
Received August 11, 2018, accepted September 12, 2018, date of publication September 20, 2018, date of current version October 17, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2871514

Physical Layer Authentication Enhancement
Using a Gaussian Mixture Model
XIAOYING QIU 1, (Student Member, IEEE), TING JIANG1, SHENG WU1, (Member, IEEE),
AND MONSON HAYES2, (Life Fellow, IEEE)
1Key Laboratory of Universal Wireless Communication, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China
2Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA 22030, USA

Corresponding author: Xiaoying Qiu (qxy@bupt.edu.cn)

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Project 61671075 and in part by the
Major Program of National Natural Science Foundation of China under Grant 61631003.

ABSTRACT Wireless networks strive to integrate information technology into every corner of the world.
This openness of radio propagation is one reason why holistic wireless security mechanisms only rarely
enter the picture. In this paper, we propose a physical (PHY)-layer security authentication scheme that takes
advantage of channel randomness to detect spoofing attacks in wireless networks. Unlike most existing
authentication techniques that rely on comparing message information between the legitimate user and
potential spoofer, our proposed authentication scheme uses a Gaussian mixture model (GMM) to detect
spoofing attackers. Probabilistic models of different transmitters are used to cluster messages. Furthermore,
a 2-D feature measure space is exploited to preprocess the channel information. Training data for a spoofer
operating through an unknown channel, a pseudo adversary model is developed to enhance the spoofing
detection performance. Monte Carlo simulations are used to evaluate the detection performance of the
GMM-based PHY-layer authentication scheme. The results show that the probability of detecting a spoofer
is higher than that obtained using similar approaches.

INDEX TERMS PHY-layer authentication, Gaussian mixture model, spoofing detection, wireless security.

I. INTRODUCTION
While open radio propagation channels allow for ‘‘anybody,
anywhere, anytime’’ wireless access, they are subject to secu-
rity vulnerabilities [1]. Wireless communication systems, for
example, are prone to spoofing attacks where an adversary
masquerades as a legitimate device. In order to secure such
communication channels, signal authentication is necessary
before a received message is processed. Although conven-
tional upper-layer security mechanisms have been proposed
to foil spoofer attacks, they typically require significant
resources and computational power. Digital key distribution
andmanagement in dynamic networks is difficult, and current
security protocols do not take into account the novel avenues
for intrusion. When physical layer attributes are not consid-
ered, it becomes more difficult to detect an intruder using
unauthorized digital keys because the device’s identification
and access rights are only verified through security keys [2].

Physical (PHY)-layer authentication may be used to com-
plement security-based approaches by exploiting the dynamic
characteristics of the physical layer. Since PHY-layer authen-
tication takes advantage of the unique communication

environment of a device, it is more difficult for the spoofer
to masquerade as the authentic device. According to the
well-known Jakes uniform scattering model, received signals
are rapidly decorrelated over a distance of approximately half
a wavelength [3]. As a result of this decorrelation, it is pos-
sible for a receiver to authenticate a sender from the received
channel information vector. Traditional cryptography-based
authentication is ill-suited for wireless networks where many
terminals have limited energy and computing power, such
as cellular Internet of Things networks [4] and body area
networks [5]. However, PHY-layer authentication provides an
effective solution to simplify authenticationwithout incurring
additional computational overhead by taking advantage of the
signatures of the wireless channels.

There are three general approaches for PHY-layer authen-
tication: waveform embedding [6], hardware-based authen-
tication [7], and channel-based authentication [8], [9]. In
this paper, we introduce a new approach for channel-based
authentication that is based on a Gaussian Mixture Model
(GMM) for environment-dependent radiometric features. The
following section provides a brief overview of previous
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approaches to channel-based authentication and an overview
of our approach for PHY-layer authentication.

II. BACKGROUND
Over the past several years, there has been a considerable
amount of research on PHY-layer authentication [9]–[15].
Received signal strengths [2], channel impulse responses [14]
and channel state information [3] have been used as the fin-
gerprints of wireless channels to detect spoofing attacks. The
feasibility of PHY-layer spoofing detection based on sparse
signal processing has also been demonstrated in [11]–[13].
Feature extraction and fusion were used to make a distinction
between legitimate transmitters and spoofers. The prepro-
cessing of channel information reinforces the characteristics
of the signal. Signal processing and feature recogni-
tion, if done successfully, will greatly enhance PHY-layer
authentication. A channel-based PHY-layer authentication
method was developed in [14] that quantizes the chan-
nel amplitude and path delay into one-bit features, exploit-
ing the spatial independence of these features for different
transmitter-receiver pairs. A privacy-preserving proximity-
based security system was also proposed for mobile users
that exploits the packet arrival time and the received sig-
nal strengths [28]. In [3] power spectral densities have also
been used to distinguish different users, thereby denying
access to potential attackers. In addition, multiple antennas
were exploited to provide further authentication security for
wireless systems and to reduce the spoofing detection error
rate [15], [16].

Although many channel-based authentication approaches
show promising results, they typically rely on a simple thresh-
old to detect a spoofer, and it is a challenge for a device to
flexibly and efficiently choose a threshold for effective secu-
rity. Moreover, the communication environment and node
mobility are factors that significantly affect the test threshold.
A PHY-layer spoofing detection method has been proposed
that is based on reinforcement learning to achieve an opti-
mal test threshold [17]. The interaction between a legiti-
mate receiver and a spoofing transmitter is formulated as
a zero-sum PHY-layer authentication game. Learning-based
spoofer detection developed in [23] improves the secure
capacity in the presence of smart jamming. In [24], model
learning based on tree structure is proposed to increase the
learning speed in stochastic environments, and in [18] a
classification algorithm based on extreme machine learning
is presented. Machine learning is a powerful mathematical
tool that enables PHY-layer authentication without requiring
a fixed threshold, and there has been a variety of important
studies on the use of machine learning techniques in wireless
network intrusion detection [19], [20].

In this paper, we propose a Gaussian Mixture Model
(GMM)-based PHY-layer authentication enhancement
scheme that exploits the characteristics of the channel to
detect a spoofer at an intended receiver. Although a Gaussian
Mixture Model for spoofer detection using channel estimates
has been considered before [21], channel estimation errors

significantly impact the reliability of this approach. There-
fore, in order to mitigate the effects of these estimation
errors, we base our approach on pre-processing the channel
variations along with using multi-dimensional features. One
of the major differences between the proposed scheme and
existing work [17]–[19], [21] is that the characteristics of
the radio channels for the legitimate user and a pseudo
adversary are exploited and modeled mathematically. More
specifically, in the following a PHY-layer authentication
scheme is proposed that exploits channel state information
to detect spoofing attacks and formulate the authentication
process between the intended receiver and the transmitter as
a hypothesis test problem. In contrast to previous work using
channel information [19], [21], the PHY-layer authentication
problem is formulated as a comparison to determine whether
random signals have similar two-dimensional feature vec-
tors. A Gaussian Mixture Model is used in the PHY-layer
authentication method to measure the similarity of channel
information vectors and to determine an output target label.
A soft decision is used to make a decision on received
data packets from which transmitter. In order to model the
channel of the potential spoofer, a pseudo adversary model
is proposed. The Gaussian Mixture Model for legitimate
user and pseudo adversary is established via learning. The
proposed probabilistic model requires a small amount of
training data from legitimate users and can achieve high
detection accuracy.

The rest of the paper is organized as follows. In Section III,
we present the system model and formulate the problem
that is to be solved. In Section IV, the feature vector that
is used to discriminate between the legitimate user and the
spoofer is defined along with the pseudo adversary model.
In Section V, the GMM-based PHY-layer authentication for
spoofing detection is presented. In Section VI, simulations
are given that illustrate the proposed GMM-based authen-
tication approach via simulations. Finally, in Section VII,
conclusions are presented.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
The basic channel model is shown in Fig. 1. In this model,
there are three different parties: a legitimate transmitter Alice,
an intended receiver Bob, and a malicious transmitter Eve
who masquerades as Alice with a fake MAC address. Based
on information determined about the channel, the goal is to
authenticate a message that is received by Bob and determine
whether or not it is from Alice. In our approach, it is assumed
that the initial transmission from Alice to Bob has been
authenticated prior to Eve’s arrival [1]. This may be done
using a standard high-layer protocol that confirms that the
first message is sent by Alice [6]. It is also assumed that
the spoofing adversary knows when to begin sending false
messages to Bob.

The channel state information that is used for authen-
tication is estimated from the pilot or preamble symbols.
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FIGURE 1. Illustration of a PHY-layer authentication scheme consisting of
the legitimate transmitter Alice, the spoofing attacker Eve, and the
intended receiver Bob.

Let HA(k) denote the channel state information vector for
the channel between Alice and Bob at time k , which may be
written as

HA(k) = [hA,0(k), hA,1(k), · · · , hA,M−1(k)] (1)

whereM is the number of subcarrier frequency samples, and
hA,m(k) are the samples. Similarly, for the channel between
Eve and Bob, the channel state information at time k will be
denoted by HE (k).

When measuring the channel vector from the received
symbols, the measurements will generally contain estimation
errors. Therefore, the measured channel vector is modeled as

HA(k) = HA(k)+1(k) (2)

where HA(k) is the ‘‘true’’ channel vector and 1(k) is the
channel estimation error, which is assumed to be a vector of
uncorrelated complex zero-mean Gaussian random variables
with variance σ 2

1 [17], [29]. The true channelHA(k), is mod-
eled as a Rayleigh fading channel,

HA(k) ∼ CN (0, σ 2
AI) (3)

where CN (·) is a complex Gaussian random vector and σ 2
A

is the average power gain of Alice’s channel [15]. Therefore,
the estimated channel vector is

HA(k) ∼ CN (0, (σ 2
A + σ

2
1)I) (4)

When Bob receives a new message at time k+1, the chan-
nel information vector for this transmission, HT (k + 1),
is estimated. Given HT (k + 1), Bob must then determine
whether the received message is from Alice or from Eve.
In the PHY-layer authentication approach that is proposed,
the following assumptions are made:
Assumption 1:Alice’s and Eve’s channels are uncorrelated.
This assumption is based on the property that in an envi-

ronment full of scatterers and reflectors, the channel response
decorrelates rapidly as the terminal positions change by the
order of a wavelength or more [22]. For 5G wireless net-
works, this corresponds to 6 cm. Since, in any practical com-
munication environment the spoofer will not be very close
to the legitimate user (in units of wavelength), then the two

channel information vectors will be uncorrelated. Therefore,
it is assumed that HA(k) and HE (k) are uncorrelated.
Assumption 2: The channel information vector for two

successive transmissions (packets) from the same transmitter
are correlated.

In a typical cellular system such as 3G networks, the chan-
nel coherence time is on the order of tens of millisec-
onds [30], and in wireless body area networks the average
channel coherence time is 48 milliseconds when walking
and 31 milliseconds when running [31]. With a time slot
of duration 1.67 milliseconds in the 3G system standard,
multiple time slots can be grouped together to form a frame
with a duration consistent with the coherence time of the
network [30]. Therefore, it is reasonable to assume thatHA(k)
andHA(k+1) will change little from one time slot to the next
over a frame, and will therefore be correlated throughout the
frame. In the case of static channels and static transmitters,
HA(k + 1) = HA(k).

B. PROBLEM FORMULATION
Given the channel information vector HA(k) at time k that
corresponds to a transmission from Alice to Bob, with the
next transmission the channel information vector is esti-
mated, HT (k + 1), and the goal is to determine whether
HT (k + 1) corresponds to a transmission from Alice or Eve.
In other words, Bob seeks to authenticate the identity of the
transmitter based on the characteristics of the channel. Given
the two assumptions above, the PHY-layer authentication
process may be formulated as a hypothesis test problem as
follows:

H0 : HT (k + 1) = HA(k + 1) (5)

H1 : HT (k + 1) = HE (k + 1) (6)

where the null hypothesis H0 is that the message belongs to
Alice, and the alternative hypothesis H1 is that the received
message comes from the adversary, i.e., there is a spoofing
attacker trying to send messages masquerading as Alice.
Since Alice and Eve use different channels, then HA(k +
1) 6= HE (k+1) and the hypothesis test involves determining
whether HT (k + 1), is closer to HA(k + 1) or to HE (k + 1).
In order to measure the similarity between a pair of channels,
a two-dimensional feature vector described in the following
section is used to construct the test statistics that will be used
to solve the hypothesis test problem.

IV. FEATURE EXTRACTION
In this section, a two-dimensional feature vector is defined
that is used for PHY-layer authentication. A pseudo adver-
sary model for the spoofer is also presented, which will be
important for the authentication approach that is proposed.

A. TWO-DIMENSIONAL FEATURE SPACE
Given the channel information vector HA(k) for a legitimate
transmitter at time k , and HT (k + 1) from an unknown
transmitter at time k + 1, two features are measured that will
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TABLE 1. Summary of important symbols.

be used for authentication. The first feature is the Euclidean
distance between the vectors HA(k) and HT (k + 1),

DT (k) = ‖HA(k)−HT (k + 1)‖ (7)

and the second is the sample Pearson correlation coefficient,

RT (k)=

〈
HA(k)−HA(k),HT (k+1)−HT (k+1)

〉∥∥HA(k)−HA(k)
∥∥ ∥∥HT (k+1)−HT (k+1)

∥∥ (8)

where HA(k) and HT (k + 1) are the means of HA(k)
and HT (k + 1), respectively. These two features form a
two-dimensional feature vector,

FT (HA(k),HT (k + 1)) = [DT (k), RT (k)] . (9)

that will be used to make a decision on whether HT (k + 1)
corresponds to a transmission from Alice or Eve.

B. CHANNEL VARIATIONS
A key to the success in any machine learning algorithm is
the acquisition of training data. With a channel-based PHY-
layer authentication method, training data is necessary to
develop channel models for the legitimate user as well as
for a potential spoofer. For legitimate users, training data
is relatively easy to obtain since the channel information
obtained in the previous frame may be used [17]. According
to Assumption 2, the channel information between Alice and

Bob is correlated for successive pilots tones. In the ideal case
of a static channel, HA(k + 1) will be constant,

HA(k + 1) = HA(k) (10)

but in real-world applications, the channel will not be static
due to the communication environment and node mobility. To
account for this, the channel model is [18]

HA(k + 1) = ςHA(k)+
√
(1− ς2)σ 2

Aw(k) (11)

where w(k) is a zero-mean unit variance complex Gaussian
random vector that is independent of HA(k). The parameter
ς is the correlation coefficient, which is a function of the RF
wavelength λ, the speed of the terminal, v, and the symbol
duration t . More specifically,

ς = J0(2πvt/λ) (12)

where J0 is a zeroth-order Bessel function of the first
kind [22]. Note that when Alice moves slowly, vt/λ ≈ 0
and ς ≈ 1, and the channel is approximately constant. It is
clear that the amount of mobility in Alice is reflected in the
value of ς , i.e., the faster that Alice moves the smaller that ς
becomes.

Since the location of the spoofing attacker is unknown, and
there is no information available about the spoofer’s channel,
then a PHY-layer classifier would make a decision as to
whetherHT (k+1) is from Alice or Eve based on how similar
it is to HA(k + 1). Therefore, to improve the performance
of the PHY-layer classifier, a pseudo adversary is used to
generate training samples for the spoofer’s channel [18].
More specifically, the channel of a pseudo adversary at time
k + 1, denoted by HP

E (k + 1), is modeled as

HP
E (k + 1) ∼ CN (0, σ 2

EI) (13)

where it is assumed that HP
E (k + 1) is independent of

HA(k) [15]. Equation (13) is then used to generate
two-dimensional channel features of the spoofing attacker.

Since it is assumed that that HA(k) and HP
E (k + 1) are

independent Gaussian random vectors, then the statistic

DPE (k) =
∥∥∥HA(k)−H

P
E (k + 1)

∥∥∥ (14)

has a chi distribution withM degrees of freedom [18]. There-
fore, it follows that the expected value of DPE (k) is

E
{
DPE (k)

}
=
√
2
0((M + 1)/2)
0(M/2)

(15)

where 0(·) is the Gamma function, and the variance is

var
{
DPE (k)

}
= M − E2

{
DPE (k)

}
(16)

For the sample Pearson correlation coefficient between
HA(k) and H

P
E (k + 1), the density function for RPE (k) can be

written as [18]

f (RPE (k)) = α
[
1− (RPE (k))

2
](M−4)/2

(17)
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FIGURE 2. Training samples of the channel feature vector for the legitimate and pseudo adversary channels for three different correlation
coefficients with σ2

A = 1 and σ2
E = 0.8. (a) Channel data for ς = 0.1. (b) Channel data for ς = 0.5. (c) Channel data for ς = 0.9.

where α is a constant. Note that since RPE (k) is bounded by
one,

−1 ≤ RPE (k) ≤ 1, (18)

and f (RPE (k)) is symmetric, then it follows that the expected
value of RPE (k) is zero,

E
{
RPE (k)

}
= 0 (19)

It may be shown [18] that the variance of RPE (k) is

var
{
RPE (k)

}
=

1
M − 3

. (20)

Examples of the two components of the feature vector F
for the legitimate and pseudo adversary channels are shown
in Fig. 2 for three different values of the correlation coeffi-
cient in Eq. (11), andwith σ 2

A = 1 and σ 2
E = 0.8. As described

in the next section, these correspond to training samples that
would be used to train a GMM to cluster the data and perform
authentication.

V. THE PROPOSED SECURITY FRAMEWORK
In this section, a GMM-based security authentication tech-
nique is proposed for the detection of spoofers. Since the
method of spoofing detection is based on clustering using a
GMM, we begin first with a description of the Expectation
Maximization (EM) algorithm that is used to find the param-
eters of the GMM. Then we describe how the mixture model
is used to identify deviations in the received data packets in
order to detect a potential spoofer.

A. EM ALGORITHM
In practical communication scenarios, machine learning may
be used as an effective approach to cluster messages that
are received in a wireless network, and to determine the
originator of received data packets. Here, a GMM is used
to estimate the probability density function and the posterior
probability of the feature vector F(HA(k),HT (k + 1)). Once
these are known, it is then possible to determine how likely
it is that HT (k + 1) represents the channel from Alice to
Bob or that of a spoofer.

A GMM is a weighted sum of K Gaussians,

P(x) =
K∑
k=1

πkN (x;µk ,6k ) (21)

where N (x;µk ,6k ) is a multivariate Gaussian density with
mean µk and covariance 6k , and where the weights (mixture
coefficients), πk , are non-negative and sum to one,

K∑
k=1

πk = 1. (22)

Given a set of training samples, X = [x1, x2, . . . , xN ], that
are drawn independently from F(HA(k),HA(k + 1)) and
F(HA(k),HP

E (k+1)) the goal is to estimate the parametersµk
and 6k along with the mixture coefficients πk . This is done
by maximizing the log-likelihood function,

lnP(X |λ) = ln
N∏
n=1

P(xn|λ)

=

N∑
n=1

ln

(
K∑
k=1

πkN (xn;µk ,6k )

)
(23)

where λ is the collection of all parameters into a single
parameter,

λ = {πi,µi,6i}, i = 1, 2, · · · ,K (24)

Note that (23) is a non-linear function of the parameter λ. In
our PHY-layer authentication approach, the parameters are
estimated by maximizing the log-likelihood function using
the Expectation Maximization (EM) algorithm [25]. Given
the training samples and an initial set of model parameters,
the EM algorithm involves two steps:

1) EXPECTATION STEP
In this step, the membership probabilities for all N training
samples are computed,

p(j|xi, λ) =
πjN (xi|µj,6j)

K∑
k=1

πkN (xk |µk ,6k )

. (25)
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where p(j|xi, λ) is the probability that sample xi belongs to
the jth mixture component.

2) MAXIMIZATION STEP
In this step, the parameters πi, µi and6i are updated. Specif-
ically, the weighting coefficients are updated as follows,

πj
new
=

1
N

N∑
i=1

p(j|xi, λ). (26)

Then the mean and covariance values are updated:

µnewj =

N∑
i=1

p(j|xi, λ)xi

N∑
i=1

p(i|xi, λ)
(27)

and

6new
j =

N∑
i=1

p(j|xi, λ)(xi − µi)(xi − µi)T

N∑
i=1

p(j|xi, λ)
. (28)

The EM algorithm iteratively updates the parameter esti-
mated, and at each step of the iteration the log-likelihood
function may be shown to be increasing. In addition, under
some mild continuity conditions, the EM algorithm is guar-
anteed to converge to a local maximum [25], [26].

The idea now is that for each new message that is received,
the channel vector HT (k + 1) is estimated, the feature vector
F(HA(k),HT (k + 1)) is computed, and a decision is made as
to whether the received message is from Alice or a spoofer
by using the GMM to choose the one that maximizes the
posterior probability.

B. GMM-BASED PHY-LAYER AUTHENTICATION
We now illustrate how the GMM is used to make a deci-
sion on which transmitter generates a received message. The
proposed GMM-based PHY-layer authentication mechanism
includes three phases: channel-based feature vector genera-
tion, GMM parameters initialization and model training, and
GMM-based spoofing detection. Fig. 3 shows the process
and all of the steps in our two-dimensional feature-based
GMM authentication approach. In the following, each step
is described in more detail.

1) CHANNEL-BASED FEATURE VECTOR GENERATION
After a transmission is received by Bob, and the channel
parameter vector HT (k + 1) is estimated, the next step
is to extract features that will be used to authenticate the
received message. Specifically, a two-dimensional feature
vector is formed that consists of the Euclidean distance
betweenHT (k+1) andHA(k) and the sample Pearson corre-
lation between these same two vectors. Distilling the channel
information down to these two features helps to mitigate the
effects of channel estimation errors and, as we will see, forms
an effective characterization of the channel for authentication.

FIGURE 3. The authentication framework.

2) GMM PARAMETERS INITIALIZATION AND MODEL
TRAINING
As described earlier, the EM algorithm is used to find GMM
parameters for the feature vectors FT (HA(k),HT (k+1)) that
come from one of two sources: a legitimate channel corre-
sponding to a transmission from Alice to Bob, and a channel
that corresponds to a transmission from a spoofer, Eve to
Bob. The training data for the legitimate channel is obtained
from the previously known transmissions from Alice to Bob,
whereas the training data for the spoofer’s channel is gener-
ated using a pseudo adversary model. In theory, it is difficult
to determine the number of classifications of the model. In
order to speed up the training of the GMM, the parameters for
the EM algorithm are initialized using the k-means clustering
algorithm [27]. The cluster centers are used as the Gaussian
means in the GMM and the variance of the samples in each
cluster is used as the Gaussian variances in the GMM. For the
weights πi of the GMM, the relative number of targets in each
cluster is used. Once the GMM has been found, it is then used
to calculate the posterior probability of the channel data that
is extracted from a received message.

3) GMM-BASED SPOOFING DETECTION
The GMM is used to determine the ‘‘similarity’’ ofHT (k+1)
to the channel information vectors for Alice and for Eve, and
then to determine an output target label. This is done by deter-
mining the target model that has the maximum a posteriori
probability for the given HT (k + 1). The results are used to
identify the corresponding sender of the received message.
The pseudocode of GMM-based PHY-layer authentication
algorithm is shown in Algorithm 1.

VI. RESULTS AND ANALYSIS
A. SIMULATION SCENARIOS
In this section,MATLAB simulations are used to evaluate the
performance of the GMM-based PHY-layer authentication
method. For these experiments, an OFDM system is used
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Algorithm 1 GMM-Based PHY-Layer Authentication
Initialization: Maximum iteration L.
1: for each case of node mobility do
2: generate channel information vectors
3: obtain two-dimensional channel feature via (9)
4: initialize GMM parameters using k-means algorithm
5: training GMM model via (25), (26), (27) and (28)
6: for k = 1, 2, · · · ,M (for each packet) do
7: obtain channel feature vector FT
8: get the posterior probability with trained GMM
9: if the recognition result is Alice then
10: update HA(k)← HA(k + 1)
11: receive the data
12: else
13: keep HA(k)← HA(k − 1)
14: send an alarm
15: end if
16: end for
17: end for

with 1024 subcarriers, QPSKmodulation for each subcarrier,
and a cyclic prefix of length 256. There were 64 comb-type
pilots inserted into each OFDM symbol for channel esti-
mation, and the channel model that was used is a random
Rayleigh fading channel. The channel information is sampled
for different signal-to-noise ratios (SNRs) that vary from
0 dB to 26 dB. The symbol duration, t , that corresponds
to the channel coherence time, is t = 10 ms, and the
RF wavelength is set to λ = 6 cm. With node speeds of
v = 100, 80, 65, 60, 50, 45, 40, 35, 20 km/h, the resulting
channel correlation coefficients are ς = 0.1, 0.2, . . . , 0.9,
respectively. For training the GMM, 500 samples were used,
and the termination criteria set in the EM algorithm is that the
error value is less than 10−15.

The performance of our authentication method was com-
pared with that proposed by Xiao et al. [19] and the clustering
scheme with one-dimensional estimated channel conditions
proposed byWeinand et al. [21]. To compare the performance
of these two approaches with ours, the probability of detect-
ing a spoofer, Ppd , when an actual spoofing attack exists
was evaluated. The performance of our method was also
compared with that of Xiao et. al. in terms of the probability
of authentication error, Pe, or minimum Bayes risk, which
is the probability of either choosing hypothesis H0 when
H1 is true or choosing hypothesis H1 when H0 is true. This
probability is given by

Pe = P(Choose H0|H1)P(H1)+ P(Choose H1|H0)P(H0)

(29)

In our experiments, we exploited the posterior probability
calculated in GMM-based PHY-layer authentication scheme
to analyze spoofing detection performance. Therefore, a soft
decision is used in the proposed scheme, without depending
on a fixed threshold. At each procedure, when Bob receives

the new signal,Ppd andPe are calculated to obtain the average
results based on 10, 000 runs.

B. NUMERICAL RESULTS
Fig. 4 shows a comparison of the probability of spoofing
detection for our GMM-based authentication approach with
that of Xiao et. al. [19] andWeinand et. al. [21] for SNRs that
vary from 0 dB to 25 dB. In these experiments, the channel
correlation coefficient was set to ς = 0.5. From the figure,
it is clear that the GMM-based authentication approach per-
forms better in being able to detect a spoofer. For example,
note that with a SNR of 20 dB, while the detection probability
of the method of Weinand et. al. is 0.89 and for the method
of Xiao et. al. it is 0.90, the detection probability of our
GMM-based method is 0.97. Even when the SNR is less than
10 dB, our GMM-based approach has a detection probability
of more than 0.90. The proposed scheme achieves a relatively
high system security when SNRs are relatively low. This illus-
trates the benefits of using a multi-dimensional feature in the
GMM-based scheme. Different channel features mean that
different explanatory factors behind the data can be hidden
more or less. Similar gains were noted for other values of the
channel correlation coefficient. What is interesting to note is
that the probability of detection does not change much when
SNR > 12 dB.

FIGURE 4. Probability of detection versus SNR for a channel correlation
coefficient ς = 0.5.

A plot of the spoofer detection probability as a function
of the channel correlation coefficient, ς , for our GMM-based
method and the method of Xiao et. al. is shown in Fig. 5 for
two different SNRs. This figure shows that as ς increases,
the detection probability increases significantly for both
methods. The reason for this is that as the correlation coef-
ficient of the legitimate channel increases, the correlation
between HA(k) and HA(k + 1) tends to become larger (See
Eq. (11)), and the difference between HA(k) and HE (k + 1)
tends to become larger. As a result, the two channels between
Alice-to-Bob and spoofer-to-Bob are easier to classify, which
results in a lower Ppd . The probability of detection remains
approximately constant for ς > 0.6. From Fig. 5, it is
clear that the GMM-based approach outperforms the method
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FIGURE 5. Probability of detection versus the channel correlation
coefficient ς .

of Xiao. For example, note that when ς = 0.6 and SNR = 2
dB, the detection probability of the GMM-based method is
approximately 0.98 compared to 0.90 for Xiao’s method. It
should again be noted that similar gains were observed for
other SNRs.

Fig. 6 shows how the minimum Bayes risk varies as a
function of the channel correlation coefficient for a SNR of
2 dB for our method and the approach of Xiao. Note that
as ς increases, the minimum Bayes risk for both methods
decreases significantly, with the GMM-based method having
a lower Bayes risk, particularly when ς < 0.7 As a specific
example, note that for ς = 0.5, the minimum Bayes risk is
0.05 in our method while the risk is 0.3 for Xiao’s method.

FIGURE 6. The minimum Bayes risk as a function of the channel
correlation coefficient ς .

The effect of the channel correlation coefficient ς on the
detection performance of the GMM-based PHY-layer authen-
tication scheme is shown in Fig. 7. Note that when the channel
correlation coefficient is large, e.g., ς = 0.9, the minimum
Bayes risk value is very small. From this figure we see that as
the correlation coefficient increases the minimum Bayes risk
becomes small, which in turn leads to a high probability of
spoofing detection as was shown in Fig. 5.

Finally, Fig. 8 illustrates how the minimum Bayes risk
varies as a function of SNR for the GMM-based PHY-layer

FIGURE 7. The minimum Bayes risk versus SNR for three different
channel correlation coefficients.

FIGURE 8. The minimum Bayes risk versus SNR at ς = 0.3.

method and Xiao’s method [19]. For both methods, the mini-
mum Bayes risk decreases as the SNR increases, which again
is as to be expected. Consistent with previous results, this
figure shows that the performance of our proposed approach
for authentication is better than the method of Xiao. For
example, with a SNR of 25 dB, theminimumBayes risk of the
GMM-based scheme is close to 0.07, which is 0.05 lower than
that of the method of Xiao. It is also important to note that the
minimum Bayes risk is less than 0.1 when the SNR is greater
than 8 dB. Compared with the results in Fig. 7, the minimum
Bayes risk in Fig. 8 is slightly increased due to smaller value
of the channel correlation coefficient.

C. ROBUSTNESS ANALYSIS
In any practical communication system, it is important for
an authentication method to be robust to different channel
models and characteristics. Fig. 9 shows the effect of channel
estimation errors on our proposed approach to authentication.
The channel estimation error is controlled by the value of σ 2

1

(See Eq. (2) - Eq. (4)) and for our evaluation, we considered
values of R between −2 dB and −20 dB where

R = 10 log10
σ 2
1

σ 2
A

(30)
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FIGURE 9. Performance comparison between using the ideal channel and
using the channel with estimated error R = −2 dB.

TABLE 2. Detection probability (%) for different channel estimation
errors.

In Fig. 9, we set R = −2 dB, and consider channels with
a correlation coefficient ς = 0.3, 0.9. This figure shows
that the channel estimation error does not have a significant
effect on the performance of the proposed GMM method.
Table 2 shows the results of using GMM-based method when
the correlation coefficient ς = 0.4, 0.8 for different channel
estimation errors. What these results show is that the mobility
of the node, the communication environment, and the channel
estimation error all influence the authentication performance
of the system. However, note that the effect of channel esti-
mation error becomes negligible when the channel correlation
coefficient becomes large.

VII. CONCLUSION
In this paper, a novel channel-based PHY-layer authentication
method was presented that is based on training a GMM using
a two-dimensional feature vector extracted from an estimated
channel state vector. The GMM is used as a classifier to deter-
mine whether a new message is being sent from a legitimate
transmitter or a spoofer. Although training data is relatively
easy to obtain for a legitimate transmitter, this is not the
case for a spoofer who is transmitting messages through an
unknown channel. Therefore, a pseudo-adversary model was
used as a model for the potential spoofer.

This GMM-based authentication method was shown to
achieve a very low Bayes risk compared to other methods.
Although the maximum spoofing detection probability is
high, Ppd = 0.98, there is room for future work. One is
in the area of feature engineering and feature selection with

the goal of creating better learning-based models. Although a
two-dimensional feature vector that is based on the distance
and correlation between two channel state vectors has been
used successfully, other features are possible, and the use
of more than two features could be considered. Another
important study would be to implement this authentication
algorithm in a real wireless system in order to evaluate its
performance under real conditions and in different scenarios.
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