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ABSTRACT The increasing number of Internet of Thing (IoT) devices and services makes it convenient
for people to sense the real world and makes optimal decisions or complete complex tasks with them.
However, the latency brought by unstable wireless networks and computation failures caused by constrained
resources limit the development of IoT. A popular approach to solve this problem is to establish an IoT
service provision system based on a mobile edge computing (MEC) model. In the MEC model, plenty of
edge servers are placed with access points via wireless networks. With the help of cached services on edge
servers, the latency can be reduced, and the computation can be offloaded. The cache services must be
carefully selected so that many requests can by satisfied without overloading resources in edge servers. This
paper proposes an optimized service cache policy by taking advantage of the composability of services to
improve the performance of service provision systems. We conduct a series of experiments to evaluate the
performance of our approach. The result shows that our approach can improve the average response time of
these IoT services.

INDEX TERMS Mobile edge computing, Internet of Thing, service provisioning, service composition.

I. INTRODUCTION
We are now embracing an era of IoT. With the help of radio
frequency identification devices (RFID), near field com-
munication (NFC), sensors, actuators mobile phones, etc.,
IoT technology empowers information systems to see, hear,
think and perform jobs with the data collected from real
world [1]. According to the report from Cisco, the IoT
will consist of 50 billion devices connected to the Internet
by 2020 [2]. There will be no doubt that IoT will play a more
and more important role and will remold the communication
between people and machines.

However, the instability of wireless communication and
limited resource of IoT devices prevent users from expe-
riencing high efficiency and seamless user experience.
For example, the low computational capability and energy
storage [3]–[5] of wireless devices restrict the populariza-
tion of novel services such like AR (Augmented Reality)/
VR (Virtual Reality)/ AI (Artificial Intelligence), and the

packet losses cause external waiting time for urgent mes-
sages. Mobile Edge Computing (MEC) technology is pro-
posed to solve some relevant problems for the aforementioned
services [6]. MEC is a novel model that emerges recently as
a reinforcement of mobile cloud computing to optimize the
resource usage of IoT devices and wireless network to pro-
vide context-aware services. A typical architecture of MEC
system is shown in Fig.1, where computation and transmis-
sion between devices and cloud servers are partly migrated to
mobile edge servers.

To accelerate the services with the short-distance connec-
tions and the computation capacity of edge servers, a direct
way is to use cache on these servers. However, traditional
researchers pay most of their attention to the cache policy
on data and ignore the scenarios of service cache, let alone
taking advantages of service properties to optimize the cache
policies. To take a step forward, we consider the scenarios
of service cache on edge servers in the MEC architecture.
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FIGURE 1. Architecture of mobile edge computing.

In this situation, mobile edge servers maintain different sets
of services of the cloud server. Therefore, when the desired
services are found on some edge servers, wireless devices can
communicate with these mobile edge servers in the same way
as with the cloud server if the service interfaces are unified.
Hence, the effectiveness of a service provision system is
strongly correlated to the cached service set of edge servers:
the more popular services the mobile edge server cache have,
the more requests from wireless devices can be optimized.
It’s also worth noting that, although for some services (such
as video services) the communication with the cloud itself is
still required, having servers on the edge of the network still
plays a major role in improving the experience of users. For
example, if the YouTube service is placed on the edge, then
videos can be cashes/replayed on the edge by edge servers
with powerful links to cloud servers. As a result, mobile
users not only use their precious/limited mobile 3G/4G/LTE
bandwidths to access videos on the cloud, but also get a
better access to them as edge servers are presumed connected
via fixed links with higher bandwidth and lower latency
(than all types of mobile wireless connectivity). Therefore,
in this work, we only consider the cost of bringing services to
the edge, and assume the cost of transmitting data between
edge and cloud servers negligible. What’s more, with the
developing ofMicro-Service technology [7], services will not
only work individually but also will cooperate with others
easily to make a composite service and finish complex tasks.
Thus, some composite services may also have the capability
to fulfill some simple tasks by reusing their member services.
In many cases, it will help save resource if both the com-
posite services and their member services are invoked fre-
quently. To take all things into consideration, in this paper we
evaluate the performance with the average service response
time (ASRT) and propose a resource consumption aware
algorithm to determine how services can be placed on edge
servers.

The contribution of this paper are listed as follows:
• In this paper, we explore the architecture of mobile
edge computing benefit of service cache, and discuss
the factors that may affect the performance in latency
reduction of cache polices.

• We classify the services as composite services and
atomic services, and use service composition graph
to describe the relation of them. By considering the
resource consumption, popularity (or invocation fre-
quency) and the service composition graph, we propose
an heuristic algorithm to optimize the average service
response time.

• We conduct a series of experiments to evaluate the
generated cache polices in algorithm and show the
improvement.

The rest of this paper is organized as follows.
Section 2 describes the motivation and scenario on cache pol-
icy with service composition. Section 3 highlights the related
work of edge computing and the corresponding approaches.
Section 4 presents definitions, concepts and components of
the proposed problem. Section 5 describes the approaches
we proposed to solve this problem. Section 6 shows the
experimental results including the factors that affect our
algorithms. Finally, Section 7 concludes our contribution and
outlines future work.

II. MOTIVATION AND SCENARIO
In MEC architecture, the efficiency and effectiveness of ser-
vice deployment/cache can strongly affect the performance
of the system. At the same time, because edge servers are
resource-constrained machines that can only cache finite
number of services, resource consumptions of services must
be considered during their selection.

FIGURE 2. An example of pig farming industry.

To give an example of how service cache policies can affect
the performance of provision system, we are going to con-
sider a practice in modern pig-farming industry. Nowadays,
with the help of IoT technology, the environment parameters
can be collected in time so that farmers can easily monitor the
pigpens — the thermohygrometer will record the humidity
of the pigpens, the infrared spectrometer will scan the bodies
of pigs and the webcam will record the behaviors of pigs,
as shown in Fig.2. It is hard to capture the key informa-
tion with the raw data, so researchers have developed serval
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FIGURE 3. An example of edge server cache.

TABLE 1. Running parameters of services.

services to analyze the data collected from such sensors.
For example, there are 5 services — Infrared Analysis (s1),
Humidity Analysis (s3), Image Processing (s4), Skin Test-
ing (s2), andDisease Detection (s5) developed by researchers
to help understand the context of the pigpen. The service
Infrared Analysis receives the real time data from infrared
spectrometer and generate temperature distribution and stable
heat maps of objects; The service Humidity Analysis uses the
humidity sequence to generate the statistics charts and trends;
The service Image Processing detects the objects of real time
video stream and labels them different tags; The service Skin
Testing check the skin quality of pigs to validate whether
they need washing; The service Disease Detection uses some
classification model to judge whether a pig is healthy or not.
These 5 services canwork individually to help decidewhether
it is necessary to ventilate the room, open the air conditioner,
alarm the exceptional behaviors, wash the pigs or call for vet-
erinarians. But actually, they have logical relations between
each others. The serviceDisease Detection can use the results
of service Infrared Analysis and service Skin Testing to make
decisions, because the model works well with the heal map
and skin quality as features. And the service Skin Testing
can take advantages of humidity and the features from image
processing to judge whether the skin is normal. Therefore,
some complex tasks can be fulfilled by invoking some of the
simple services. The composition relations of these services
are shown in Fig.3 in which the edge sm → sn means that
sn is a component of service sm. It models realistic scenarios
where different Docker images (e.g. sm) may include the same
container (e.g. sn), and thus if the component containers can
be reused by modifying the parameters, the resource can be
reused. Besides these, the properties of these services are
shown in Table.1. These services are to be selected for cache
on an edge server (es) whose maximum available memory
is 100MB. In Table.1, ti and Ti means the response time of
services when it is deployed on the edge (i.e. cached) and on
the cloud, respectively.

In this situation, we need to determine which services
can be cached in edge server, so that it can swiftly deal
with sensors’ requests (in this paper, we use the ASRT
to evaluate the performance). A direct idea is to store
the popular services because they are invoked frequently,
if these popular services are accelerated with cache, the aver-
age response time is expected to be reduced. However,
in this example (Fig.3), the most popular service (s5)
will use nearly all the computing resource of the edge
server, and therefore when it is cached on the edge server,
the ASRT will be

∑4
i=1 Ti × fi + t5 × f5 = 3.71s,

which is greater than the average response time (3.58s)
of selecting less popular services (s2, s3, s4). Using this
simple example, we showed that it is necessary to build
more complexmodels tomake such caching decisions. Please
also note that service s5 is a composite service made up of
service s1 and s2, where s2 is made up of s3 and s4. These
composition relations are quite common in practice. Here
for example, we can take advantage of such information and
cache services (s1, s3, s4) to achieve the ASRT of t1 × f1 +
(t3+ t4)× f2+ t3× f3+ t4× f4+ (t1+ t3+ 44)× f5 = 2.88s,
which is less than the former ones.

III. RELATED WORK
With an increasing number of wireless devices connecting
to the cloud, the demand for high-quality service provision
becomes urgent. It drives more and more researchers to pay
attention to issues of the MEC model that affect the effec-
tiveness of service provision. In this section, we review the
research related to our study, i.e. MEC framework and cache
policy.

A. IoT AND MEC FRAMEWORK
With the help of MEC model, researchers and develop-
ers reconstruct their system components to achieve their
different goals. Since the MEC model focuses on the
mobile end devices, energy consumption reduction and per-
formance optimization become the main research topics
to perform computation in an economical and efficient
way. For example, Tianze et al. [8] consider the energy
consumption of wireless devices; they analyze overheads
of wireless devices and propose an overhead-optimizing
multi-device task scheduling strategy for ad-hoc-based MEC
systems. Sardellitti et al. [9] consider a Multi-Input and
Multi-Output (MIMO) multi-cell system where multiple
mobile users ask for computation offloading to servers; they
formulate the offloading problem as the joint optimization of
the radio resources and the computational resources to satisfy
the latency constraints. You et al. [10] consider incorpora-
tion with dense cellular networks; they propose an online
algorithm based on Lyapunov optimization to determine
offloading and edge server sleeping policy and increase per-
formance while keeping low energy consumption. Different
from traditional QoS performance prediction optimization,
Wang et al. [11] proposed an efficient QoS prediction
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approach for service recommendation that considers user
mobility and data volatility for the first time. Yi et al. [12]
propose LAVEA, a system built for edge computing, which
offloads computation tasks between clients and edge nodes,
collaborates nearby edge nodes, to provide low-latency video
analytics at places closer to the users.

B. CACHE POLICY
In computer architectures, caches are among the most pop-
ular approaches to help improving system performance.
Researchers tries to determine what/where/how to place their
data and services of specific systems with different prop-
erties. For example, Bahreini and Grosu [13] focus on the
placement of the components of a mobile application on
the edge servers that minimizes the cost of running the
application. What’s more, they also consider the impact of
users’ location and network capacity in their optimization
problem. Gu et al. [14] investigate the storage allocation of
macro base station. Bai et al. [15] has proposed a caching
based device-to-device communication scheme. They con-
sider the social relations among users and their common
interests. Breslau et al. [16] suggests to use the zipf-like
model to describe the content popularity in web caching.
Ahlehagh and Dey [17] proposes a user preference profile
based caching policy. They find that video popularity varies
in different users and propose a caching policy on these user
preferences.

These research shed light on the fundamental concepts of
the cache problem in MEC models, but they do not cover
the cache policy on the mobile edge servers by utilizing the
composition technology of services.

IV. PROBLEM DEFINITION AND DESCRIPTION
In this section, we introduce the related definitions and
descriptions involved in the cache content optimization
problem of MEC systems.

A. CONCEPT DEFINITION
Definition 1 (Cloud Server, CS): Cloud Server consists of

clusters of machines. It maintains a service registry and acts
as a service provision center. Service providers can register,
delegate and maintain their services on it, while user (or sen-
sor) can query or invoke the services from it.We defineVu→cs
as the average transmission rate between cloud server and
wireless users.

Though the cloud server is made up of machines,
some management systems like OpenStack, Kubernetes1

are applied in practice to manage these machines. Hence,
the cloud server can run in a well-organized way and provide
unified API to end users.
Definition 2 (Web Service, WS): AWeb Service ws can be

defined by ws = (func, in, out, r, QoS), where func is the
functionality of the web service, in is the input, out is the
output, r is the resource consumption, and QoS is the quality
of web service.

1https://kubernetes.io

The web service is an abstract concept that describes how
a program can complete some tasks with specific parame-
ters. It can be an instance of remote invocation based on
SOAP [18], a web API provided by a software company, or a
Docker2 container/ Kubernetes pod managed by a PaaS plat-
form. In ourwork, we focus on the Container-as-a-Service sit-
uation because of container’s ‘‘Build, Ship, and Run Any App,
Anywhere’’ properties. Edge servers can download applica-
tion images from clouds and run containers to deal with
different requests.

FIGURE 4. An example of Kubernetes pod YAML file.

The r describes resource consumption of services such as
memory, CPU, GPU or network. For example, Fig. 4 shows
a description of the nginx-pod. QoS describes the nonfunc-
tional characteristics of service, including execution time,
reputation, cost, etc. [19], [20]. It varies when deployed in
different environments. In our model, we focus on execution
time of web services on different edge and cloud servers.
Definition 3 (Service Composition Graph, SCG): A Ser-

vice Composition Graph reveals the relations of web services,
it can be represented as a directed acyclic graph (DAG)Gsc =
(S, E), where S is the web service set, and E = {< si← sj >
|si, sj ∈ S, (si, sj) ∈ Rc} is the set of graph edges. Here, Rc is
the composition structure of services, in which (si, sj) ∈ Rc
means that service sj is a composite service and si is a member
service of sj.
The service composition technology is derived from

service-oriented architecture (SOA), it tries to compose new
complex services by integrating services with various func-
tionalities provided by different service developer [21], [22].
For example, Siri3 is one of the most famous composite appli-
cations, it integrates member services like alarm clock, cal-
endar, weather, music, etc. by recognizing human voice and
responses to users by dialogs. There exist many other com-
posite services in the service registry.4 With well-designed
UI wrappers and runtime optimization (like allocating dif-
ferent CPU units for parallel service execution), these com-
posite services sometimes show better user experience and
performance than invoking individual member services [23].

2https://www.docker.com
3https://www.apple.com/cn/ios/siri/
4https://www.programmableweb.com/category/all/mashups
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In the graph, the services which are made of other member
services are called ‘‘composite service’’ (Sc), and the others
are called ‘‘atomic service’’ (Sa). If a service si is a mem-
ber service of service sj, we denote that service si support
service sj.
Definition 4 (Edge Server, ES): Edge servers are comput-

ing devices with stronger processing power and larger storage
capacity that deployed on the edge network. The edge server
communicates with wireless devices (usually via wireless
links), receives their requests and records the running events.
An edge server es can be defined by a tuple es = (R, Vu→es,
Vcs→es), where R is the provision capacity, Vu→es is the data
transmission rate between users and edge server, and Vcs→es
is the data transmission rate between cloud servers and edge
servers.

In our model, we use average transmission rate Vu→es and
Vcs→es in response time computation to reduce the computa-
tion complexity. The parameter R = (Rres1max ,R

res2
max , . . . ,R

resn
max)

describes the maximum resource that the edge server can
provide in different resource types. For example, an MEC
provision system which considers only the memory resource
will give the edge server a provision capacity; e.g.,R = Rmemmax .
Every service will use resources of different types, but the
sum of each individual resource cannot be larger than the
capacity of the edge servers.

B. PROBLEM DESCRIPTION
A significant metric to measure the performance of a service
provision system is the average service response time. Short
service response time will significantly enhance user experi-
ence and can motivate users to use more services. For every
web servicewsi, it typically has two different service response
times T ci and tei . T

c
i is the service response time when it is

placed on the cloud server, and tei is on the edge server. They
can be easily derived from the parameters of edge server and
service:

tei =
ini

Vu→es
+ QoSedgeexec_time +

outi
Vu→es

T ci =
ini

Vu→cs
+ QoScloudexec_time +

outi
Vu→cs

(1)

In many cases, it is assumed that tasks will execute better
on cloud because the machines of the cloud may have bet-
ter hardware for computation. But things are not absolute
because edge servers are also machines with good computa-
tion capability, while the cloud is made up of such machines.
Therefore, we do not assume whether it takes longer on edge
server or on cloud server. But in general, the transmission
time when services deployed on edge servers is always larger
than that on cloud, because of the short-distance communica-
tion with edge and shorter waiting time in the serving queue.

Besides invoking services from cache or cloud directly,
the task of a service can also be fulfilled by invoking its
member services. If service wsi is a composite service that
consists of other servicesMSi = {si1, si2, . . . , sik}, the service
response time t∗i (y) can be computed recursively with the

service response time of the member services (here y is the
vector that describe the cache policy where yi = 1 means
si ∈ cache and yi = 0 means si /∈ cache):

t∗i (y) =



min{tei ,
∑

sj∈MSi
t∗j }, yi = 1, si ∈ Sc

min{T ci ,
∑

sj∈MSi
t∗j }, yi = 0, si ∈ Sc

tei , yi = 1, si /∈ Sc
T ci , yi = 0, si /∈ Sc

(2)

Then, the ASRT r̃t(y) of S can be represented as:

r̃t(y) = f1 × t∗1 (y)+ f2 × t
∗

2 (y)+ . . .+ fn × t
∗
n (y) (3)

=

n∑
i=1

fi × t∗i (y) (4)

Here fi is the frequency of the service si to reflect its pop-
ularity. The frequency can be estimated by counting the
invocations of different services.

TABLE 2. Symbols and notations.

In this way, with the notations and symbols shown
in Table. 2, the problem can be defined as: For an arbitrary
edge server es = (R, Vu→es, Vcs→es), given the services
S = {s1, s2, . . . sn}, the corresponding service composition
graphGsc = (S,E) and the popularity f = {fi}ni=1 of services,
finding the optimal service cache policy y = {yi}ni=1 for edge
server es to minimize the average service response time r̃t(y).

min r̃t(y) =
m∑
i=1

fit∗i (y) (5)

s.t.

{∑m

i=1
yiri ≤ R

yi ∈ {0, 1}
(6)

V. APPROACH
In this section, we will firstly analyze the relation of services
based on the service composition graph, and then propose a
heuristic algorithm based on this analysis.
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Algorithm 1 Computing Service Response Time, CSRT
Input:

SCG(S,E): the service composition graph;
T = {Ti}ni=1: the response time on cloud;
t = {ti}ni=1: the response time on edge if cached;
y: the cache policy;

Output:
{t∗i }: response time with cache policy y;

1 Stack S†← ∅
2 while not all computed do
3 Szero← {si|si ∈ S, indegree(si) = 0}
4 for sk ∈ Szero do
5 if outdegree(sk ) = 0 then
6 if yk = 1 then
7 t∗k = tek
8 else
9 t∗k = T ck

10 else
11 push(S†, sk )

12 for sk ∈ Szero do
13 remove(G, sk )

14 update G

15 while S† 6= ∅ do
16 Sk ← pop(S†)
17 for sk ∈ Sk do
18 if yk = 1 then
19 t∗k = min{

∑
sj∈MSk t

∗
j , t

e
k }

20 else
21 t∗k = min{

∑
sj∈MSk t

∗
j ,T

c
k }

22 return {t∗1 , t
∗

2 , . . . , t
∗
n }

A. SERVICE COMPOSITION GRAPH ANALYSIS
The service composition graph reveals the hierarchal struc-
ture of web services. With this information, appropriate ser-
vices can be selected to support more service requests using
edge server caches.

To represent the service response time of all services with
an analytical expression, we proposed an iterative algorithm
that takes advantage of the support relations among services;
it is presented in algorithm 1. In Algorithm 1, it firstly par-
titions services to different levels and uses a stack to store
them: the higher level a service has, the lower it will stay in
the stack (Line 2-14). Then the response time are computed
level by level (Line 15-21). In the worst case, there is only
one path that connects all services like s1← s2← s3, in this
situation the time complexity is O(|S|2).
To illustrate the computation process, we show an example

of how the response time is computed with a given policy
in Fig.5. In this case, there are 15 services in the service
registry which are numbered from s0 to s14. In step (1),

the services whose indegree is 0 (s0, s1, s6, s7, s9, s13, s14)
are highlighted. In step (2), the response times of services
whose outdegree is 0 (atomic services) are computed directly
with the value of y, and then these services are removed
from the service composition graph. In step (3), the services
whose outdegree is larger than 0 (composite services) are
stored in the stack and these services and their related edges
are also removed from the graph. Step (4) and (5) repeat
the process from (1) to (3). In step (6), all the composite
services are stored in stack in their level order. In step (7),
the response time of service s2 is computed because all its
member services’ response time (t∗3 (y), t

∗

5 (y)) are computed.
When t∗2 (y) is worked out, the stack will pop it. In step (8),
the response times of s1 and s13 are worked out, and because
the stack is now empty, the computing process is over.

B. CACHE POLICY ALGORITHMS
Inspired by the traditional knapsack problem [24], the main
step of making cache policy is to decide which service is
appropriate to put in cache so that the ASRT can be min-
imized. Furthermore, the value of policy is however not as
easy to evaluate as that in the knapsack problem, because the
relations here are much more complex.

1) ENUMERATION METHOD
A direct way is to enumerate all possible policies to find
the optimal one. Enumeration is a brute-force but accurate
method to find the optimal solution of this NP-complete prob-
lem. As the size of the solution set is 2n, this approach enu-
merates all polices from y =<0, 0, . . . , 0> to<1, 1, . . . , 1>,
compute and compare the ASRT in turn, the policy with
minimum ASRT is the optimal one. We choose the results
of it as the ground truth of our experiments.

2) CONSUMPTION-DRIVEN SEARCHING ALGORITHM
Genetic algorithm (GA) is a kind of metaheuristic inspired
by the process of natural selection. It simulates the evolu-
tion of populations with operations like selection, crossover
and mutation. GA is designed to favor chromosomes with
highest fitness values to produce next populations (solu-
tions). As a result, quality of solutions for a problem is
gradually improved (population by population) until the opti-
mal answer is reached. Inspired by GA, we propose the
consumption-driven searching algorithm (CDSA) with the
following three steps:
(1) Encoding. Encoding is the first step of the CDSA

algorithm. In this step, the solutions of the optimization prob-
lem are represented with encoded chromosome firstly. From
the problem description, the goal is to find optimal cache
policy Ey =<y1, y2, . . . , yn> which can minimize the ASRT.
We encode the candidate policies with an n-bits-genome
chromosome where 0 or 1 in the i-th genome means the
selection of service wsi.
Secondly, a set of chromosomes are initialized to make

a population. Typically, the several hundreds or thousands
of possible solutions are contained in a population, and the
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FIGURE 5. An example of Algorithm 1.

FIGURE 6. Genomes and populations in a generic algorithm.

chromosomes of the population are generated randomly to
cover a wide solutions space in increase the chance of find-
ing the optimal solution. However, because the overuse of
resources is forbidden in the provision system, random ini-
tialization may result in unrealistic solutions. Furthermore,
the entire searching space will have 2n points if it is initialized
randomly without constraints, which will make it difficult
for the algorithm to find the optimal solutions. Thus, in our
approach, we divide the population into 2 parts. The chromo-
somes of the first part are initialized randomly to keep the
algorithm able to escape local optimums; in the second part,
we initialize the chromosomes with the resource consump-
tion constraint according to algorithm 2. We will prove that
the generative model G can generate all valid policies that
satisfies (6).
Lemma 1: Denote the policies generated by Algorithm 2

with Pg and the valid policies with P∗, then Pg = P∗.
Proof: To prove the equality of Pg and P∗, we only need

to prove that 1) ∀p ∈ Pg, p ∈ P∗ and 2) ∀p ∈ P∗, p ∈ Pg.
1) Given an arbitrary p ∈ PG, p = {y1, y2, . . . , yn},

the assignment order of yk can be described by collecting the
results of pop operation in line 9 of Algorithm 2 as Op =
{yo1 , yo2 . . . , yon}, then before the yoi is assigned with 0 or 1,
the policy with assigned {yo1 , yo2 . . . , yoi−1} are ensured to
be valid, because the available resource R in Algorithm 2
is still non-negative; It means that there are still resource
to be allocated for the remaining services. For service soi ,
if it is selected to be cached on edge server, the remaining
resource will be R = R − roi . If R ≤ 0, the allocation

Algorithm 2 Initialization for CDSA
Input:
{ri}n: the resource consumptions of services;
R: the resource capacity of target edge server;

Output:
y = {y1, y2, . . . , yn}: the cache policy of services;

1 S← {s1, s2, . . . , sn}
2 A← ∅
3 while S 6= ∅ do
4 if R ≤ 0 then
5 (sw, yw)← Pop(A)
6 yw← 1− yw
7 Push(A, (sw, yw))

8 sk ← RandomPop(S)
9 yk ← Random{0, 1}
10 if yk = 1 then
11 R← R− rk

12 Push(A, (sk , yk ))

13 return y

will be withdrawn in Line 5 of Algorithm 2. Finally, the left
resource R is still non-negative, and the policy p is generated.
In this way, we get p ∈ P∗.
2) Given an arbitrary p ∈ P∗, we can replay the gen-

erating process by replacing the RandomPop in Line 9 of
Algorithm. 2 by selecting specific services. Because p is the
valid policy, the remaining resource R must by non-negative
after adopting p, so it is valid for every step in the generation.
In this way, due to feasibility in replaying the generating
process in Algorithm 2, we have p ∈ Pg.
Consequently, we can prove that Pg = P∗. [Q.E.D]
The initialization algorithm has the runtime complexity of

O(|S|) and can be easily parallelized.
(2) Selection. During each successive generation, a por-

tion of the existing population is selected to breed a
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new generation. Individual solutions are selected through
a fitness-based process, where fitter solutions are typically
more likely to be selected. The fitness function of GA mea-
sures the quality of generated solution. In our approach,
as the objective is to minimize the ASRT with the con-
straint on resource consumption, the fitness function F can
be defined by:

F(y) =

{
1/

∑n

i=1
fi · t∗i (y), R ≥

∑n

i=1
ri · yi

0, otherwise
(7)

In this way, a solution with smaller ASRT will have larger
probability to be selected. By computing all the fitness value
of chromosomes of the population, the chromosomes y(k) are
chosen according to their probability by revolving a roulette
in which the k-th part occupies P(k) percentage of it. Here,
P(k) is the probability to select y(k) to produce new chromo-
somes for the next generation (the selecting process is liking
rotating a roulette shown in Fig. 7).

P(k) =
F(y(k))∑n
i=1 F(y(i))

(8)

FIGURE 7. Selecting chromosomes with a roulette.

(3) Crossover and Mutation. With chromosomes pre-
pared in a population, the following step is to generate the
next generation of solutions. For each new solution to be pro-
duced, a pair of ‘‘parent’’ genomes is selected with possibility
reflected in (8). Firstly, a new solution is created by sharing
many of the characteristics of these ‘‘parents’’. It means that
the selected ‘‘parents’’ exchange parts of their bits with each
other. On the other hand, the selected ‘‘parents’’ may choose
not to crossover, then the new ‘‘offspring’’ are identical to
themselves. We use the parameter crossover probability (pc)
to determine how new chromosomes are produced. The pro-
cess continues until a new population of solutions of appro-
priate size is generated. Secondly, mutations may occur on
the newborn populations. In the mutation, some genomes
of a chromosome may change with a low possibility pm
calledmutation probability. The mutation operation gives the
algorithm the ability to avoid premature convergence. At last,
several solutions with good fitness will stay unchanged as
elites in next generation to keep the convergence. This process
finally stops when converged after 5 consecutive iterations,
it results in solutions with appropriate fitness values. Choos-
ing the one with best fitness value from the final popula-
tion, the corresponding policy will be the suboptimal of the
problem.

The algorithm. 3 shows the process. Firstly, the solution
set or population is initialized with algorithm. 2 (Line 2–7).

Algorithm 3 Consumption-Driven Searching Algorithm,
CDSA
Input:

PopSize: the size of population;
rand%: the percentage for random initilization;
MaxEpoch: the maximum epoch number for

evolution;
Output:

y = {y1, y2, . . . , yn}: the cache policy of services;
1 Populationold ← ∅
2 while |Populationold | < PopSize do
3 if |Populationold | ≤ PopSize× rand% then
4 chromosome← RandInit()

5 else
6 chromosome← CDSAInit()

7 Add(Populationold , chromosome)

8 fitness← Evaluate(Populationold )
9 T ← 0
10 while !convergence or T < MaxEpoch do
11 T ← T + 1
12 Populationnew← ∅
13 Elitism← SelectElitism(Populationold ,Enum)
14 Add(Populationnew,Elitism)
15 while |Populationnew| < PopSize do
16 father ← Select(Populationold )
17 mother ← Select(Populationold )
18 child1← Crossover(father,mother, pc)
19 child2← Crossover(father,mother, pc)
20 child1← Mutate(child1, pm)
21 child2← Mutate(chile2, pm)
22 Add(Populationnew, child1)
23 Add(Populationnew, child2)

24 Populationold ← Populationnew
25 fitness← Evaluate(Populationold )

26 policy← SelectElitism(Populationold , 1)
27 return policy

Secondly, The fitness of solutions or chromosomes are calcu-
lated with the Evaluate() function described in (7) (Line 8).
Then for every generation, the algorithm will keep the
elitism with good fitness and select parent chromosomes
according to the probability in (8) and crossover them to
generate offspring. The offspring may mutate in every gen-
eration (Line 10–25). The algorithm stops when the solution
converges or the generation number exceedsMaxEpoch.

VI. EXPERIMENTS AND ANALYSIS
We have implemented the deploying algorithms in
Python 2.7.13 and our experiments are conducted on a
machine with Intel Xeon E5-2620 v4@2.10GHz × 2 CPU
and 64GB memory on CentOS 7 operation system. Due to
the lack of well adopted platforms and datasets, we generated
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FIGURE 8. Crossover and mutation in every epoch.

FIGURE 9. Some service composition graphs in dataset.

TABLE 3. Statistics of service composition graphs.

our experimental data in a synthetic way. In our experiment,
the most important data is the service composition graph
to reveal the relation among services. Fig.9 shows some
examples of service composition graphs generated to verify
our approach with different service sets. There are atomic
services and composite services in every service composition
graph. Different composite services can include the same
member service, and every two services in the same path
of the graph will not include each other. Table. 3 shows
the statistics information of the experiment data; here |S| is
the number of involved services, η is defined by 2|E|

|S|(|S|−1)

which describes the complexity of the graph, |Sc|% =
|Sc|
|S|

is the percentage of composite service, and Hs =
maxp∈path |p|
|S|

describes how complex the hierarchy of the composite can be.

A. EVALUATION
In this section, we conduct a series of experiments to evaluate
the effectiveness of our algorithm, and investigate the param-
eters that affect its performance.

Fig. 10 shows the changing of average service response
time during the execution of our algorithm (|S| = 10,
|Population| = 50, pc = 0.9, pm = 0.3). With the increasing
of generation, better cache policy with shorter the average
service response time is found.

FIGURE 10. Average service response time in different generations.

FIGURE 11. Comparison of average service response time.

Fig. 11 shows the ASRT of edge servers when adopting
policies generated by the enumeration algorithm and our
CDSA model. In this figure, we use a violin plot and a
line chart to exhibit the comparison of our algorithm and
the ground truth. In the violin plot, the width of each violin
shows the diversity of distribution, the thick vertical line
in violins shows the scale of data and the hollow circle in
violins shows the median of ASRT. In Fig. 11, the CDSA
runs 100 times for every given service composition graph
with specific service number to make a candidate solution
set (as the bodies of violins). We can find that the ASRT
varies with the increasing or service number and the CDSA
can find the optimal policy that support the request, like using
the policy generated by enumeration.

As the CDSA is an optimal evolutionary algorithm based
on the constraints of the service provision system, it is nec-
essary to evaluate the results derived from other evolution-
ary algorithms to check its performance. Fig.12 shows the
results of ASRT for the service provision system when given
30 services and their composition relations with different evo-
lutionary optimization algorithms. In our experiment, besides
the generic algorithm we also apply other evolutionary algo-
rithms like the particle-swarm optimization (PSO) algorithm
and simulated annealing (SA) algorithm to optimize the
ASRT of the system. In Table 4 it lists the details about results
when running these algorithms 300 times on a provision
system with 30 services (|S| = 14, |Population| = 100,
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FIGURE 12. Comparison of average service response time.

TABLE 4. Statistics of different approaches.

FIGURE 13. Comparison of average service response time.

pc = 0.9, pm = 0.2). From Fig.12 and Table 4, we can
find that all these algorithms can find the optimums of the
optimization problem. However, the accuracy of them are dif-
ferent. In algorithm GA, PSO and SA, the maximum bias can
be 17.08%, 18.73% and 13.48%, while the results of CDSA
is 8.72%. This comparison shows that even when algorithms
cannot find the optimum, the approximate solution of CDSA
will make a cache policy that have 8.72% more ASRT at last.
At the same time, the table shows that in the solution set of
different algorithms, 73.7% of the solutions in the results of
CDSA are equal to the optimum, while those of GA, PSO
and SA are 53.0%, 62.3% and 55.7%. This result shows
that CDSA has better robustness than others — we have a
probability of 73.7% to believe that the result of running
CDSA once is the optimal one. It is clear that CDSA performs
better than other evolutionary algorithm in this optimization
problem. The reason is because that it can always initialized
correctly with the resource constraint. With the reduction of
search space, it becomes easier for the algorithm to find the
optimums.

In Fig. 13, it shows how the parameter |Population| can
impact the generated polices of the algorithm. The CDSA is
executed 100 times to calculate the bias with ground truth.

Although there may be some random factors that impact the
result, the trend of the curves can give us some information
about the relation. We can find that the bias decreases with
the increasing of population size. It means that the algorithm
will have higher probability to get the global optimum. This
is because it can have more candidate solutions when the
population size increases.

FIGURE 14. Bias for different pc and pm.

Fig. 14 shows the impact of parameters pc and pm. From
this figure we can find that there is no universal pc and
pm that work well in every scenario. When |S| varies, the
best (pc, pm) may be different. However, they have something
in common to guide us to choose the parameters. The algo-
rithm is suggested to choose a large pc and a medium pm.
In this way, the algorithm will keep the capability to find
global optimums.

B. EFFICIENCY
Since the deployment of services on the cache of edge servers
will bring system suspending, it is of vital importance that
the efficiency of the deployment algorithm must be high.
Thus, in this part, we evaluate the time cost of different
algorithms. As the CDSA is made up of 3 parts — encod-
ing, selection and crossover/mutation, the time complexity
of it is O(|S|) + O((npopulation × |S|2 + |S|) × nepoch) =
O(npopulation × |S|2 × nepoch). In Fig.15, the curves show the
affect of these factors. Comparing the running time of the
algorithms and the ground truth in Fig.15(b)(d), we can find
that the time cost of enumeration algorithm can be as much
as 600s when the service number is only 25 as the points of
searching space increase exponentially. On the other hand,
the time cost of evolutionary algorithms stays less than 1.6s
evenwhen the service number is 50. According to the analysis
of the time complexity, the time cost increases linearly as
the npopulation and nepoch increases in Fig.15(a)(c). The result
shows that the CDSA is practical in implementation of the
service provision system.
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FIGURE 15. Running time of algorithms.

VII. CONCLUSION AND FUTURE WORK
This paper introduces the mobile edge computing model
and highlights the cache mechanism with composite ser-
vices in MEC models. Based on them, we propose a
consumption-driven searching algorithm to determine the
cache policy. With the help of the cache policy, appropriate
services are stored in the edge servers in proximity to support
users more better. However, in our model we assume that
the frequency or the popularity of services are investigated,
which means the policy of deployment shows high depen-
dency on history records, this assumption will result in cold
start problem. Besides this, we assume that the execution
times on edge server and cloud server are the same, though
the assumption will not affect the algorithm but more detailed
parameters can help to optimize our model. In future work,
we will turn to analyze the latent characteristics of services
to help solve this problem.
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