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ABSTRACT This work proposes an automated algorithm based on adaptive threshold and adaptive
neuro-fuzzy inference system (ANFIS) to couple with transcranial Doppler ultrasound in detecting cerebral
embolic signal (ES). Our main objective is to support practical stroke risk monitoring in interventional
procedures. Suspected ESs are captured in real time using adaptive thresholds based on 1) standard deviation,
to capture suspected ESs of long duration and 2) median absolute deviation, to capture the shorts, which
proved to be the key contribution of this paper. For classification using ANFIS, handcrafted feature extraction
is performed and the resulting features are classified as embolic or non-embolic. The effectiveness of the
classifier was evaluated over 19 subjects going under procedures generating emboli and compared with the
Euclidean matrix-based indexing high-dimensional model representation system. The ANFIS-based system
yielded in average of 91.5% sensitivity, 90.0% specificity, and 90.5% accuracy significantly outperformed
the HDMR system and the hybrid of HDMR system and the proposed features in both detection accuracy
[F(2,57) = 10623.05, p < 0.0001] and sensitivity [F(2,57) = 10572.12, p < 0.0001] at 90.0% specificity.
The system using adaptive threshold to capture suspected intervals and ANFIS to identify ES has promising
potential as a medical decision support in various clinical settings, e.g., real-time monitoring of cerebral
emboli in carotid artery stenting procedures.

INDEX TERMS Adaptive threshold, adaptive neuro-fuzzy inference system, adaptive wavelet packet
transform, embolic signal, ischemic stroke, microemboli, transcranial Doppler ultrasound.

I. INTRODUCTION
Every year, 15 million people worldwide suffer a stroke and
nearly 6 million people die [1]. Ischemic stroke, account-
able for 87% of all strokes, occurs when an embolus,
i.e., a loose clot or plaque fragment, occludes a blood vessel
and cuts off blood flow to the brain [2]. Transcranial Doppler

ultrasound (TCD), a non-invasive and affordable approach
(less than USD 100 per use) to measure blood flow velocity
in intracranial arteries can be used to detect the circulating
cerebral emboli bymonitoringmiddle cerebral artery (MCA),
allowing a fast diagnosis and treatment of embolus-related
risk of stroke, especially in surgical procedures [3]. TCD is
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a promising technique to enter clinical routine [4]. Medical
decisions can be made based on this investigation once the
significance of the technique is definite and undebatable [4].
The possibilities for guiding surgical technique to reduce the
frequency of emboli [5] and assessing new strategies to lessen
complications [6] will significantly benefit the patients.

However, limitations of the recent cerebral emboli detec-
tion using TCD still include insufficient real-time perfor-
mance and reliability of the detection result [7]. Embolic
signal (ES), a signal reflected from an embolus once
insonated with TCD, has similar characteristics to those of
artifacts (AF), usually caused by patient’s movements or
motion of the TCD probe [3]. ES and AF are difficult to
distinguish as both often appear as short-duration transient
signals (SDTSs) [7]–[9]. The questionable result therefore
needs to be verified by human experts, referred to as ‘‘Gold
Standard’’ [9], by analyzing audio and spectral characteristics
of the reflected signal [7], which are prone to human error and
inter-rater reliability issue [8], [10]. The need for an efficient
automated algorithm to distinguish ES is widely agreed and
that it will make an impactful contribution as a medical
decision support [9].

Most traditional ES detection techniques applied the
fast Fourier transform (FFT) and the short-time Fourier
transform (STFT) to detect ES and differentiate arti-
facts [8], [9], [11]. However, FFT can provide only frequency
information of the signal but not directly time informa-
tion, while STFT can provide both but not of good res-
olution at the same time and the resolution is fixed [8].
Recently, the discrete wavelet transform (DWT) has been
widely used to analyze SDTSs for its multi-resolution repre-
sentation of time-frequency analysis [12], [13]. Specifically,
DWT provides trade-off between time and frequency resolu-
tion, i.e., it has good time but poor frequency resolution at
high frequencies and has good frequency but poor time reso-
lution at low frequencies [12], [14]. Aydin et al. transformed
TCD signal using DWT to determine the features most accu-
rately representing ES and proposed an ES detection system
based on it [7]. Though, DWT has advantages for analyzing
small signals, such as some ESs, due to its high temporal
resolution at high frequency ranges, it lacks resolution in
the frequency range in which ES are mostly found [7], [10].
To overcome the limitation, the adaptive wavelet packet
transform (AWPT) has been used to achieve the information
located in high frequency band as it can provide good fre-
quency resolution for both high and low frequency ranges
and the resolution is not fixed [10], [12], [15]. Further, best
basis approach was applied for dimensionality reduction of
feature vector [12]. Then, the adaptive neuro-fuzzy inference
system (ANFIS), an adaptive classifier where the classifica-
tion rules can be adjusted in accordancewith the training data,
was used. The experimental results showed impressive results
with high sensitivity and specificity [10], [15].

The best claimed performance from the literature
(98% accuracy, 99% sensitivity), uses the Euclidean
matrix based indexing high dimensional model

representation (MIHDMR) to detect ES by constructing a
general polynomial model [16]. Though iterative training is
not needed for this method, training data were still required
to construct the model. The total number of training data was
calculated from a combination of prime factors, and the total
number of prime factors making the combination equals the
total number of parameters used, i.e., for seven parameters in
this study, 192 out of 300 episodes were randomly selected as
training dataset (3 × 2 × 2 × 2 × 2 × 2 × 2 = 192) and the
remaining 108 episodes were used as a testing dataset [16].
However, the construction of the model requires many steps
of data preparation [16] and would not suit a system with
an expanding set of data available for training [17]. That is,
the number of training data depends on the number of the
detection parameters and also on the combination of prime
factors; both always need to be calculated before training
since managing the balance of training and testing data is
crucial [16].

Though it is well known that an efficient automated
real-time application will essentially make cerebral ES detec-
tionwith TCD practical, and is specifically needed if intended
to serve as an emboli warning system in interventional
procedures [18]–[20], no systems have yet been unanimously
agreed to enter clinical routine [3]. We suggest that an
effective real-time detection of SDTS would enhance clinical
performance of TCDs. However, an automation of this part
of signal pre-processing had not been focused enough in
previous literature, e.g., algorithms in [9] and [11] cannot be
directly used to analyze the collected TCD signals; a manual
pre-processing unit is required to select SDTSs from specific
locations in the TCD signals prior to ES detection. And
though a candidate event detection unit with real-time ES
detection was proposed in [18], scanning for such event uses
a lot of overlapping information (75% overlapping window).

An interesting idea is to determine signal envelope and
develop the concept of adaptive threshold; a changing value
(a minimum of statistical values: Mean, SD, Median, and
Median Absolute Deviation) that automatically determines
whether the present frame of TCD signal is a SDTS, and
propose an accurate real-time cerebral microemboli detection
that is compatible with any TCD device. A similar idea of
statistical threshold and calculation using Mean and SD has
previously been explored based on pseudo-cyclo-stationary
properties of blood Doppler signals [21], but the method
of a fixed threshold for this energy detector could fail if
used with patients with high levels of variations in cardiac
rhythm. In this work, we’re determined to propose a solution
for this challenge of fluctuating signal with a threshold that
is adaptive to the individual’s fluctuating blood flow based
on Median Absolute Deviation (MAD) [22]. Specifically,
we developed further from our previous work, the algorithm
that continuously scans for ES using short window along
the duration of TCD signal [10], [15] to one that processes
further only when there is a suspected ES, achieved by
adaptive thresholds [17]. The adaptive threshold is applied to
capture suspected ESs, i.e., all ESs are initially singled out
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in real-time with some AFs and few normal (NR) intervals.
Ideally, the developed adaptive thresholds should be able
capture ESs of all durations, long and short. The Mean and
SD adaptive threshold is expected to be able to capture long
duration ESs, and the MAD the shorts. It should be noted
that, to be more precise, the term ‘‘AGC’’ in our previ-
ous reports [17], [23] should be substituted with ‘‘adaptive
threshold of windowed power signal’’ and the term ‘‘AGC
value’’ with ‘‘RMS value’’ [24].

In our previous report on detection system with ANFIS
as classifier [17], each captured ES suspect was transformed
using AWPT and fast Fourier transform (FFT) such that
feature extraction can be easily and efficiently performed,
resulting in a vector of seven best features for the sys-
tem determined with Sequential Feature Selection (SFS)
technique [25]. Extracted feature values were then classi-
fied as non-ES or ES using ANFIS [17]. The performance
of the proposed features and the proposed algorithm were
compared to those of [16], referred to as K’s features and
K’s algorithm. To achieve an efficient modeling process
and reliability of prediction results, a data partitioning tech-
nique, leave-one-subject-out cross validation (LOSOXV)was
employed. The results suggested that using a combination
of adaptive threshold, ANFIS, and seven proposed features
significantly outperforms a combination of K’s features and
K’s algorithm [16]. In this paper, the proposed algorithm is
explained in more detail. Moreover, we investigated further
the sole efficiency of the seven proposed features by assessing
their impact on the K’s algorithm. In addition, each proposed
feature is also discussed.

We also have investigated the potential of Deep Convolu-
tional Neural Network (CNN) in cerebral ES detection as it
can learn features while training and bypass the traditional
handcrafted feature extraction and selection process [23].
Though it took considerably much less time in development,
the CNN-based system, using spectrograms of the same TCD
signal dataset as inputs and the same experimental setup, did
not achieve better results than that of the ANFIS. We specu-
lated it was majorly due to insufficient training data for deep
learning and therefore we only propose the ANFIS-based
system in this paper.

The paper is organized as follows: Section II explains TCD
data preparation and suspected ES detection with adaptive
threshold process used in both proposed approaches. The
ANFIS-based system, the manual feature selection approach,
is detailed in Section III. Section IV explains the experimental
setup. Section V shows the experimental results. Section VI
discusses and concludes the paper. Section VII informs on the
on-going and future works.

II. REAL-TIME MICROEMBOLUS DETECTION ALGORITHM
As shown in Fig. 1, we propose an algorithm that receives
TCD signal directly from TCD device as audio format and
pre-processes the audio signal with DC offset removal and
high pass filter (HPF). The resulting signal is passed onto
the adaptive suspected ES detection step, which uses two

FIGURE 1. The proposed automated embolic signal detection.

adaptive thresholds to capture suspected ES intervals, while
also feedbacks signal parameters onto itself to adjust the
thresholds. The captured suspects proceed on to the feature
extraction step before classification in ANFIS approach.

A. TCD DATA
TCD signals were collected from 19 stroke patients under-
going procedures generating emboli; cerebral angiography
(six) [26], carotid artery stenting (CAS) (12) [27], and patent
foramen ovale (PFO) screening (one) [11], at Thammasat
University Hospital using Nicolet Pioneer TC8080 TCD
system with 2 MHz transducer and fixation headgear. The
included subjects of 14 men and five women were with clin-
ical presentation of stroke or transient ischemic attack (TIA),
for example, weakness, paresis, dysarthria, dysphagia, motor
aphasia, or with a history of stroke, such as, a known case of
stroke in the young. Their ages ranged from 16 to 88 with the
mean of 57. All had adequate acoustic windows (temporal)
for evaluation with TCD and were informed of the MCA
monitoring during interventional procedures prior to sign-
ing their consent form. The study was conducted under the
Thammasat University Human Research Ethics Committee
approval no. 023/2555.

The first six subjects (one PFO and five CAS) were
recorded per default setting in episodes of eight seconds
(6,349 Hz sampling frequency) and the resulting signals
were used to develop and assess the adaptive threshold algo-
rithm. With regards to generalization ability of the develop-
ing algorithm, the rest of the subjects (13; six angiograms
and seven CAS) were recorded for the whole session of
procedures, approximately one hour per session, directly
from the audio-out port of the TCD device with the same
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sampling frequency. The suspected ES collection from
19 subjects resulted in a total of 2,382 ESs, 1,051 AFs
and 4,391 NRs, unanimously verified by three specialists.
The intervals not met unanimous agreements were previ-
ously excluded from the study. Using the developed adap-
tive threshold algorithm, the captured suspected ES intervals
from all 19 subjects were used to train and evaluate the
ANFIS-based system.

B. SUSPECTED ES DETECTION WITH
ADAPTIVE THRESHOLDS
Each collected TCD signal contains both normal and abnor-
mal intervals, and these abnormal intervals could result from
either embolus or artifact, since both can have similar char-
acteristics of transient-like short duration. To firstly identify
suspected durations among the signals, the signals were first
fed into the suspected ES detection algorithm, which operates
with two adaptive thresholds.

As the signal proceeds, the value of each sample is
pre-processed by getting subtracted with the mean value of
its current buffer to remove its DC offset, and high-pass
filtered at 650 Hz cut-off frequency (600 Hz stop band
and −20 dB stop band magnitude) with 249th-order FIR
Chebyshev II [28] to filter out the low-frequency AF. The use
of 650 Hz cut-off frequency was derived from our investiga-
tion using this dataset based on a previous work exploring the
frequency range of solid emboli [9]. An RMS value is then
determined by

O[n] =

√√√√ 1
M

M−1∑
i=0

S2[n− i], (1)

where O[n] is an RMS value, S[n] is pre-processed input
value, and M is the moving average window (80 samples).
To attempt to achieve real-time signal processing, each buffer
takes over 1,024 samples, equivalent to 161.29 ms. Each
resulting RMS value is then defined whether it is a suspected
ES value by a threshold that is adaptive to the individual’s
fluctuating blood flow; especially in interventional proce-
dures, where the volume and pressure of the injected contrast
and the unstable heart rate contribute to the rise of RMS val-
ues. These values would falsely be identified as suspected ES
if a fixed threshold was used. Here, an initial threshold value
is set above the highest RMS value of the previously verified
normal (not ES or AF) initial buffer. The threshold to define
the next buffer’s RMS values is calculated as a summation of
the adaptivemean (µ) and standard deviation (SD; σ ) of RMS
values up to current. The SD coefficient, k1, is 4 to cover the
highest possible value of normal RMS signal (99.7% of nor-
mal distribution) and achieve 100% suspected ES detection
sensitivity with more than 50% specificity, i.e.,

ThSD = µ+ k1σ. (2)

The threshold is adapted by the changing values of RMS
mean and SD, which are both factored by r ; under the
condition that, if the current RMS value is identified as

suspected ES, r is 0.0001, but if identified as normal, r is 0.3.
This enables the adaptive threshold to closely keep up with
the rise of RMS signal and accurately identify SDTSs, i.e.,

µ = µp + r(µc − µp) (3)

and

σ =

√
σ 2
p + µ

2
p + r(σ 2

c − σ
2
p + µ

2
c − µ

2
p)− µ2, (4)

where µp and σp are the previous mean and SD, µc and σc
are the currentmean and SD, respectively. However, we found
that this threshold could effectively capture long suspected ES
intervals but not the short ones, which results from the mean
and SD’s sensitivity to SDTSs, e.g., the method usingmean±
3SD cannot distinguish 1,000 from the group of 1, 3, 3, 6, 8,
10, 10, and 1,000 [22]. To efficiently detect SDTSs among
a small number of samples and capture small ES, another
threshold using absolute deviation around the median (the
Median Absolute Deviation: MAD) [22] is used, which can
be expressed as

ThMAD = x̃ + k2MAD, (5)

where

MAD = median(|xi − x̃|) (6)

and x̃ is the median of the current buffer, while the MAD
coefficient, k2, is 8.5 from preliminary experiments (vary-
ing values of k2 from 5 to 10). The experiments with
k1 and k2 parameters were done on our dataset of approxi-
mately 14 hours in total duration, which we believed sufficed
for generalization ability. Therefore, to effectively capture
the wide variation of suspected ES, we manipulated both
threshold algorithms and determine from their minimum (see
Fig. 2. and Fig. 3), i.e., threshold can be expressed as

Threshold = min(ThSD,ThMAD). (7)

Based on six subjects, the proposed adaptive threshold algo-
rithm can detect suspected ES intervals with 100% sensitivity
and 76.19% specificity. It should be noted that the algo-
rithm was developed to achieve 100% sensitivity so that it
is able to capture all pre-verified ES at this step. Adaptive
thresholds could initially neglect a considerable amount of
the pre-verified non-ES (normal and AF intervals) and the
specificity was satisfactorily achieved at 76.19% as the false
positive detection could later be filtered out at the classifica-
tion model. The average duration (from ton to toff , see Fig. 3)
of the included suspected ES intervals was of 62.5 ms with
standard deviation of 47.9 ms.

III. ANFIS-BASED SYSTEM FOR
MICROEMBOLUS DETECTION
A. FEATURE EXTRACTION
Once a suspected ES is detected, important characteristics
information of it are extracted to construct features potentially
best representing embolic signal. The resulting feature vector
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FIGURE 2. Time domain and spectrogram of some suspected ES variation from a CAS subject the proposed suspected ES detection algorithm is able to
capture. Green and red lines respectively represent ThSD and ThMAD. The captured intervals are later classified as ES or non-ES at ANFIS.

FIGURE 3. Illustration of parameters: ThSD is the minimum among ThSD
and ThMAD and is therefore the threshold amplitude (Ath) determining
suspected ES intervals. Ath is then used to construct features
(RR and P2TR) later classified as ES or non-ES at ANFIS. Apk and tpk are
peak amplitude and its corresponding time. ton and toff indicate the
beginning and the end of the captured interval duration.

is then fed to the proposed classification model to determine
if the suspected ES is ES or non-ES.

In order for the proposed model to accurately identify
the type of the detected signal, it has to be trained with
the most proper and efficient features. To do so, we thor-
oughly reviewed features used in previous literature of similar
attempts [7], [10], [16], [29] to detect embolic signals with
TCD and tried implementing them with the proposed algo-
rithm through the help of various feature selection methods
(detailed in Section III-C) in pre-selecting the potentially
most suitable features for such problem. After multiple pre-
liminary experiments, several new features were developed to
test together with the pre-selected features from literature in
anticipation of their impact on the efficiency of themodel (see
Table 1). Such features were extracted from the pre-verified
ES intervals in time-frequency domain using AWPT with the

TABLE 1. List of candidate features.

best basis algorithm; namely, maximum and mean entropy
of leaf nodes, maximum and mean energy of leaf nodes,
maximum standard deviation (SD) of level-3 frequency index
(one to eight)’s WPT leaf node coefficients, frequency index
of such maximum SD, % similarity to the complete tree, and
% similarity to the low-frequency and high-frequency best
tree. While candidate features from literature were extracted
in three fashions; in time domain, in frequency domain with
FFT, and also in time-frequency domain using AWPT and
best basis.

B. ADAPTIVE WAVELET PACKET TRANSFORM (AWPT)
AWPT could benefit embolic signal detection in this study.
WPT generates a full decomposition tree. Unlike WT,
the detail signals will be further decomposed in WPT,
so the information located in a high frequency band can
be achieved [12], [14]. The wavelet packet coefficients show
the energy distribution of the signal in time and frequency,
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which could be used to represent the TCD signal. The wavelet
packet coefficients for each node (j, n) of a function x(t) can
be calculated as

xj,n(p) =
〈
x(t), ψj,n(t − 2jp)

〉
, (8)

where j is the scale parameter, n is the number of node at the
same scale j, and p is the position parameter.
Occasionally, the number of decomposition by WPT is

redundant. Therefore, we need to determine an optimal
decomposition scale based on the characteristics of the sig-
nal or the problems to be treated. The best tree can be
selected by using a convenient algorithm, namely the best
basis algorithm [30], which compares entropy of two chil-
dren nodes with their parent node to determine whether it is
worthwhile to further decompose. In this study, the Shannon
entropy-cost function [30] is used defined as

Entropy = −
∑
n

pn log pn, (9)

where

pn =
( xn√∑m

n=1 x
2
n

)
2 (10)

and xn is the nth coefficient generated by the WPT for n =
1, 2, . . . ,m.

C. FEATURE SELECTION
To determine the best features for the study, candidates from
literature and from our development were compared and
selected with methods such as sequential feature selection
(SFS) [25], sequential floating feature selection (SFFS) [31],
InfoGain [16], and manual selection [17]. Since our data
were very limited, for the sake of simplicity and com-
paribility, the concept of cross validation utilizing the test
set, was employed in this process. Through trial and error,
we found that features from the SFS method provided the
most promising classification results.

In this study, the sequential search was manipulated in for-
ward direction. All candidates were firstly compared against
each other on their ability to distinguish the pre-verified
ES in the proposed algorithm. The best performer was then
paired up with each of the rest of the candidates to compare
their performance in pairs. The best pair went on to add a
third candidate in the same fashion to compare in groups
of three, and so forth, until there was no improvement in
performance [25]. After multiple experiments, the best fea-
tures selected by SFS consisted of seven features (detailed in
Section III-D). It should be noted that we proposed two new
features which areMean Entropy of leaf nodes andMaximum
SD of frequency indexes’ leaf node coefficients.

D. THE SELECTED FEATURES
The best candidates selected by SFS consist of features from
literature as well as from our development, i.e.,

1) Maximum Peak to Threshold Ratio (P2TR) [7]

P2TR = 10 log
Apk
Ath

(dB) (11)

The ratio of the maximum peak amplitude to
the threshold amplitude, where Ath is the threshold
determined at the suspected ES detection process;
Threshold = min(ThSD,ThMAD), and Apk is the maxi-
mum peak amplitude above such threshold (see Fig. 3).

2) Rise rate (RR) [7]

RR =
P2TR
tpk − ton

(dB/ms) (12)

The ratio of P2TR to the duration between ton and tpk
determines the rise rate of the interval, where tpk is
the time at the maximum peak amplitude above the
threshold and ton is the time where the interval starts
to rise above the threshold (see Fig. 3).

3) Spectral rolloff [29]

m∑
f=1

S(f ) = C

WfL∑
f=1

S(f ) (13)

Spectral rolloff, m, is the frequency position, where
the respective spectral energy is equal to a certain
percentage, C , of the total energy of the interval [29].
S(f ) is the discrete Fourier transform (DFT) coefficient
of a frequency position f , m is the frequency position
satisfying the above equation, and WfL is the normal-
ization factor (length of the FFT) [29].

4) Spectral centroid of absolute magnitude [29]

fc =
2
Fs

∑WFL
f=1 f |S(f )|∑WFL
f=1 |S(f )|

(14)

This feature is also calculated from the magnitude
distribution of the spectrum. Spectral centroid, fc, is the
center of gravity of the spectrum, a simple measure
of spectral position [29], where Fs is the sampling fre-
quency acting as the overall normalization factor in this
equation.

5) Standard Deviation (SD) of frequency index 7’s leaf
node coefficients based on [10]

After decomposing the interval with WPT to the
third level and using the Shannon entropy cost function
to determine the best tree, we derive theWPT leaf node
coefficients of each frequency index (one to eight).
Calculating the SD of such and using SFS, we found
that the SD of the seventh frequency index and the
maximum SD among all frequency indexes were two
of the top performers.

6) Maximum SD of frequency index 1–8’s leaf node
coefficients

It is explained in 5).
7) Mean entropy of leaf nodes

H̄ =

∑L
l=1 H (l)
L

(15)
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The level-3 WPT leaf nodes coefficients could be
used to calculate another effective feature, the mean
entropy, where H̄ is mean entropy of leaf nodes, L is
total number of leaf nodes, and H (l) is entropy of leaf
node l th.

E. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
As discussed earlier, we believe that the characteristics of
ANFIS would efficiently work with TCD for ES classifica-
tion because the fuzzy rules can be constructed by using a
given input/output data set; the membership function param-
eters and the coefficients of the first order polynomial in
each constructed rule can be adjusted according to the data
they are modeling [32]. In this study, to generate the fuzzy
rules, we applied the subtractive clustering method [33], [34]
after experimenting with grid clustering [15] and FCM
clustering [10]; provided that it could significantly reduce
the complexity of the algorithm, which affects the pro-
cessing time, but still provided high detection accuracy as
in [10] and [15].

In subtractive clustering, the data is divided into homo-
geneous groups and only one particular rule is defined to
each group (details are as in [34]). The important factor is the
radius ra, which can affect the number of clusters. We found
that the best value of ra is 0.6, and the radius rb was chosen
as 1.5ra to avoid close clusters, resulting in two clusters of
fuzzy rules being produced.

Prior to using the ANFIS model, it was trained with a
hybrid learning method, including the gradient descent and
the least squares estimator (LSE) [32], for finding the opti-
mal parameters. The membership function parameters were
adjusted for finding the optimal point and the best fuzzy
rules were generated. These parameters were updated in
each training epoch until the maximum number of training
epochs or a least square error was reached [32]. In this study,
the maximum training epoch number was set at 500 and the
training error goal at 0. The initial step size was 0.01 with the
decrease rate of 0.9 and the increase rate of 1.1.

F. LEAVE-ONE-SUBJECT-OUT CROSS
VALIDATION (LOSOXV)
To obtain a predictive model, its algorithm has to be trained
to achieve the best weights and tested with such weights. The
best weights can be determined from its ROC curve at the best
sensitivity and specificity. For a model to make efficient pre-
dictions on new datasets, it has to be improved and assessed
on its predictive performance with techniques such as cross
validation (CV), where dataset was randomly partitioned into
two groups for each round of algorithm training and testing.

However, applying such CV in this study by rotating test
intervals regardless of their source subject could allow the
model to overfit; it could recognize patterns possibly hidden
in intervals of the test subject if some of their intervals were
trained earlier, and cause the falsely high accuracy of test
result. Instead, we manipulated the LOSOXV approach [35]
to rotate the test subject in order to avoid such bias and

achieve a more realistic outcome. Partitioning was carried
out over subjects in place of randomized intervals; a set of
intervals from one subject was considered one fold, the test
set was rotated such that each subject was used only in testing,
not in training, for each round of LOSOXV. To determine
overall performance, weighted average was applied as each
fold did not contain the same proportion of ES to non-ES.

IV. EXPERIMENTAL SETUP
The aims of this study are to compare the efficiency of
our developed algorithm to that of [16], which outperformed
29 various well-known methods in literature including near-
est neighbour based methods, decision tree based methods,
regression methods, and fuzzy logic, etc. [16], and to eval-
uate the impact of our set of proposed features over such
algorithm.

The study comprised of three experiments. First, to estab-
lish baseline results, the K’s algorithm was implemented
with the K’s algorithm’s features (K’s features) [16], namely,
fs/Fs, T 2

s , B
2
s/Fs, TP2TR, ts, P2TR, and RR, where Fs is the

sampling frequency,RR is the rise rate, TP2TR shows the total
power to the threshold ratio, P2TR is the scale with maximum
peak to threshold ratio, T 2

s stands for the time spreading term,
B2s is corresponding to the frequency spreading term, ts is the
average time of the signal, and fs is the average frequency
of the signal, using our dataset previously detailed. Second,
our proposed features based on those of [7]and [16], and
SFS (see Section III-D) were tested on our proposed ANFIS
algorithm to validate the efficiency of such combination.
Lastly, the K’s algorithm was tested with the proposed fea-
tures to determinewhether the proposed features could signif-
icantly enhance its detection performance and to compare the
result to our proposed system. The dataset was prepared into
training and testing sets using LOSOXV per Section III-F.
Data from the first six subjects (five CAS, one PFO) were
fixed as training data in the LOSOXV process since their
short sessions (8 s) and low ratio of ES per subject did not
suit testing a model aimed to serve the continuous clinical
monitoring of TCD.

In training step, for both K’s algorithm experiments,
the LOSOXV was performed in accordance with the algo-
rithm’s condition; several data from the training set were
excluded uniformly at random to meet a proper number of
training data that satisfied the prime factor combination con-
structing the algorithm’s index space [16]. For the proposed
algorithm experiment, data from the training set were reduced
in order to obtain the fastest training process possible that still
enabled the model to result with the highest detection sen-
sitivity at an acceptable specificity of more than 90% (false
positive detection less than 10%), aiming towards our goal of
clinical application. To do so, several non-ES (NR and AF)
data were excluded uniformly at random from the training
set and the amount of ES was maintained the same to meet a
proper proportion of training ES to non-ES, so that the model
could achieve such accuracy with the least generalization
error.
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The LOSOXVwas performed 13 rounds (six fixed training
subjects, 13 rotating test subjects) to determine overall sensi-
tivity, specificity, and accuracy for each experiment. As dif-
ferent randomization in data preparation yielded different test
result, all three experiments were carried out with such steps
20 times to determine average sensitivity, specificity, and
accuracy, respectively.

The same ANFIS-based experiment with the two new fea-
tures excluded was also performed to investigate the effect of
the two new features.

V. EXPERIMENTAL RESULTS
Based on 90% detection specificity for all experiments as
discussed earlier, the baseline experiment founded with K’s
algorithm and K’s features resulted in 67.9% average detec-
tion sensitivity (SD = 0.6%) and 83.5% average detection
accuracy (SD = 0.2%). Our proposed algorithm and features
yielded an average sensitivity of 91.5% (SD = 0.6%) and
an average accuracy of 90.5% (SD = 0.2%), higher than
that of the baseline experiment 23.6% and 7%, respectively.
Determining the impact of our proposed features over K’s
algorithm, the experiment with our proposed features yielded
an average sensitivity of 86.7% (SD = 0.4%) and an average
accuracy of 89.1% (SD = 0.1%), higher than that of the K’s
features 18.8% and 5.6%, respectively.

FIGURE 4. Comparison of ROC curves. The ANFIS-based method
outperforms the K’s method. Higher sensitivity is achieved at
90% specificity. Note that several averaging steps done over the
results could cause the smoothness of the ROC curves.

Running ANOVA, where n is the number of times each
experiment was performed (n = 20), not the number of
subjects, the proposed algorithm and features significantly
outperformed the other two experiments in both detection
accuracy [F(2,57) = 10623.05, p < 0.0001] and sensitivity
[F(2,57) = 10572.12, p < 0.0001] at 90.0% specificity (see
Fig. 4 and Table 2).

The results of the same ANFIS-based experiment investi-
gating the effect of the two new features proposed showed

TABLE 2. Average efficiency of ANFIS-based system, HDMR system (K’s),
and hybrid system; K’s algorithm with proposed features.

that, without the two new features, the average AUC dropped
from 96.58 ± 0.19% to 96.26 ± 0.17%.

VI. DISCUSSION AND CONCLUSION
An accurate real-time cerebral microemboli detection sys-
tem has been developed to couple with any TCD model for
clinical monitoring of ES. An algorithm to detect suspected
embolic intervals using adaptive threshold and an approach
to classify ESs using ANFIS have been proposed.

The performance was compared to Euclidean
MI-HDMR (K’s), the latest and most efficient method to
date [16]. The impact of our proposed features was also deter-
mined over K’s algorithm to assess if they could significantly
enhance its detection performance. The proposed system
using adaptive thresholds, ANFIS, and a set of features, partly
derived from AWPT and selected by SFS, obtained 90.5%
accuracy and 91.5% sensitivity at 90.0% specificity, which
significantly outperformed the experiments on K’s method
in both detection sensitivity (p < 0.01 and accuracy (p <
0.01). Further, the proposed set of features manifested its own
effectiveness by enhancing the K’s algorithm’s performance
by 18.8% in sensitivity and 5.6% in accuracy. Two key
contributions accounted for the success of the development
were 1) the adaptive threshold approach that was manipulated
in the detection of suspected ES and made possible real-time
ES detection 2) the set of most effective features to work with
the developedmodel in obtaining the least classification error.

The suspected ES detection part was designed to keep only
the suspected ES for later operation and neglect the positive
non-ES at this step, which immensely reduces the informa-
tion to be fed further onto the classification process, and
hence the fast processing time and possible online detection.
Moreover, it was developed to capture all pre-verified ES
regardless of their duration (100% sensitivity); the use of
adaptive thresholds could swiftly capture the dynamic-length
nature of suspected ES and keep all possible ES. The K’s
and A’s algorithms [7], on the other hand, used segments
of fixed duration from pre-verified signals in the modeling
process (1, 5, and 5 s for training, validating, and testing,
respectively). The width of the RMS moving average win-
dow is narrow enough to capture the transient occurrence
of an ES and wide enough to gather sufficient characteris-
tics information of it for the modeling of classifier. Further,
the wide variation of ES could be accurately determined with
two adaptive thresholds developed based on SD and Median.
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Manipulating such algorithm greatly comes to benefit in
operating room, where patients’ blood flow fluctuates during
procedures. Especially when contrast medium injection is
required to derive diagnostic images, the surge of blood flow
could falsely be identified as ES intervals by available algo-
rithms of current TCD devices. By means of using this statis-
tical approach, only SDTSs among the resulting continuous
rise of RMS values will be distinguished as suspected ES.
It should be emphasized here that our algorithm distinctively
solves this problem in clinical situations and offers a more
practical and accurate approach to clinical monitoring of
brain emboli, which could make a concrete difference to the
market.

As for the classification features, they were determined
from a thorough feature selection process. Only seven fea-
tures were chosen from the SFS after exploring and experi-
menting with various features and feature selection methods.
As our intention was to reduce the model complexity and uti-
lize the lowest resource possible, the least number of features
that could still enable the model to achieve the highest detec-
tion accuracy was required. This condition aligned with the
direction of the K’s algorithm development, where initially
only eight features were considered over 12 candidates [16].
It is interesting to investigate further why features from SFS
yielded better results than those from InfoGain and SFFS.
An additional experiment was also performed to investi-
gate the effect of the two new features proposed. With-
out the new features, the same ANFIS-based experiment
using only the selected five features from literature resulted
approximately 0.32% less in average AUC (96.58 ± 0.19%
compared to 96.26 ± 0.17%). Further, in an investigation
exploring the advantage of using ANFIS instead of other
well-known classifiers, experiments using SVM and ANN
yielded 95.85±0.1% and 96.20 ± 0.2% in average AUC,
respectively, lower than that using ANFIS, which is 96.58 ±
0.19%. The result shows SVM to be a simpler alternative to
ANFIS when accompanied with our seven selected features.

The K’s algorithm presented a few drawbacks while being
implemented with our dataset in the experiments. The con-
dition of prime factor combination caused some data from
the set to be cut off in each round of training and testing,
which is not practical for the modeling process of algorithm
aiming to serve growing clinical data. It would always raise
the question of which data to cut off and by how, and the
valuable dataset could not be wholly utilized. In addition,
the transformation matrix used resource in proportion to the
training data, which is also not practical for clinical use. Our
proposed algorithm only requires resource to store informa-
tion of means and variances of the Gaussian membership
functions—a lot lower in number than that of the K’s when
the same amount of features are used. Despite such limita-
tions, the K’s algorithm has an advantage in deriving only a
polynomial equation after transformation, while our proposed
algorithm requires processing data throughmany fuzzy layers
of ANFIS, which results in amore complexmodel.Moreover,
the poorest performance of the baseline experiment could

probably result from using a different dataset than that from
the literature [16]. We’ve developed a system that showed
better performance than that of the K’s, but this is entirely
based on our dataset. Additionally, in this work, the K’s is
not perceived as a standard of the field, but rather a state-of-
the-art, which should always be compared to newer methods
to promote further contribution.

Nevertheless, there are more configurations, which helped
made the development successful and are also worth men-
tioning. One is the ANFIS based classification model, which
based on the specificity of 90% (91.5% sensitivity and
90.5% accuracy) rather than the highest accuracy of 92.11%
(84.08% sensitivity and 95.45% specificity) at ROC curve.
The 10% false positive detection was traded off for a higher
sensitivity, which is more crucial in this study as the proposed
system was developed for clinical use. Another is the use of
LOSOXV, which increased the volume of training and testing
data in the modeling process. The method prevented the
model from bias and overfitting by rotating the test subject,
enabling a robust and realistic, yet highly accurate prediction.

With all contributions combined, clinical use effectiveness
could be achieved with such high detection performance
and real-time detection factor of less than 1, i.e., processing
for an ES (from pre-processing to classification) takes less
than 1 buffer (1,024 samples) or approximately only 161 ms.

In conclusion, since interventional procedures such as ones
in this study (cerebral angiogram and carotid artery stenting)
inevitably cause emboli, the monitoring procedure, as an
add-on protocol, could identify probable occasions of recur-
rent stroke from embolism and support medical decisions,
e.g., the management of anti-clotting medication during and
after procedures. It could also help assess the likelihood of
emboli formation in each step of interventional procedures.
In this study, we found that the steps of catheter insertion and
radiopaque injection caused the highest amount of emboli.
Interventionists could consider preventive measures, such as,
increasing precaution during performing such steps, deter-
mining the more proper amount of medication in each step,
identifying the probable sites of recurrent stroke, etc.

VII. ON-GOING AND FUTURE WORK
The proposed algorithm has already been used with a com-
mercial TCD in clinical environment at Thammasat Univer-
sity Hospital, Thailand to collect training data and determine
amount of ES possibly formed during angiography and CAS
procedures (Thailand patent pending, filing no. 1601001107,
to be made affordable under USD 118 per use). Interven-
tionists could utilize the system to optimize the treatment
benefits and support clinical decisions in reducing the fre-
quency of emboli formation, and therefore, the rate of dis-
ability and death, during and after the procedures. We are
also studying the correlation of the detection results and
the treatments that patients receive post interventional pro-
cedures to evaluate the system’s possibility and validity in
24-hour post-interventional monitoring and treatment plan
decision support. We will look further into statistical analysis
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of cerebral ES and continue the development of more robust
adaptive thresholds for our suspected ES detection algorithm.

Moreover, we are also investigating the use of color (RGB)
spectrogram to assess the benefit over grayscale as input to
the CNN. As our TCD signal database is growing, we antic-
ipate that together with our developing CNN algorithm,
we could come up with a much better outcome than those
of our previous works. A wearable application is one of
our determined future works. The learnable features of the
CNNs, as opposed to the fixed features of the ANFIS-based
system, will well serve the demographic differentials of pop-
ulation at risk of stroke, e.g., patients with atrial fibrillation.
A holistic mobile medical application for early detection
and management of NCDs (Non-communicable diseases,
e.g., diabetes mellitus, hypertension, stroke, and kidney dis-
ease) is included in our long-term plan to serve aging society.
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