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ABSTRACT Quantum image representation plays an important role in quantum image processing. In this
paper, a bitplane representation of quantum images (BRQI) is proposed, which uses (n+4) or (n+6)
qubits to store a grayscale or RGB color image of 2n pixels. Compared with a novel enhanced quantum
representation (NEQR), and a novel quantum representation of color digital images (NCQI), the storage
capacity of BRQI improves 16 times and 218 times, respectively. Next, some quantum operations based on
BRQI are proposed, these operations including complement of colors, reverse of bitplanes, and translation of
bitplanes. Analyzed the implementation circuits of these operations, the result indicates that these operations
based on BRQI have lower quantum cost than NEQR and NCQI. Furthermore, an image scrambling
algorithm based on BRQI is presented by combining the above operations. Simulation experiments and
performance analysis show that proposed scrambling algorithm is effective and efficient.

INDEX TERMS Quantum image representation, quantum computing, bitplane, quantum image scrambling.

I. INTRODUCTION
Quantum image processing (QuIP) has been a hotspot in
the field of image research in recent years, which has two
outstanding merits: (1) the unique computing performance of
quantum coherence, entanglement and superposition [1], and
(2) quantum storage capacity increasing exponentially. Quan-
tum image representation (QIR) is the foundation of quantum
image processing. Many researches focus on the study of
quantum image representation [2]–[16]. Some QIRs tore the
color information using amplitudes of quantum states, such as
QuantumLattice [2], [3], a flexible representation of quantum
images (FRQI) [4], a new quantum RGB multi-channel rep-
resentation (MCQI) [5], and a normal arbitrary superposition
state (NASS) representing an image [8]. These QIRs have dis-
played the enormous storage capacity of QuIP. For instance,
FRQI stores a 2n × 2n grayscale image using 2n+1 qubits.
Furthermore, NASS stores a 2n × 2n color image only using
2n qubits. However, these QIRs are difficult to retrieve accu-
rately images from quantum systems using the low number
of quantum measurement. For the convenience to retrieve
accurately images, some QIRs store color information
using basis states. For instance, a novel enhanced quantum

representation (NEQR) [12], improved NEQR (INEQR) [13]
and a generalized model of NEQR (GNEQR) [14] use
2n+8 qubits to store a 2n × 2n grayscale image. A novel
quantum representation of color digital images (NCQI) [15],
and GNEQR stores a 2n × 2n RGB color image using a
2n+24 qubits. Comparing NASS with NCQI, we discover
the storage capacity of NASS is 224 times of that of NCQI.
In order to improve the storage capacity of QIRs which stores
color information using basis states, the appropriate method
of QIR is needed.

In addition, many quantum algorithms emerge continually,
and these algorithms include quantum geometric transfor-
mation [17], quantum search algorithms [18], and quantum
encryption [19]. Image scrambling is an important method of
image encryption. Arnold transform [20], Hilbert scrambling,
and bitplane scrambling are used to implemented quantum
image encryption [21]–[23].

In order to improve the storage capacity of QIRs which
stores color information using basis states, this paper pro-
poses a bitplane representation of quantum images (BRQI),
which can represent a grayscale or RGB color image of
2n × 2n only using (2n+4) or (2n+6) qubits. Next, we
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propose some quantum operations and a bitplane scrambling
algorithm based on BRQI. Simulation experiments show the
proposed algorithm is effective.

II. BACKGROUND
In the section, for clarity, we introduce some quantum gates
and GNEQR, which have been described in [14].

A. QUANTUM GATES
Computational basis states |0〉, |1〉, and their dual
states 〈0|, 〈1| can be expressed as

|0〉 =
[
1
0

]
, |1〉 =

[
0
1

]
, 〈0| =

[
1 0

]
, 〈1| =

[
0 1

]
.

(1)

Suppose that |k〉 is a basis state in a 2n dimensional Hilbert
space for k = 0, 1, · · · , 2n − 1, the state |k〉 and its dual
state 〈k| are{

|k〉 = |kn−1〉 ⊗ |kn−2〉 ⊗ . . .⊗ |k0〉 ,
〈k| = 〈kn−1| ⊗ 〈kn−2| ⊗ . . .⊗ 〈k0|,

(2)

where k =
∑n−1

j=0 kj × 2j, k0, k1, . . . , kn−1 ∈ {0, 1}, and ⊗ is
the symbol of tensor product. We often use the abbreviated
notations |kn−1〉 |kn−2〉 · · · |k0〉 or |kn−1kn−2 . . . k0〉 for the
tensor product |kn−1〉 ⊗ |kn−2〉 ⊗ . . .⊗ |k0〉.
A unitary gate corresponds to a unitary matrix U. The

identity (I), Hadamard (H), Pauli-X (X), and Rx(arctan
√
2)

gates are four specific examples of the U gate, and their
corresponding matrices are

I =
[
10
01

]
, X =

[
01
10

]
, H =

√
2
2

[
11
1− 1

]
,

Rx(θ ) =
[
cos θ sin θ
sin θ− cos θ

]
, (3)

where θ = arctan
√
2.

FIGURE 1. Notations of controlled-U gates. (a) V 1
1 (U). (b) V 0

1 (U).
(c) V t

n (U). (d) C t
n(U). In (a) and (b), the numbers 1 and 0 can be replaced

by black and white points on control qubits. In (c) and (d), tn . . . t2t1 is
the binary expansion of integer t, i.e., t =

∑n
i=1 ti × 2i−1.

There are some controlled gates shown in Fig.1, where U is
a gate ofm qubits. WhenU = X , the controlled-U gate is also
called as controlled-NOT (CNOT) gate shown in Fig.2.

B. INTRODUCTION OF GNEQR
Synthesizing NEQR, INEQR and NCQI, the literature [14]
proposes a generalized model of NEQR (GNEQR), which is
described as follows.

FIGURE 2. Three examples of controlled-U gates. (a) CNOT gate V 1
1 (X ).

(b) Swap gate. (c) Swap(3) gate (i.e., the Swap gate of 3 qubits).

A color set is defined as

Cm = {0, 1, . . . , 2m − 1}, (4)

where C8 and C24 are grayscale and RGB color sets, respec-
tively. A basis state |c〉 with m qubits represents a color,

|c〉 = |cm−1〉 |cm−2〉 · · · |c0〉 = |cm−1cm−2 . . . c0〉 , (5)

where cm−1cm−2 . . . c0 is the binary expansion of the integer
c.
When c ∈ C8 or c ∈ C24, |c〉 corresponds to a gray scale

c or a RGB color (r, g, b), where r = c23c22 . . . c16, g =
c15c14 . . . c8 and b = c7c6 . . . c0.
GNEQR is defined as follows,

|9m〉=
1
√
2n

2n−k−1∑
x=0

2k−1∑
y=0

|f (x, y)〉 |x〉 |y〉, (6)

where |x〉 = |in−1 . . . ik 〉 and |y〉 = |ik−1 . . . i0〉 are the X-axis
andY-axis of an image, and i0, . . . ik , . . . , in−1 ∈ {0, 1}. Here,
|f (x, y)〉 denotes the color of the pixel on the coordinate (x, y),
f (x, y) ∈ Cm. Therefore, |98〉 and |924〉 represent grayscale
and color images of 2n−k × 2k , respectively.
For instance, the following GNEQR

|98〉 =
1
√

23
(|01100011〉 |00〉 |0〉 + |01100100〉 |00〉 |1〉

+ |01100001〉 |01〉 |0〉 + |01100101〉 |01〉 |1〉

+ |01100010〉 |10〉 |0〉 + |01100100〉 |10〉 |1〉

+ |01100101〉 |11〉 |0〉 + |01100100〉 |11〉 |1〉) (7)

can store an image in Fig.3.

FIGURE 3. A 4× 2 grayscale image.

III. A BITPLANE REPRESENTATION OF
QUANTUM IMAGES (BRQI)
A. BRQI FOR GRAYSCALE IMAGES
A gray scale consists of 8 binary bits, so a grayscale image
can be decomposed into 8 binary images (i.e., 8 bitplanes)
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FIGURE 4. Bitplanes of a grayscale image.

shown in Fig.4. Each of bitplanes of a grayscale image can
be represented using GNEQR,

∣∣∣9 j
m

〉
=

1
√
2n

2n−k−1∑
x=0

2k−1∑
y=0

|g(x, y)〉 |x〉 |y〉, (8)

where j denotes the j-th bitplane, j = 0, 1, . . . , 7, m = 1,
g(x, y) ∈ C1 = {0, 1}.

For instance, the least significant bit (LSB) of the image
in Fig.4 can be stored in∣∣∣90

1

〉
=

1
√

23
(|1〉 |00〉 |0〉 + |0〉 |00〉 |1〉 + |1〉 |01〉 |0〉

+ |1〉 |01〉 |1〉 + |0〉 |10〉 |0〉 + |0〉 |10〉 |1〉

+ |1〉 |11〉 |0〉 + |0〉 |11〉 |1〉). (9)

To represent the 8 bitplanes using a state, we define BRQI
as follows, which consists of 8 GNEQR states in (8),

∣∣∣98
B

〉
=

1
√

23

23−1∑
l=0

∣∣∣9 l
m

〉
|l〉

=
1

√

2n+3

23−1∑
l=0

2n−k−1∑
x=0

2k−1∑
y=0

|g(x, y)〉 |x〉 |y〉 |l〉 , (10)

where g(x, y) ∈ C1 = {0, 1}, and l denotes the l-th bitplane.
From (10), we conclude that BRQI uses only qubits to

represent a grayscale image. Compared to GNEQR in (8), its
storage capacity improves 16 times.

FIGURE 5. The implementation circuit of BRQI for grayscale images.

The implementation circuit of BRQI in (10) are
designed in Fig.5, and its abbreviation circuits is shown
in Fig.6.

In the Fig.5, the gate US is defined as

Us = (g(x, y)⊕ 1)I + g(x, y)X , (11)

where⊕ is an exclusive-or operator. I.e., if g(x, y) = 0,Us =
I , otherwise, Us = X .
The circuit in the red dashed box implements

(I ⊗ H⊗n−k ⊗ H⊗k ⊗ H⊗3) |0〉 |0〉⊗n−k |0〉⊗k |0〉⊗3

=
1

√

2n+3

23−1∑
l=0

2n−k−1∑
x=0

2k−1∑
y=0

|0〉 |x〉 |y〉 |l〉 , (12)

where H⊗n and |0〉⊗n are the n fold tensor products of H and
|0〉, respectively.

FIGURE 6. The abbreviation circuit of BRQI for grayscale images. The
circuit of the red dashed box is symbolized as UG.

The circuit in the dashed box bitplane j (j = 0, 1, . . . , 7)
stores the j-th bitplane in quantum systems. Therefore, the cir-
cuit UG in Fig.6 implements

1
√

2n+3

23−1∑
l=0

2n−k−1∑
x=0

2k−1∑
y=0

|0〉 |x〉 |y〉 |l〉 →
∣∣∣98

B

〉
. (13)

For instance, we can store the image in Fig.3 in quantum
systems using the circuit in Fig.7.

FIGURE 7. The implementation circuit of BRQI for grayscale images.

The circuit in dashed box l is the implementation circuit
of the l-th bitplane

∣∣9 l
1

〉
, where l = 0, 1, . . . , 7. Since the

pixel values of the 3rd, 4-th, and 7-th bitplanes are all zero,
corresponding circuits do nothing. Furthermore, the pixel
values of the 5-th and 6-th bitplanes are both one, then,
their implementation circuits can be simplified, which are
shown in the dashed boxes 5 and 6. The output of the circuit
in Fig.7 is

∣∣∣98
B

〉
=

1
√

23

7∑
l=0

∣∣∣9 l
1

〉
|l〉, (14)

62398 VOLUME 6, 2018



H.-S. Li et al.: QIR Based on Bitplanes

where
∣∣90

1

〉
is shown in (9), and

∣∣91
1

〉
=

1
√

23
(|1〉 |00〉 |0〉 + |0〉 |00〉 |1〉

+ |0〉 |01〉 |0〉 + |0〉 |01〉 |1〉 + |1〉 |10〉 |0〉

+ |0〉 |10〉 |1〉 + |0〉 |11〉 |0〉 + |0〉 |11〉 |1〉),∣∣92
1

〉
=

1
√

23
(|0〉 |00〉 |0〉 + |1〉 |00〉 |1〉

+ |0〉 |01〉 |0〉 + |1〉 |01〉 |1〉 + |0〉 |10〉 |0〉

+ |1〉 |10〉 |1〉 + |1〉 |11〉 |0〉 + |1〉 |11〉 |1〉),∣∣93
1

〉
=
∣∣94

1

〉
=
∣∣97

1

〉
=

1
√

23

3∑
x=0

1∑
y=0

|0〉 |x〉 |y〉,

∣∣95
1

〉
=
∣∣96

1

〉
=

1
√

23

3∑
x=0

1∑
y=0

|1〉 |x〉 |y〉.

(15)

B. BRQI FOR RGB COLOR IMAGES
When m = 24, |c〉 in (5) can be rewritten as

|c〉 = |c23〉 |c22〉 · · · |c0〉

= |c23c22 . . . c16〉 |c15c14 . . . c8〉 |c7c6 . . . c0〉 , (16)

i.e., a RGB color image can be decomposed into three
grayscale images or 24 bitplanes.

Similarly with (10), three components of a RGB color
image can be written as

∣∣9R
B

〉
=

1
√

2n+3

23−1∑
l=0

2n−k−1∑
x=0

2k−1∑
y=0

|gR(x, y)〉 |x〉 |y〉 |l〉 ,

∣∣9G
B

〉
=

1
√

2n+3

23−1∑
l=0

2n−k−1∑
x=0

2k−1∑
y=0

|gG(x, y)〉 |x〉 |y〉 |l〉 ,

∣∣9B
B

〉
=

1
√

2n+3

23−1∑
l=0

2n−k−1∑
x=0

2k−1∑
y=0

|gB(x, y)〉 |x〉 |y〉 |l〉 ,

(17)

where gR(x, y), gG(x, y), gB(x, y) ∈ C1 = {0, 1}.
Furthermore, BRQI for RGB color images can be

defined as∣∣∣924
B

〉
=

1
√
3
(
∣∣∣9R

B

〉
|01〉 +

∣∣∣9G
B

〉
|10〉 +

∣∣∣9B
B

〉
|11〉). (18)

The implementation circuit of
∣∣924

B

〉
is designed in Fig.8.

FIGURE 8. The implementation circuit of BRQI for RGB color images.

The circuit in the red dashed box in Fig.8 implements

|0〉 |0〉⊗n−k |0〉⊗k |0〉⊗3 |00〉

→
1

√
3× 2n+3

23−1∑
l=0

2n−k−1∑
x=0

2k−1∑
y=0

|0〉 |x〉 |y〉 |l〉 |01〉

+

23−1∑
l=0

2n−k−1∑
x=0

2k−1∑
y=0

|0〉 |x〉 |y〉 |l〉 |10〉

+

23−1∑
l=0

2n−k−1∑
x=0

2k−1∑
y=0

|0〉 |x〉 |y〉 |l〉 |11〉

 . (19)

From (12) and (18), we obtain that the circuit in Fig.8
implements

|0〉 |0〉⊗n−k |0〉⊗k |0〉⊗3 |00〉 →
∣∣∣924

B

〉
. (20)

C. IMAGE RETRIEVING
Quantum measurement is a unique way to retrieve clas-
sical information from a quantum state. A quantum state
will collapse after measurement. Then it is impossible to
get all information of a quantum superposition state with
only one quantum measurement. Therefore a measurement
process needs many identical quantum states [4].We describe
the measurement operation as below to retrieve image from
BRQI.

To retrieving an image from BRQI
∣∣98

B

〉
in (10), we define

an observable operator as
M1 =

2n+4−1∑
i=0

eiPi,

Pi = |m〉 |x〉 |y〉 |l〉 〈m| 〈x| 〈y| 〈l| = |i〉 〈i| ,

(21)

where Pi is the projector onto the eigenspace of M1
with eigenvalue ei; xn−k−1 . . . x1x0, yk−1 . . . y1y0, l2l1l0, and
mxn−k−1 . . . x1x0yk−1 . . . y1y0l2l1l0 are the binary expansions
of integers x, y, l, and i, respectively.

Applying the observable operator M1 to the state
∣∣98

B

〉
in (10), we get the result mi with the probability

p(mi) =
〈
98
B

∣∣∣Pi ∣∣∣98
B

〉
=

1
2n+3

, (22)

Given that outcome mi occurred, the state after the mea-
surement is

Pi
∣∣98

B

〉
√
p(i)
= |m〉 |x〉 |y〉 |l〉 , (23)

i.e., we obtain the color of the pixel on coordinate (x, y) in the
l-th bitplane with the probability (1

/
2n+3).

Similarly, a collection of quantum measurement operators

M2 = I⊗n+4 ⊗ {|00〉 〈00| , |01〉 〈01| , |10〉 〈10| , |11〉 〈11|}

(24)

are applied to the state
∣∣924

B

〉
in (18), which collapses into one

of {
∣∣9R

B

〉
,
∣∣9G

B

〉
,
∣∣9B

B

〉
}. Given that outcome

∣∣9R
B

〉
occurred,

next, we can retrieve image from
∣∣9R

B

〉
using the observable

operator in (21).
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D. SIMULATION VERIFICATION OF
IMPLEMENTATION CIRCUITS
Postulate 3 (i.e., evolution postulate) of quantum mechanics
describes that the evolution of a closed quantum system is
described by a unitary transformation, therefore quantum
operations can be simulated using unitary matrixes. Single
qubit and CNOT gates can be used to implement an arbitrary
unitary operation on n qubits [1], so we describe that how to
calculate the matrices of controlled gates.

Two controlled-U gates in Fig.1 (c) and (d) can be
calculated by

V j
n(U ) = (U ⊗ |j〉 〈j|)+

2n−1∑
i=0,i 6=j

(I⊗m ⊗ (|i〉 〈i|)),

C j
n(U ) = (|j〉 〈j|)⊗ U +

2n−1∑
i=0,i 6=j

((|i〉 〈i|)⊗ I⊗m).

(25)

where U is a gate of m qubits.
For instance, by using (25), we obtain the matrices of the

gates in Fig.2 (a) and (b) as follows,

V 1
1 (X )=


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

, Swap=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

.
(26)

As an example, the circuit in Fig.7 is used to verify the
correctness of the implementation circuit of BRQI.

We calculate the vector of
∣∣98

B

〉
in (14) using (2),

V8=
1
8
[0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,

1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1,

1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0,

1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0,

1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1,

0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0]T ,

(27)

where [ ]T is a matrix transpose operation.
Using (25), we calculate the matrix of the circuit in Fig.7,

U8 =

(
7∏
i=0

Vi

)
(I ⊗ H⊗6), (28)

where Vi is the matrix of the circuit in the i-th dashed box,
and 

V0 = C48
6 (X )C24

6 (X )C16
6 (X )C0

6 (X ),
V1 = C33

6 (X )C1
6 (X ),

V2 = C58
6 (X )C50

6 (X )C42
6 (X )C26

6 (X )C10
6 (X ),

V5 = C5
3 (X ⊗ I

⊗3),
V6 = C6

3 (X ⊗ I
⊗3),

V3 = V4 = V7 = I⊗7.

The initial state |0〉⊗7 corresponds to the vector
[1, 0, . . . , 0]T of size 128 × 1, then, we obtain a vector
V = U8[1, 0, . . . , 0]T using Matlab. Comparing V with V8
in (27), we can verify the correctness of the implementation
circuit of BRQI.

E. COMPARISON OF QIRS
Table 1 compares eight QIRs for grayscale images (GI) or
RGB color images (CI). It shows that FRQI, NASS and
MCQI require fewer qubits than others. Since their pix encod-
ing is probability amplitude, they are more difficult on image
retrieve. When the color information of pixels is encoded by
basis states, the storage capacity of BRQI improves 16 times
for grayscale images, and 218 times for RGB color images.

TABLE 1. comparison of QIRS for an image of 22n pixels.

IV. QUANTUM IMAGE PROCESSING BASED ON BRQI
In the above section, we have described that how to calcu-
late the vector of BRQI and matrices of circuits. Therefore,
we design some operations based on BRQI, and use a 64×64
grayscale image as an example to verify the correctness of
these operations. Simulation experiments are implemented in
Matlab R2017a, windows 7, and 56GB RAM.

A. COMPLEMENT OPERATION OF COLORS
BRQI uses only one qubit to store the color information of
an image, therefore, a NOT gate can implement color com-
plement operations of the whole image of 2n pixels, i.e., the
complement operation is defined as

UC = X ⊗ I⊗n+3. (29)

Applying UC to the state
∣∣98

B

〉
in (10), we obtain

UC
∣∣∣98

B

〉
= (X ⊗ I⊗n+3)

1
√

23

23−1∑
l=0

∣∣∣9 l
m

〉
|l〉

=
1

√

2n+3

23−1∑
l=0

2n−k−1∑
x=0

2k−1∑
y=0

|1− g(x, y)〉 |x〉 |y〉 |l〉 ,

(30)

which is implemented by the circuit in Fig.9 (a).
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FIGURE 9. A complement operation based on BRQI. (a) The
implementation circuit of UC . (b) A 64× 64 grayscale image. (c) The result
of the complement operation.

Note: Suppose that a 128× 128 grayscale image is stored
in
∣∣98

B

〉
, which is equivalent to a 214 × 1 vector, we get a

218 × 218 matrix of UC using (29). Set the data type
of elements in the matrix to single-precision real number,
the matrix of UC needs 256 GB RAM, which is too big for
our computers, so we select only a 64 × 64 grayscale image
as the example of simulation experiments.

B. REVERSE OPERATION OF BITPLANES
BRQI uses three qubits to store the bitplane information of
an image, therefore, three NOT gates can implement reverse
order of bitplanes of a grayscale image of 2n pixels. The
reverse operation of bitplanes is defined as

UR = I⊗n+1 ⊗ X⊗3. (31)

Applying UR to the state
∣∣98

B

〉
in (10), we have

UR
∣∣∣98

B

〉
= (I⊗n+1 ⊗ X⊗3)

1
√

23

23−1∑
l=0

∣∣∣9 l
m

〉
|l〉

=
1
√

23

23−1∑
l=0

∣∣∣9 l
m

〉
|7− l〉 , (32)

which is implemented by the circuit in Fig.10 (a). Simulation
results are shown in Fig.10and Fig.11.

FIGURE 10. A reverse operation of bitplanes. (a) The implementation
circuit of UR . (b) A 64× 64 grayscale image. (c) The result of the reverse
operation.

From Fig.10, we infer that UR can be regarded as an
operation of image scrambling. However, the operation UR
can’t transform the value of pixels in a bitplane. For instance,
bitplanes of the image in Fig.10 (c) are shown in Fig.11.

C. OPERATION OF PIXEL INTERCHANGE
AMONG BITPLANES
Each of pixels in a bitplane has only two gray scale,
i.e., 0 and 1. Therefore, we use only two controlled Swap
gates to implement the operation of pixel interchange among

FIGURE 11. Bitplanes of the image in Fig.10 (c).

bitplanes, which is defined as
UI = C0

1 (U0)C1
1 (U1) = |0〉 〈0| ⊗ U0 + |1〉 〈1| ⊗ U1,

U0 = I⊗n+1 ⊗ Swap,
U1 = I⊗n ⊗ Swap(3),

(33)

where C0
1 (U0), C1

1 (U1), Swap and Swap(3) gates are shown
in Fig.1 and Fig.2, respectively.

FIGURE 12. The operation of pixel interchange. (a) The implementation
circuit of UI . (b) A 64× 64 grayscale image. (c) The result of the pixel
interchange operation.

The circuit of UI is designed in Fig.12 (a) and implements{
|l2l1l0〉 ↔ |l2l0l1〉 , when g(x, y) = 0,
|l2l1l0〉 ↔ |l0l1l2〉 , when g(x, y) = 1,

(34)

where |l2l1l0〉 is the encoding of the original image.
Applying UI to the image in Fig.12(b), we obtain its sim-

ulation results in Fig.12 (c) and Fig.13.

FIGURE 13. Bitplanes of the image in Fig.12 (c).

From (34) and Fig.13, we infer that the pixels in the 0-th
and 7-th bitplanes remain unchanged.
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D. TRANSLATION OPERATION OF BITPLANES
The translation operation of bitplanes is defined as

UA= (I⊗n+1⊗V 3
2 (X ))(I

⊗n+2
⊗ V 1

1 (X ))(I
⊗n+3

⊗ X ), (35)

where V 3
2 (X ) and V

1
1 (X ) are shown in Fig.1.

Applying UA to the state
∣∣98

B

〉
in (10), we have

UA
∣∣∣98

B

〉
=

1
√

23

23−1∑
l=0

∣∣∣9 l
m

〉
|l−81〉 , (36)

where l−81 = (l−1) mod 8, and mod is a modulo operation.
The circuit and simulation result ofUA are shown in Fig.14

and Fig.15.

FIGURE 14. A translation of bitplanes. (a) The implementation circuit of
UA. (b) A 64× 64 grayscale image. (c) The result of the translation.

FIGURE 15. Bitplanes of the image in Fig.14.

Fig.15 shows that the operation UA implements left trans-
lation of bitplanes.

E. THE ALGORITHM OF IMAGE SCRAMBLING
BASED ON BRQI
Combining the above operations, we design the algorithm of
image scrambling as follows,

US = URUCUIUT , (37)

which is implemented by the circuit in Fig.16 (a).
Applying the operation to four images in Fig.16(b) - (e)

respectively, we obtain the transformed images shown
in Fig.16 (f) - (i), bitplanes of which are shown in Fig.17.

Simulation results in Fig.16 and Fig.17 show that proposed
algorithm of image scrambling is effective.

Set 

UC
C = UC ⊗ I⊗2,

UC
R = UR ⊗ I⊗2,

UC
I = UI ⊗ I⊗2,

UC
T = UT ⊗ I⊗2,

UC
S = UC

R U
C
C U

C
I U

C
T = US ⊗ I⊗2,

(38)

FIGURE 16. An image scrambling algorithm based on bitplanes. (a) The
implementation circuit of the image scrambling. (b) Cman image. (c) Lena
image. (d) Airplane image. (e) Baboon image. (f) Transformed Cman
image. (g) Transformed Lena image. (h) Transformed Airplane image.
(i) Transformed Baboon image.

FIGURE 17. Bitplanes of the transformed images. (a) Bitplanes of the
transformed Cman image. (b) Bitplanes of the transformed Lena image.
(c) Bitplanes of the transformed Airplane image. (d) Bitplanes of the
transformed Baboon image.

we have

UC
C

∣∣924
B

〉
=

1
√
3
(UC

∣∣9R
B

〉
|01〉 + UC

∣∣9G
B

〉
|10〉 + UC

∣∣9B
B

〉
|11〉),

UC
R

∣∣924
B

〉
=

1
√
3
(UR

∣∣9R
B

〉
|01〉 + UR

∣∣9G
B

〉
|10〉 + UR

∣∣9B
B

〉
|11〉),

UC
I

∣∣924
B

〉
=

1
√
3
(UI

∣∣9R
B

〉
|01〉 + UI

∣∣9G
B

〉
|10〉 + UI

∣∣9B
B

〉
|11〉),

UC
T

∣∣924
B

〉
=

1
√
3
(UT

∣∣9R
B

〉
|01〉 + UT

∣∣9G
B

〉
|10〉 + UT

∣∣9B
B

〉
|11〉),

UC
S

∣∣924
B

〉
=

1
√
3
(US

∣∣9R
B

〉
|01〉 + US

∣∣9G
B

〉
|10〉 + US

∣∣9B
B

〉
|11〉),

(39)

where
∣∣924

B

〉
is BRQI for RGB color images (see (18)).

Therefore,UC
C ,U

C
R ,U

C
I ,U

C
T , andU

C
S are the complement,

reverse, pixel interchange, translation, and image scrambling
operations for RGB color images, respectively. Their circuits
are designed in Fig.18.
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FIGURE 18. Operations based on BRQI for color images.

TABLE 2. The costs of some basic gates.

We first calculate US
∣∣9R

B

〉
, US

∣∣9G
B

〉
, and US

∣∣9B
B

〉
to get

three 2n+3 × 1 vectors of using Matlab. Next, we obtain the
vector ofUC

S

∣∣924
B

〉
using (39). We can applyUC

S to a 64×64
color image by adopting the method, the simulation results of
which are shown in Fig.19 and Fig.20.

FIGURE 19. A color image scrambling algorithm based on bitplanes.
(a) a color image of 64× 64. (b) The result of image scrambling.

FIGURE 20. Bitplanes of the transformed images in Fig.19 (c).

F. COMPARISON ANALYSIS OF QUANTUM
OPERATIONS FOR DIFFERENCE QIRS
Quantum cost (i.e., time complexity) is the key performance
indicators of quantum operations, thus, we compare and ana-
lyze quantum costs of these operators in above for different
QIRs. According to the method in [24] and [25], CNOT gate
has a quantum implementation cost of 1, and its cost far
exceeds the cost of NOT gate. Suppose that the cost of NOT
gate is δ, we list the costs of some basic gates in Table 2.

For NEQR, INEQR, NCQI, and GNEQR, the comple-
ment of colors, reverse of bitplanes, and translation of

FIGURE 21. The complement of colors, reverse of bitplanes, and
translation of bitplanes for NEQR, INEQR, NCQI, and GNEQR.

bitplanes are implemented by the circuits in Fig.21. The
circuits in (a), (b), and (c) implement the complement,
reverse, and translation operations of grayscale images for
NEQR, INEQR, and GNEQR. Furthermore, the circuits
in (d), (e), and (f) implement the complement, reverse,
and translation operations of RGB color images for NCQI
and GNEQR. The pixel interchange operations of bitplanes
(i.e., UI and UC

I ) are difficult to be implemented by
other QIRs.

Next, quantum costs of these quantum operators for
grayscale images (GI) or RGB color images (CI) are listed
in Table 3.

TABLE 3. The costs of some basic gates.

We can conclude that BRQI have lower quantum cost than
other QIRs for some quantum operations based on bitplanes
in Table 3.

Meanwhile, we can implement the algorithms of image
scrambling for grayscale and color images by quantum
circuits, quantum cost of which are only 16.

V. CONCLUSION AND FUTURE WORKS
In this article, we proposed a quantum image representation
based on bitplanes (BRQI), which represent a grayscale and
color image of 2n pixels using (n + 4) and (n + 6) qubits,
respectively. Compared with other QIRs, we concluded that
the storage capacity of BRQI improves 16 times than NEQR,
INEQR, and GNEQR for grayscale images, and improves 218

times than NCQI and GNEQR for color images. Therefore,
BRQI has displayed the enormous storage capacity. Further-
more, we designed the implementation circuits of BRQI and
the method of simulation verification using Matlab.
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Next, we presented some quantum operations based on
BRQI, these operations including complement of colors,
reverse of bitplanes, and translation of bitplanes. Analyzing
their implementation circuits, we found that these operations
based BRQI has lower quantum cost than ones based on
other QIRs. Combining the above operations, we designed
an algorithm of scrambling algorithm. Simulation results
and performance analysis showed that the image scrambling
algorithm is effective and efficient.

In conclusion, we consider that BRQI has significance for
the devolvement of QuIP.

Our future works are how to design more complex
algorithms based on BRQI.
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