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ABSTRACT In this paper, we consider the received signal strength-based cooperative localization problem
in both known and unknown transmit power of target nodes. For the case of known transmit power, we treat
the transmit power as a constant and derive a novel non-convex weighted least squares estimator which can
be transformed into a second-order cone programming (SOCP) problem for reaching an efficient solution.
For the case of unknown transmit power, we treat the transmit power as an additional unknown parameter and
propose a hybrid maximum likelihood-SOCP algorithm to alternatively estimate the target node locations
and transmit power. Simulation results confirm the effectiveness of the proposed methods in all considered
settings.

INDEX TERMS Wireless sensor networks (WSNs), cooperative localization, received signal strength (RSS),
second-order cone programming (SOCP), weighted least squares (WLS).

I. INTRODUCTION
Recently, wireless sensor networks (WSNs) attract more
and more attention due to their wide applications in many
fields like health-care monitoring, data networking, military
applications, public safety and communications [1]. Target
localization is one of the main tasks in WSNs since most
network activities require the location information of network
nodes. Generally, the locations of a number of sensor network
nodes (called anchor nodes) are known, while the locations of
some sensor network nodes (called target nodes) are unknown
which need to be estimated. The main purpose of target
localization is to determine the coordinates of target nodes
via noisy measurements [2]. These measurements mainly
include time-of-arrival (ToA) [3], [4], time-difference-of-
arrival (TDoA) [5], [6], angle-of-arrival (AoA) [7], [8] and
received signal strength (RSS) [9]–[15] or combinations of
them [18]. Among the different types of measurements,
RSS-based localization technique receives researchers’ most
attention thanks to its merits such as easy implementation,
low-complexity and low-cost [14]. Therefore, we focus on

the target localization problem using the RSS measurements
information in WSNs. In order to obtain the useful informa-
tion, it is necessary to enable nodes to communicate with each
other. For this purpose, normally two different ways namely
non-cooperative and cooperative are used. In the former case,
target nodes only communicate with anchor nodes, where
poor radio conditions may cause frequent link interruptions
making it difficult for the traditional non-cooperative way
to work effectively. While in the latter case, target nodes
can communicate not only with anchor nodes as normal,
but also with other target nodes within the communication
range (target-target). This means that cooperative between
any two nodes in WSNs can avoid frequent link interruptions
and provide more information. Thus, by using cooperative
localization, both estimation accuracy and robustness can be
improved significantly [16]–[18].

The most popular cooperative localization method is the
maximum likelihood (ML) estimator, which can provide
the optimal solution asymptotically. However, solving the
ML estimator of RSS-based localization problem is a difficult
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task, since it is highly non-convex and non-linear and can only
be solved by iterative methods. In such methods, finding an
appropriate initial point is crucial because a poor initialization
normally leads to a poor estimation, making it difficult to
converge, and unable to find the globally optimal solution.
In order to guarantee the convergence of the algorithm, con-
vex optimization techniques are extensively studied to apply
on both cooperative and non-cooperative localization prob-
lems [18]. In [9], for the cooperative localization, based on the
unscented transformation, RSS-based localization problem
for known target transmit power case is formulated as a
weighted least squares (WLS) problem, which can then be
relaxed to a semi-definite programming / second-order cone
programming (SD/SOCP) problem. In [13], based on con-
vex optimization, RSS-based non-cooperative and coopera-
tive localization problems are proposed. The authors derive
new non-convex estimators, which can be relaxed to con-
vex problems, for non-cooperative and cooperative local-
ization problems, respectively, in both cases of known and
unknown target transmit power. Furthermore, it is shown that
the derived approaches work well in the case when both
the target transmit power and the path loss exponent are
unknown at the anchor nodes. In [16], Vaghefi et al. address
the RSS-based cooperative localization problem when the
target transmit power is time-varying and unknown. It shows
that by applying a semi-definite programming (SDP) relax-
ation technique, the original ML localization problem can be
transformed into a convex problem. In [18], by using RSS
and AoA hybrid measurements, the authors address the target
localization problems in both non-cooperative and coopera-
tive 3DWSNs, for both cases of known and unknown target
transmit power. It is shown that for cooperative localization,
the developed estimator can be transformed into a convex
problem by applying appropriate semi-definite programming
relaxation techniques. Moreover, the proposed estimator for
known target transmit power case can be effectively extended
to the unknown target transmit power case.

In this paper, we solve the RSS-based cooperative local-
ization problems by using convex relaxation, i.e., the second-
order cone relaxation. Both cases of known and unknown
target transmit power are considered. For the case of known
transmit power, the transmit power is treated as a constant and
a novel non-convex WLS estimator is formulated to estimate
the target nodes. Then, we relax the non-convex problem
by using the second-order cone relaxation technique to a
SOCP problem to reach an efficient solution. For the case of
unknown transmit power, the transmit power is treated as an
additional unknown parameter. To cope with the complexities
caused by the additional unknown parameter, we employ
further approximation techniques. In addition, we also pro-
pose an effective hybrid ML-SOCP algorithm to alternatively
estimate the target node locations and transmit power.
Notations: The following notations are adopted throughout

the paper. Bold face lower case letters and bold face upper
case letters denote the vectors and matrices, respectively.
Rn and Rn×m denote the set of n-dimensional real column

vectors and n×m real matrix. IN denotes the N ×N identity
matrix.Qij denotes the (i, j)th entry of thematrixQ. ri denotes
the ith entry of the vector r. In addition, for any symmetric
matrix A, A � 0 means that A is positive semi-definite.
‖ · ‖ denote the `2-norm.
The remainder of this paper is organized as follows.

In Section II, the RSS measurements model is briefly intro-
duced and the non-convex target localization problem for-
mulated. Section III derives the proposed methods in both
known and unknown transmit power cases. In Section IV,
complexity analysis is given. The corresponding CRLBs are
provided in both known and unknown transmit power cases
in Section V. Computer simulation results are presented in
Section VI. Finally, in Section VII, the main conclusions are
drawn.

II. SYSTEM MODEL
Consider a centralized WSNs with N anchor nodes and
M target nodes in a two-dimensional (2D) cooperative local-
ization scenario, where the locations of anchor nodes, noted
as s1, s2, . . . , sN , are known, while the locations of the tar-
get nodes, noted as x1, x2, . . . , xM , are unknown (where sj,
xi ∈ R2, for j = 1, 2, . . . ,N , and i = 1, 2, . . . ,M ). The
RSS measurements for target/anchor and target/target path
loss model can be denoted by [23]–[25]

LAij = L0 + 10γ log10
‖xi − sj‖

d0
+ vij, (i, j) ∈ A, (1a)

LBik = L0 + 10γ log10
‖xi − xk‖

d0
+ wik , (i, k) ∈ B, (1b)

where LAij is the path loss from ith target node to jth anchor
node, LBik is the path loss from ith target node to kth target
node, L0 is the reference path loss value at the reference
distance d0, γ is the path loss exponent, vij and wik follow the
identically independent distributed (i.i.d.) zero-mean Gaus-
sian distribution, i.e., vij ∼ N (0, σ 2

vij ) and wik ∼ N (0, σ 2
wik ),

representing log-normal shadowing effect, the tuple setsA =
{(i, j)|d0 ≤ ‖xi− sj‖ ≤ R, i = 1, 2, . . . ,M , j = 1, 2, . . . ,N },
and B = {(i, k)|d0 ≤ ‖xi − xk‖ ≤ R, i, k = 1, 2, . . . ,M ,
i 6= k}, where R is referred to as effective communication
range for any pair of sensors, composing of the target/anchor
and target/target connections index pairs, respectively. For
simplicity and without loss of generality, we assume
the target/target path loss measurements are symmetric,
i.e., LBik = LBki for i 6= k , all target nodes radiate with the
same power, i.e., the reference value L0 and communication
distance R are the same for all target nodes.

Under a centralized processing mode for the localiza-
tion, all sensors send their RSS measurements with respect
to the target nodes to the central processor, during which
the locations of all the nodes are assumed unchanged.
Fig. 1 shows the ith target node, jth anchor node, and
kth target node link in the cooperative WSNs.
Based on (1), the ML estimator of target nodes can

be derived, which corresponds to solving the following
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FIGURE 1. The i th target node, j th anchor node, and kth target node link
in the cooperative wireless sensor networks (WSNs).

WLS problem, i.e.,

min
{xi}

∑
(i,j):(i,j)∈A

1
σ 2
vij

[
LAij − L0 − 10γ log10

‖xi − sj‖
d0

]2

+

∑
(i,k):(i,k)∈B

1
σ 2
wik

[
LBik−L0−10γ log10

‖xi−xk‖
d0

]2
. (2)

Clearly, the ML estimator (2) is non-convex and non-
linear in both known and unknown transmit power cases,
which leads to difficult global optimization. Therefore, novel
approaches are needed to solve this problem. In Section III-A
and Section III-B, we propose central processor localization
methods based on SOCP relaxation techniques to solve (2)
in both known and unknown target transmit power cases,
respectively.

III. PROPOSED METHODS
For the simplicity, in this section, we assume σvij = σwik = σ ,
and provide method for transforming the ML estimator into
SOCP problem that can be solved efficiently.

A. COOPERATIVE LOCALIZATION IN KNOWN TRANSMIT
POWER CASE
Both sides of (1) are divided by 10γ , and then take the power
of 10, we have

10
L0−L

A
ij

10γ ‖xi − sj‖ = d010
−

vij
10γ , (i, j) ∈ A, (3a)

10
L0−L

B
ik

10γ ‖xi − xk‖ = d010
−

wik
10γ , (i, k) ∈ B. (3b)

When vij and wik are quite small (|vij| �
10γ
ln 10 and

|wik | �
10γ
ln 10 ), it is reasonable to approximate the second

factor on the right hand of (3) by using the first-order Taylor
expansion as follows

10−
vij
10γ ≈ 1−

ln 10
10γ

vij, (4a)

10−
wik
10γ ≈ 1−

ln 10
10γ

wik , (4b)

where the higher-order terms are omitted.

We then substitute (4) into (3) resulting in

αAij ‖xi − sj‖ ≈ d0 − d0
ln 10
10γ

vij, (i, j) ∈ A, (5a)

αBik‖xi − xk‖ ≈ d0 − d0
ln 10
10γ

wik , (i, k) ∈ B, (5b)

where αAij = 10
L0−L

A
ij

10γ and αBik = 10
L0−L

B
ik

10γ .
Moving the second term on the right hand of (5) to the left

hand, squaring both side and then ignoring the second-order
noise term, we can obtain an approximation expression

αAij
2
‖xi − sj‖2 + 2µαAij ‖xi − sj‖vij ≈ d20 , (i, j) ∈ A,

(6a)

αBik
2
‖xi − xk‖2 + 2µαBik‖xi − xk‖wik ≈ d20 , (i, k) ∈ B,

(6b)

where µ = d0 ln 1010γ .
From (6), we have

vij ≈
µ−1(d20α

A
ij
−1
− αAij ‖xi − sj‖

2)

2‖xi − sj‖
, (i, j) ∈ A, (7a)

wik ≈
µ−1(d20α

B
ik
−1
− αBik‖xi − xk‖

2)

2‖xi − xk‖
, (i, k) ∈ B. (7b)

Based on (7), the following WLS estimation problem is
obtained

min
{xi}

∑
(i,j):(i,j)∈A

[
µ−1(d20α

A
ij
−1
− αAij ‖xi − sj‖

2)
]2

4σ 2‖xi − sj‖2

+

∑
(i,k):(i,k)∈B

[
µ−1(d20α

B
ik
−1
−αBik‖xi − xk‖

2)
]2

4σ 2‖xi − xk‖2
. (8)

Problem (8) is very difficult to solve since it is non-convex.
In the next part, we relax (8) to a SOCP problem, which is
convex and can be solved efficiently using the interior point
method [27].

For the sake of presentation, by stacking all the positions
of the targets into a matrix X , i.e. X = [x1, x2, . . . , xM ] ∈
R2×M , then introduce a variable y = vec(X) and a vector
Ei = [e2i−1, e2i], where vec(X) denotes the column-wise
vectorization ofX and ei denotes the ith column vectorization
of the identitymatrix I2M , the problem (8) can be equivalently
written as

min
y

∑
(i,j):(i,j)∈A

[
µ−1(d20α

A
ij
−1
− αAij ‖E

T
i y− sj‖

2)
]2

4σ 2‖ETi y− sj‖2

+

∑
(i,k):(i,k)∈B

[
µ−1(d20α

B
ik
−1
−αBik‖E

T
i y−E

T
k y‖

2)
]2

4σ 2‖ETi y−E
T
k y‖2

. (9)
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The objective function of the problem (9) is still non-
convex. To progress, introduce two slack variables hij ∈
RN×M and gik ∈ RM×M . Then, using the above slack vari-
ables, (9) can be rewritten as the following form

min
y,h,g

∑
(i,j):(i,j)∈A

hij +
∑

(i,k):(i,k)∈B
gik , (10a)

s.t.

[
µ−1(d20α

A
ij
−1
− αAij ‖E

T
i y− sj‖

2)
]2

4σ 2‖ETi y− sj‖2
≤ hij, (10b)[

µ−1(d20α
B
ik
−1
− αBik‖E

T
i y− E

T
k y‖

2)
]2

4σ 2‖ETi y− E
T
k y‖2

≤ gik . (10c)

To convert the problem (10) into a convex SOCP problem,
the non-convex and non-linear constraints (10b) and (10c)
need to be relaxed. To cope with the difficulties, two auxiliary
variables dAij = ‖E

T
i y− sj‖

2 for (i, j) ∈ A and dBik = ‖E
T
i y−

ETk y‖
2 for (i, k) ∈ B are introduced. Apply SOCP relaxtion

technique, we can obtain the following convex problem

min
Y ,y,dA

dB,h,g

∑
(i,j):(i,j)∈A

hij +
∑

(i,k):(i,k)∈B
gik , (11a)

s.t. dAij = tr(ETi YEi)− 2sTj E
T
i y+ ‖sj‖

2, (11b)∥∥∥∥[2µ−1(d20αAij −1 − αAij dAij ); 4dAij σ 2
− hij

]∥∥∥∥
≤ 4dAij σ

2
+ hij, for (i, j) ∈ A, (11c)

dBik = tr(ETi YEi)− 2tr(ETi YEk )
+ tr(ETk YEk ), (11d)∥∥∥∥[2µ−1(d20αBik−1 − αBikdBik ); 4dBik σ 2

− gik
]∥∥∥∥

≤ 4dBik σ
2
+ gik , for (i, k) ∈ B, (11e)[

Y y
yT 1

]
� 02M+1. (11f)

Problem (11) is a SOCP problem and can be efficiently
solved. In the following paper, we refer this method to
as ‘‘SOCP-K’’.

B. COOPERATIVE LOCALIZATION IN UNKNOWN
TRANSMIT POWER CASE
In practice, it is normally impossible to acquire the perfect
knowledge on the transmit power of the target nodes in
WSNs, for which the transmit power (L0) is an additional
unknown parameter to estimate. To cope with the complexi-
ties introduced by the additional unknown parameter, we con-
sider the following further approximation.

Based on (3) and (4), (3) is rewritten as

βAij ‖xi − sj‖ ≈ d0η0 − d0η0
ln 10
10γ

vij, (i, j) ∈ A, (12a)

βBik‖xi − xk‖ ≈ d0η0 − d0η0
ln 10
10γ

wik , (i, k) ∈ B, (12b)

where βAij = 10
−LAij
10γ and βBik = 10

−LBik
10γ , η0 = 10

−L0
10γ .

Squaring both sides and then ignoring the second-order
noise term, we can obtain an approximation expression

vij ≈
µ−1(d20η − β

A
ij

2
‖ETi y− sj‖

2)

2d0η
, (i, j) ∈ A, (13a)

wik ≈
µ−1(d20η−β

B
ik
2
‖ETi y−E

T
k y‖

2)

2d0η
, (i, k) ∈ B, (13b)

where η = η20 = 10
−L0
5γ .

Based on (13), the following WLS estimation problem is
obtained

min
y,η

∑
(i,j):(i,j)∈A

[µ−1(d20η − β
A
ij

2
‖ETi y− sj‖

2)]2

4d20η
2σ 2

+

∑
(i,k):(i,k)∈B

[µ−1(d20η − β
B
ik
2
‖ETi y− E

T
k y‖

2)]2

4d20η
2σ 2

. (14)

Using the similar idea as in the ‘‘SOCP-K’’method, the fol-
lowing optimization problem can be obtained

min
Y ,y,dA,dB

h,g,η

∑
(i,j):(i,j)∈A

hij +
∑

(i,k):(i,k)∈B
gik , (15a)

s.t. dAij = tr(ETi YEi)− 2sTj E
T
i y+ ‖sj‖

2, (15b)∥∥∥∥[2µ−1(d20η − βAij 2dAij ); 4d20η2σ 2
− hij

]∥∥∥∥
≤ 4d20η

2σ 2
+ hij, for (i, j) ∈ A, (15c)

dBik = tr(ETi YEi)− 2tr(ETi YEk )

+ tr(ETk YEk ), (15d)∥∥∥∥[2µ−1(d20αBik−1 − αBikdBik ); 4d20η2σ 2
− gik

]∥∥∥∥
≤ 4d20η

2σ 2
+ gik , for (i, k) ∈ B, (15e)[

Y y
yT 1

]
� 02M+1. (15f)

It is noted that the constraints (15c) and (15e) are still non-
convex since the L0 (and hence η) is an unknown parameter.
Introducing the auxiliary variable τ , by relaxing η2 = τ to
η2 ≤ τ , then the non-convex minimization problem (15)
can be transformed into the following SOCP optimization
problem

min
Y ,y,dA,dB
h,g,η,τ

∑
(i,j):(i,j)∈A

hij +
∑

(i,k):(i,k)∈B
gik , (16a)

s.t. dAij = tr(ETi YEi)− 2sTj E
T
i y+ ‖sj‖

2, (16b)∥∥∥∥[2µ−1(d20η − βAij 2dAij ); 4d20 τσ 2
− hij

]∥∥∥∥
≤ 4d20 τσ

2
+ hij, for (i, j) ∈ A, (16c)

dBik = tr(ETi YEi)− 2tr(ETi YEk )

+ tr(ETk YEk ), (16d)
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Algorithm 1 Hybrid ML-SOCP
1: Input:
{Lij}: path loss from ith target node to jth anchor node;
{Lik}: path loss from ith target node to kth target node;
{σij}: variances of the measurements noise from ith target
node to jth anchor node;
{σik}: variances of themeasurements noise from ith target
node to kth target node;
{d0}: reference distance;
{L0}: reference path loss value at the reference distance
d0;
{sj}: sensor locations;
{γ }: path loss exponent;

2: Find an initial estimate ŷ in the feasible region of (16);
3: Compute d̂Aij ← ‖E

T
i ŷ − sj‖2 for (i, j) ∈ A and d̂Bik ←

‖ETi ŷ− E
T
k ŷ‖

2;
4: Compute by (2) the ML estimate as

L̂0 =

∑
(i,j):(i,j)∈A

(LAij − 10γ log10
‖ETi ŷ−sj‖

d0
)

|A| + |B|

+

∑
(i,k):(i,k)∈B

(LBik − 10γ log10
‖ETi ŷ−E

T
k ŷ‖

d0
)

|A| + |B|
,

where |A| and |B| represent the cardinalities of sets A
and B;

5: Compute α̂Aij = 10
L̂0−L

A
ij

10γ for (i, j) ∈ A and α̂Bik =

10
L̂0−L

B
ik

10γ for (i, k) ∈ B;
6: Solving (11), and obtain an updated y;
7: Output: the solution of step 6, y, is the estimate of the

target locations.

∥∥∥∥[2µ−1(d20αBik−1 − αBikdBik ); 4d20 τσ 2
− gik

]∥∥∥∥
≤ 4d20 τσ

2
+ gik , for (i, k) ∈ B, (16e)

‖[2η; τ − 1]‖ ≤ τ + 1, (16f)[
Y y
yT 1

]
� 02M+1. (16g)

Even though (16) can be efficiently solved by using the
interior method [27], its performance may not be always
good. Therefore, we can further improve its performance.
In Algorithm 1, we propose a hybrid ML-SOCP method by
alternatively estimating L0 and target locations. This hybrid
ML-SOCP method is referred to as ‘‘SOCP-U’’.

IV. COMPLEXITY ANALYSIS
For all discussed methods, there always exists a trade-off
between the estimation accuracy and the implementation
complexity. To evaluate this trade-off, we assume a net-
work where all the nodes are inter-connected. The for-
mula for computing the worst-case complexity of the mixed
SD/SOCP [27] is used to analyze the complexities of the

TABLE 1. Summary of the considered methods in section VI-A.

TABLE 2. Average running times of various methods (sec.).

TABLE 3. Summary of the considered methods in section VI-B.

proposed methods and other discussed methods in this
paper:

O
(√

L
(
m

Nsd∑
i=1

nsd
3

i + m
2
Nsd∑
i=1

nsd
2

i

+ m2
Nsoc∑
i=1

nsoci +
Nsoc∑
i=1

nsoc
2

i + m3)), (17)

where L is the number of iterations of the algorithm, m is
the number of equality constraints, Nsd ,Nsoc is respectively
the number of the semi-definite cone (SDC) and second order
(SOC) constraints, and nsdi , n

soc
i is the number of dimensions

of the ith SDC and ith SOC, respectively. Based on (17),
we provide the complexity analysis of the proposed methods
and other discussed methods in Table 1 and Table 3. Further
analysis results together with the simulation results will be
discussed in the following section.

V. CRAMER-RAO LOWER BOUND ANALYSIS
The Cramer-Rao Lower Bounds of the targets localization in
cooperative WSNs are given in this section to compare the
performance of the proposed methods.

For the target location xi, the ML estimator x̂i in (2) is an
unbiased estimator, i.e., E(x̂i) = xi, as it is essentially based
on (1). Then, the covariance matrix of x̂i is subject to the
CRLB as VAR(x̂i) � F−1, where F is the Fisher information
matrix (FIM).

In order to evaluate the accuracy performance of the unbi-
ased estimation, the root mean square error (RMSE) is
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defined as

RMSE =

√√√√( Mc∑
i=1

‖
x̂i − xi‖2

Mc

)
, (18)

where x̂i is the estimation of the randomly generated target
location xi in the ith simulation, and Mc is the number of
independent Monte carlo (Mc) simulation rounds.

Accordingly, we define the CRLB on RMSE by computing
the trace of F−1. As proved in the following, the CRLB
on RMSE for both known and unknown transmit power of
targets is given, respectively, by

CRLB− K = trace
{
F−1K

}
, (19)

CRLB− U = trace
{
F−1U [1 : 2M , 1 : 2M ]

}
, (20)

The FIM FK and FU are computed as

FK = GT1Q
−1
1 G1 + GT2Q

−1
2 G2, (21)

FU = HT
1Q
−1
1 H1 +HT

2Q
−1
2 H2, (22)

where Q1 = diag{σ 2
vij}, Q2 = diag{σ 2

wik }, [G1]ij = gij,
[G2]ik = gik , [H1]ij = hij, [H2]ik = hik , with

gij =
10γ
ln 10

ETi (E
T
i y− sj)

T

‖ETi y− sj‖2
,

gik =
10γ
ln 10

(Ei − Ek )T (ETi y− E
T
k y)

T

‖ETi y− E
T
k y‖2

,

hij =
[
10γ
ln 10

ETi (E
T
i y− sj)

T

‖ETi y− sj‖2
, 1
]T
,

hik =
[
10γ
ln 10

(Ei − Ek )T (ETi y− E
T
k y)

T

‖ETi y− E
T
k y‖2

, 1
]T
,

for all (i, j) ∈ A, (i, k) ∈ B.

VI. SIMULATION RESULTS
In this section, computer simulation results are provided
to compare the performance of the proposed SOCP-K and
SOCP-U methods with that of the other discussed meth-
ods and the CRLBs in cooperative localization scenario. All
presented methods are solved by using MATLAB package
CVX [28], where the solver is SeDuMi [29]. The propaga-
tion model (1) is used to generate the RSS measurements.
In all computer results presented hereafter, the reference
distance d0 = 1m, the path loss L0 = 40 dB, the path
loss exponent γ = 3. 3000 Mc runs are used to compute
the normalized root mean square error (NRMSE) defined as

NRMSE=

√
1
M

Mc∑
i=1

M∑
j=1

‖xij−x̂ij‖2

Mc , where x̂ij is the estimated

location of the jth target, in the ith Monte carlo runs. Unless
stated otherwise, the anchor nodes are fixed at the locations
(B,B), (0,B), (−B,B), (−B, 0), (−B,−B), (0,−B), (B,−B),
(B, 0), (0, 0), where B will be given in each figure. Target
nodes are randomly located inside the convex hull and only
those within the effective communication range to the anchor
nodes can be connected to each other.

FIGURE 2. Simulation results for cooperative localization when L0 is
known: NRMSE versus the σ under the conditions of
N = 9,M = 30, γ = 3,d0 = 1 m,B = 15 m,R = 8 m.

A. COOPERATIVE LOCALIZATION IN KNOWN TRANSMIT
POWER CASE
Table 1 provides an overview of the discussed methods in
known transmit power case, together with their complexities.
From Table 1, we know that the proposed SOCP-K method
has the same complexity as the SDP1 method and slightly
higher than the SD/SOCP method. Simulation results in the
following part will show that the proposed SOCP-K method
will provide superior performance, but at the cost of higher
computational complexity. Table 2 also shows the running
times of the discussed methods.

Fig. 2 compares the NRMSE of the discussed methods
versus the standard derivation (STD), σ , when N = 9,
M = 30, γ = 3,R = 8m. This figure shows that the
performance of the discussed methods is becoming worse
as σ increases. Moreover, it is observed that the proposed
SOCP-K method provides superior performance over the
other discussed methods, and more closes to the CRLB-K in
presence of high σ . The following two cases are considered
for further illustration: σ = 3 dB and σ = 6 dB. From Fig. 2,
it can be seen that although the proposed SOCP-K method
outperforms the SDP1 method, the gap between the proposed
SOCP-K method and the SD/SOCP method is very small
when σ = 3 dB. However, the proposed SOCP-K method
outperforms all the other discussed methods with large gaps
when σ = 6 dB. In summary, the proposed method out-
performs the discussed methods in terms of the localization
accuracy particularly when σ is high.

Fig. 3 shows the NRMSE versus N of the discussed meth-
ods when M = 30, σ = 5 dB,R = 8m. The anchor nodes
and target nodes are randomly located at a square region
of length 2B in each Mc runs. As predicted, the NRMSE
decreases as N increases for all the discussed methods,
which means more available information can improve the
performance. However, it can be seen that the proposed
SOCP-K method always outperforms the other discussed
methods although the NRMSE margin tends to become
smaller in presence of higher N . It also shows that the
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FIGURE 3. Simulation results for cooperative localization when L0 is
known: NRMSE versus the number of anchor nodes N under the
conditions of M = 30, σ = 5 dB, γ = 3,d0 = 1 m,B = 15 m,R = 8 m.

FIGURE 4. Simulation results for cooperative localization when L0 is
known: NRMSE versus the number of target nodes M under the
conditions of N = 9, σ = 5 dB, γ = 3,d0 = 1 m,B = 15 m,R = 8 m.

performance of SOCP-K is more close to that of CRLB-K for
all chosen N . Finally, even though we derive the method by
assuming small noise, Fig. 3 reveals that the proposedmethod
can work effectively with presence of high noise, for instance
as high as 5dB.

Fig. 4 shows the NRMSE versus M when N = 9,
σ = 5 dB,R = 8m. Similar to Fig. 3, the performance of the
discussed methods can also be improved by increasing the
number of target nodes. Fig. 4 confirms again that the pro-
posed SOCP-K method outperforms the discussed methods
and more close to CRLB-K for all chosen M .

B. COOPERATIVE LOCALIZATION IN UNKNOWN
TRANSMIT POWER CASE
Table 3 provides an overview of the discussed methods
in unknown transmit power case, together with their com-
plexities. From Table 3, it can be seen that the proposed
SOCP-Umethod has the same complexity as the SDP2method
and slightly higher complexity than the SDP-URSS method.
Furthermore, the higher computational complexity of the
proposed SOCP-U method can be justified by its superior

TABLE 4. Average running times of various methods (sec.).

FIGURE 5. Simulation results for cooperative localization when L0 is
unknown: NRMSE versus the σ under the conditions of
N = 9,M = 30, γ = 3,d0 = 1 m,B = 15 m,R = 8 m.

performance in the sense of estimation accuracy, as we will
see in the following simulation results. Table 4 also shows the
running times of the discussed methods.

Fig. 5 compares the NRMSE versus the STD, σ , when
N = 9,M = 30,R = 8m. To the same conclusion as in
the known transmit power case, the figure shows that the
performance of the discussed methods becomes worse as
σ increases. Moreover, the gaps between the proposed
SOCP-U method and the other discussed methods become
larger as σ increases. For instance, when σ = 1 dB,
the gaps of the performance are approximately 0.1m and
0.3m, when compared to the SDP2 method and SDP-URSS
method, respectively; when σ = 6 dB, they are 2.1m
and 2.3m, respectively. On the other hand, the proposed
SOCP-Umethod underperforms the CRLB-U by about 0.2m
when σ = 5 dB. In summary, the proposed SOCP-U method
provides superior performance over the other discussedmeth-
ods, and more close to the CRLB-U even when σ is high.
Fig. 6 compares the NRMSE versus the number of the

anchor nodes N when M = 30, σ = 5 dB,R = 8m.
Similar to known transmit power case, the anchor nodes and
target nodes are still randomly located at a square region of
length 2B in each Mc runs. Fig. 6 shows that the NRMSE
decreases as N increases for all the discussed methods. This
result shows that the performance of the proposedmethod can
be improved with more reliable information available. The
figure shows that the proposed SOCP-Umethod outperforms
the other discussed methods and is more close to CRLB-U for
all chosenN , e.g., forN = 12, the proposed SOCP-Umethod
outperforms the other discussed methods by more than 3m.
Similar to SOCP-K, it shows that SOCP-U works effectively
in presence of high noise.
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FIGURE 6. Simulation results for cooperative localization when L0 is
unknown: NRMSE versus the number of anchor nodes N under the
conditions of M = 30, σ = 5 dB, γ = 3,d0 = 1 m,B = 15 m,R = 8 m.

FIGURE 7. Simulation results for cooperative localization when L0 is
unknown: NRMSE versus the number of target nodes M under the
conditions of N = 9, σ = 5 dB, γ = 3,d0 = 1 m,B = 15 m,R = 8 m.

Fig. 7 compares the NRMSE versus the number of the
target nodes M when N = 9, σ = 5 dB,R = 8m.
This figure confirms that the performance of the discussed
methods can be improved by adding more target nodes. This
is due to the fact that more communication links are set
up when more target nodes can communicate. Furthermore,
when more target nodes are added in the network, more
estimation accuracy of transmit power is obtained, which
improves the performance of the location estimation. Finally,
this result shows that the proposed SOCP-U method outper-
forms the other discussed methods for the number of the
target nodes M .

VII. CONCLUSION
We propose two second-order cone programming (SOCP)
estimators for RSS-based cooperative localization problem in
both known and unknown target transmit power cases. For the
case of known transmit power, we treat the transmit power as
a constant and derive a novel non-convex WLS estimator to
estimate the target node locations. We then show that it can
be transformed into a SOCP problem for reaching an efficient
solution. For the case of unknown transmit power, we treat

the transmit power as an additional unknown parameter and
propose a hybrid ML-SOCP algorithm to alternatively esti-
mate the target nodes and transmit power. Extensive computer
simulations are carried out and the results depict that for
all considered scenarios, the proposed estimators exhibited
exceeding performance.
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