system efficiency [67].
Therefore, in addition to the preliminary classification and
processing of the collected raw data, it is also necessary
to increase device sensitivity to the required data. Thus,
we should clearly grasp the perceptual objects of each device
and changes in performance of each operation of a device, and
optimize for performance bottlenecks simultaneously. On the
other hand, it is also possible to consider the categories of
valid data from the aspect of data analysis and optimize the
device’s ability to perceive signals.

System integrity and coordination are ones of the most
important features of a smart factory. Due to the wide range
of smart devices in a smart factory, a large number of
non-interactive communication protocols are needed which
undoubtedly increases system complexity and heterogene-
ity [68], [69]. To reduce system complexity and optimize
cooperation and communication between devices, a uni-
fied signal interface should be developed and used between
devices, and communication protocols with interoperability
should be supported. In this way, the smart devices with
cognitive and communication capability could collaborate
with each other to complete complex manufacturing tasks.

B. ADAPTIVE NETWORK TRANSMISSION
In a distributed manufacturing environment, the transmis-
sion of the node’s data and computational tasks are ones of
the most important things. However, data transmission and
communication in the smart factory require a sufficient net-
work bandwidth. The proposed game theory-based network

architecture provides a flexible resources allocation, which
eases the competition of multiple nodes. However, due to
the large-scale data transmission in D2D and D2C commu-
nication, there are inevitably different degrees of network
delay [70]. New technologies, such as edge computing, may
provide a solution to this problem. The edge computing
directly completes the computational tasks of manufacturing
nodes via the close-edge nodes with a certain computing
ability and storage which effectively reduces the delay of
tasks [71], [72].

Regardless of whether the network architecture is based
on the game theory or the IWSNs is integrated with the
edge computing, there is a priority problem in data trans-
mission between nodes. At the same time, considering too
many edge computing nodes will increase system complexity
and maintenance cost greatly. Therefore, new algorithms and
techniques that solve the task priority problem should be
developed. For instance, if a computing task is not suitable for
uploading to the cloud, the dynamic protection mechanism
should be activated, and the system should transmit that
task to the edge node for calculation, thereby improving the
system performance.

C. DATA FUSION
The big data allows smart factories to be described and
expressed in detail, but most manufacturing data cannot be
used directly because of high heterogeneity, dimensionality,
and noise [73]. The structure of the output data of different
devices or sensors may be different, so the appropriate data
processing and fusion must be performed [74]. Although the
current cloud platforms contain the interfaces for multiple
data types, the data analysis algorithms or tools may require
a specific format of input data. Therefore, to improve system
robustness and real-time performance, it is necessary to store
data in a specific format. Similarly, after the calculation tasks
are completed, the data should be output in the same format
as it was received, which facilitates data transmission and
management.

In addition, the unstructured data, which are present in
more than 50% of manufacturing systems, cannot be directly
accessed by the data processing tools, which imposes severe
restrictions on the results of data-driven production and
optimization [75]. However, many researchers believe that
this problem can be solved by the AI technologies such as
machine learning.

D. CLOUD SECURITY
The security and privacy issues are crucial, especially in a
highly-informed smart factory. As already mentioned, cloud
computing enhances the scalability and flexibility of intelli-
gent manufacturing systems greatly, but it also brings new
security challenges. This is especially important in the case
of sensitive, highly-confidential data, which include not only
all data generated by the system, but also private data such as
user orders and business transactions [76], [77]. Namely, if
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these data are leaked, both the system and users will suffer
from a severe loss of profits and property.

To overcome this problem, the strict access authentication
and control management method should be developed and
implemented to improve the security level by authorizing
and encrypting user access credentials [78]. On the other
hand, the automatic detection and classification of a risk
represent an efficient solution, which provides a systematic
approach to understanding, identifying, and resolving the
security risks [79], and where the focus should be on the
intrusion detection and prevention services, which indicates
that the risk should be discovered in time to avoid greater
property damage. Therefore, more efficient algorithms and
models related to risks detection and prevention should be
developed [80], [81].

V. CONCLUSION
The smart factory is an intelligent manufacturing system
based on the CPS, which realizes efficient and reliable pro-
duction using the advanced technologies such as the AI
and cloud computing. This paper proposes a four-layer
CaSF architecture developed based on the results of recent
researches in the smart manufacturing filed. Namely, the
proposed architecture consists of the smart device layer,
network layer, cloud layer, and application layer. Also, the
AI technologies and algorithms applied in the smart facto-
ries are classified from the perspective of different layers.
In addition, the main problems and technical challenges of
the smart factory are discussed, and possible solutions are
provided. The smart factory has introduced the profound
changes in the traditional manufacturing industry making
it highly-dynamic, extensible and reconfigurable, meeting
the flexible and changing market demands. With the aim to
further improve the smart factory, in our future work, we will
conduct more in-depth researches on the AI and study the
cross-disciplinary domain knowledge.
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