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ABSTRACT Radiologists examine lateral view radiographs of the cervical spine to determine the presence of
cervical spinal injury. In this paper, we demonstrate that an artificial intelligence neural network can learn the
steps employed by a radiologist when examining these radiographs for possible injury. We deconstructed the
decision-making strategy into three steps: line drawing, prevertebral soft tissue thickness (PSTT) measure-
ment, and swelling detection. After training neural networks to be guided by the radiologist’s intermediate
labels, the networks successfully performed comparable line drawings to those of the radiologists, and
subsequent PSTT measurement and swelling detection were successful. Quantitative comparison of PSTT
measurements between our proposed method and radiologists showed a high correlation (r = 0.8663, p <
0.05, and intraclass correlation coefficient = 0.9283 at the C2 level; r = 0.7720, p < 0.05, and intraclass
correlation coefficient = 0.8667 at the C6 level). Using the radiologist’s diagnosis as the reference point,
the sensitivity, specificity, and accuracy of swelling detection by our proposed method were 100%, 98.37%,
and 98.48, respectively. We conclude that our neural networks successfully learned the sequence of skills
used by radiologists when interpreting radiographs for injury of the cervical spine.

INDEX TERMS Artificial intelligence, machine learning, computer assisted radiographic image interpreta-

tion, vertebrae, cervical, radiography.

I. INTRODUCTION
Cervical spine injury is a common problem, and its severity
ranges from minor ligamentous injury to severe spinal cord
injury (SCI) [1]. Cervical lateral view radiographs are lat-
eral projection X-ray images of the cervical spine that are
routinely taken as the first-line imaging for patients with
suspected cervical SCI in most clinical settings including an
emergency environment [2]-[4]. Radiologists examine these
radiographs to determine whether or not injury is present in
the cervical spinal before recommending further scanning by
computed tomography (CT). However, when CT is unavail-
able, such as in rural areas, these radiographs will be the only
available imaging.

Correct and early diagnosis of cervical spine injuries is
imperative because delayed or missed diagnoses increase

both morbidity and mortality [5]. Measuring the preverte-
bral soft tissue thickness (PSTT) on cervical spine lateral
view images is a simple and quick method for examining
potential cervical injury [6], [7], with abnormal thickening
being strongly associated with acute injury [7]. Although
an initial trauma series is routinely obtained in the emer-
gency setting for patients with trauma, the rate of misdiagno-
sis or delayed diagnosis based on cervical spine radiographs
is as high as 44%—-47% [8], [9]. In addition, time pressures in
emergency departments is becoming an ever greater problem
for emergency physicians and radiologists as case volumes
increase. Therefore, an automated method for measuring crit-
ical parameters, such as the PSTT, and subsequent detection
of the swelling in radiograph exams would be invaluable in
the workup of patient with trauma.
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FIGURE 1. Flow chart of patient selection and grouping.

Deep learning is a form of machine learning wherein neural
networks with multiple hidden layers are trained to perform
specific tasks [10]. More recently, it is being actively inves-
tigated for use in a range of medical fields, including radiol-
ogy [10], [11]. However, to date, deep learning has not been
investigated as a potential aid when examining suspected
cervical injury on cervical lateral view radiographs, which are
important when diagnosing cervical SCIL.

In this study, we aimed to develop an effective method of
examining and interpreting radiographs for possible cervi-
cal injury, based on the approach of radiologists, but using
deep learning. Due to the limited number of training data,
we deconstructed the interpretation process used by a radiol-
ogist into three steps and trained our neural network to learn
the Please submit all of the following in the list below and
note that all files intended for publication need to be uploaded
during this step, even if some files are unchanged from your
previous submission. If all files are not submitted with final
files, it will delay the publication of your article. intermediate
step, which can be effectively achieved with small amount
of datasets. In the subsequent evaluations, we demonstrated
that PSTT values estimated by the trained neural networks
are highly correlated with those manually measured by a
radiologist. This produced high accuracy for the detection of
swelling by the neural networks when using the radiologist’s
interpretation as the point of reference.

Il. MATERIALS AND METHODS

A. STUDY POPULATION

For the training dataset, 200 lateral cervical radiographs
were collected from the image database at our institution
for the period between January and February 2016. Among
these, 100 radiographs each were obtained from outpatient
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and emergency department settings. The training dataset
included 186 digital radiograph (DR) images (Discovery
XR656, GE Healthcare, Milwaukee, WI, n = 20; Definium
8000, GE Healthcare, n = 17; Innovision-SH, Shimadzu,
Kyoto, Japan, n = 20; UD150B-30, Shimadzu, n = 127;
GC85A, Samsung Electronics, Suwon, Korea, n = 1; DRS,
Listem, Seoul, Korea, n = 1) and 14 computed radiogra-
phy (CR) images (FCR5000, Fujifilm, Tokyo, Japan, n = 13;
DirectView CR Systems, Carestream/Kodak, Rochester, NY,
n=1).

For the test dataset, we included 136 consecutive patients
aged >16 years who underwent cervical lateral radiography
in the emergency department between December 2016 and
February 2017. Younger patients were excluded because lat-
eral radiographs of pediatric patients differ from those of
adult patients. All images were obtained using a DR imager
(UD150B-30, Shimadzu, Kyoto, Japan, n = 103; MobileDart
Evolution, Shimadzu, n = 32; Optima XR220, GE Health-
care, n = 1). The patient selection flow chart for the training
and test datasets is shown in Fig. 1. The study protocol was
reviewed and approved by the relevant institutional review
board.

B. RADIOLOGIST DECISION-MAKING PROTOCOL

To determine whether patients have a cervical spinal injury on
radiographs, the three steps illustrated in Fig. 2 are usually
performed by radiologists: 1) they carefully draw both the
prevertebral line and the anterior vertebral line on cervical
lateral radiographs; 2) they measure the distances between
these two lines at the C2 and C6 levels; and 3) they determine
an abnormal PSTT (i.e., swelling) when this distance is higher
than a predefined cutoff value of 7 mm at the C2 level.
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C. INTERPRETATION SCHEME BASE ON DEEP LEARNING
Due to the limited number of training data in this study (only
200 images), we could not use end-to-end classification deep
learning techniques, which would require tens of thousands
of images for proper training, cannot be applied for this
type of examination. Therefore, instead of using end-to-end
classification techniques, we deconstructed the interpretation
sequence used by radiologists into the three steps outlined in
section II.B. The neural networks were then trained to learn
the radiologist’s intermediate interpretation step (i.e., line
drawing), which could be achieved using the small dataset.
Next, a PSTT-measuring algorithm was developed to calcu-
late the distances between the prevertebral and the anterior
vertebral lines. Finally, a simple thresholding technique with
the established cutoff value of 7 mm was applied to deter-
mine if the PSTT was abnormal as radiologists did. In this
way, we overcame the problem of a shortage of training
datasets, and our deep learning-based interpretation networks
successfully learned the strategy used by radiologists in
decision-making.

D. PREPARATION OF IMAGE DATA AND

MANUAL LINE DRAWING

A local picture archiving and communication system (PACS)
was queried for cervical lateral radiographs, which were then
exported to a local computer, where they were anonymized
and standardized. The obtained images were cropped, cen-
tered on the cervical spinal cords, and resized to a stan-
dard image matrix of 256 x 256 with an average resolution
of 0.800 + 0.062 (range, 0.639-1.020) mm. This allowed
efficient training and testing. Based on pixel information
in the DICOM (Digital Imaging and Communications in
Medicine) header and resize ratio, pixel sizes were recorded
proportionally.

For the training dataset, prevertebral and anterior verte-
bral lines were manually drawn on each image by a mus-
culoskeletal radiologist with 10 years’ experience in clinical
diagnosis and scientific research. The manually drawn lines
were converted to a binary mask as a label image for neural
network training. A total of 200 image pairs were prepared
(a radiograph as the input and a line mask as the label) for
training.

E. THE NEURAL NETWORK ARCHITECTURE

FOR LINE DRWAING

In a clinical setting, PSTT measurement involves manual
drawing of prevertebral and anterior vertebral lines on cer-
vical lateral radiographs (as shown in Fig. 2), and then mea-
suring the distances between these two lines at the C2 and
C6 levels. Although we trained our neural networks to learn
this protocol, the direct learning of line drawings on radio-
graphs is inefficient, especially for a small number of training
image sets. Indeed, we failed to train our networks to learn the
line drawing skill with 200 training image sets, so instead,
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FIGURE 2. The three steps used by radiologists when interpreting lateral
cervical spine images. Step 1) Draw prevertebral and anterior vertebral
lines. Step 2) Measure the distances between the two lines at the C2 and
C6 levels. Step 3) Diagnose any abnormality.

we converted the line drawing problem into a segmentation
problem.

The space between the two lines on the binary mask image
was filled with 1’s, forming a region-of-interest (ROI) that
corresponded to the prevertebral soft tissues. Now, the input
line label for the training became an ROI mask, which is com-
monly used in segmentation neural networks. U-net architec-
ture [12] is known to perform well for such image segmenta-
tion tasks, so we constructed our neural networks to learn the
segmentation task with the converted ROI labels based on this
architecture. Because the U-net architecture can effectively
learn both local and global features by a pooling process,
our network also effectively learned both the local contrast
features and the global shape features of the prevertebral soft
tissue ROIs. Later, the boundary lines of the segmented ROIs
were extracted to form the prevertebral and anterior vertebral
lines. These extracted lines were given to the radiologist, who
was asked to verify the efficacy of the proposed method.

The proposed training network for extracting prevertebral
soft tissue ROIs is shown in Fig. 3. This network struc-
ture comprises the following: 33 convolutional (C) layers,
a 3 x 3 convolutional kernel, three 2 x 2 max pooling (MP)
layers, a stride of two for down-sampling, three 3 x 3 up-
convolutional (UC) layers for up-sampling, and three con-
catenation (CC) layers. The learning process was divided into
two parts: one that extracted the features while reducing the
resolution of the feature maps, and another that segmented
the objects while increasing the resolution again. In the first
part, the resolution of the input image and its subsequent
feature maps were reduced by half using three MP layers,
each with four C layers, forward and backward. Each C
layer was followed by a rectified linear unit (ReLU) as the
activation function. The feature maps entering the second part
returned to the original resolution through three UC layers.
All UC layers had one CC layer and four prior C layers.
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FIGURE 3. Neural network architecture for prevertebral soft tissue extraction (U-net based). The structure comprises two
parts: the first involves a learning process during reduction of the feature map resolution; the second involves increasing
the resolution back to the original size. Each box represents a group of data containing multichannel feature maps. The
number of channels is noted at the top of each box, and the resolution of each feature map is denoted at the left edge of
the box. The width of the box corresponds to the number of channels within the box.

Each C layer was also followed by an ReLU function. All
CC layers combined the incoming data from the preceding
lower layers and data with the same resolution from the first
part (indicated by dotted arrows in Fig. 3). When all feature
maps return to their original resolution, they pass through the
remaining four C layers, followed by the activation function
to generate the final output.

After prevertebral soft tissue ROIs were segmented using
the trained neural networks, the prevertebral and anterior
vertebral lines were derived using a Canny edge detection
algorithm [13], and the resulting lines were later compared
with those manually drawn by radiologists. In this way,
we were able to evaluate the performance of the networks.

F. PSTT MEASUREMENTS AT THE C2 AND C6 LEVELS
Radiologists routinely measure PSTTs at the C2 and C6 lev-
els when examining cervical spinal injury. This is because
the C2 level represents the cranial portion of prevertebral
soft tissue, characterized by a thickness of <7 mm, and the
C6 level represents the caudal portion of prevertebral soft
tissue, characterized by a more substantial thickness. In our
proposed interpretation method for measuring PSTTs of the
cranial and caudal portions of prevertebral soft tissues, all
PSTTs from the top of the cranial portion to the bottom of
the caudal portion were first calculated as illustrated in Fig. 4,
before two representative PSTTs of the thin cranial and thick
caudal portions were determined statistically. This mathemat-
ical process is explained by the following.

In the Cartesian coordinate, as shown in Fig. 4(a), let
y = al(x) and y = pl(x) denote the anterior vertebral line (al)
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and prevertebral line (pl), respectively, and let dl(i) denote the
distance between two lines at the location (xj, al(x;)). Then,
dl(i) can be obtained as follows:

di (i) = la—pl. a=[2}(m]

(] 1z 0

where,
xj = argmin\/(x — xi)2 + (pl(x) — dif (x, xi)z,
d
dif () = = S| (=) +al () @

Fig. 4(b) shows an example of the distribution of dl(i) for
the prevertebral soft tissue region from the top of the cranial
portion to the bottom of the caudal portion. The midpoint, p,
which divides the cranial and caudal portions of prevertebral
soft tissues, can be determined by examining the variation
of dl, as follows:

p = argmax (std (dl (1)) . {i|3 < i <n—2) A3)

where, sid (F0)) = /1352 (F() — ) and ) =
LFA-+fA-D+fO+fG+D+FE+2).
PSTTs of the cranial and caudal portions were estimated
using a statistical measure of central tendency for each cranial
and caudal portion of dI distribution. For this, we used the
median value to avoid any undesirable effects from out-
liers or skewed data. PSTTs of the cranial and caudal por-
tions were estimated as median (dl (1)), {i|1 <i < p} and
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FIGURE 4. Definition of dl and the process of calculating PSTTs for the cranial and caudal portions of the prevertebral soft tissues. (a) The red line
denotes the anterior vertebral line and the blue line denotes the prevertebral line. dl is the distance between al and pl. (b) An example of the distribution
of dl for prevertebral soft tissues from the cranial to the caudal portion in pixel units (black solid line). The gray dotted line denotes std(dl(i)). The graphs
can be separated into cranial and caudal portions by the midpoint (vertical dotted line). The horizontal arrows denote the median PSTT values calculated
from the separated portions. The red and blue areas indicate the locations of C2 and C6. (c) The midpoint location, the cranial and caudal portions, and

the C2 and C6 levels are illustrated on a representative radiograph.

median (dl (1)), {i|lp < i1 < n}, respectively. To increase
the accuracy when estimating PSTTs using median values,
three maximum and three minimum values were excluded.
Fig. 4(b) and 4(c) show examples of the midpoint, C2, and
C6 in the distance graph and cervical lateral radiographs,
respectively. In Fig. 4(b), the midpoint is the highest point
of the std (dl (i)) graph (gray dash line), which is the point at
which the di(i) graph (black line) rises steeply as shown by
the green line in Fig. 4(c). Fig. 4(b) also shows that the median
PSTT values of the caudal (blue horizontal line) and cranial
(red horizontal line) portions represent the C2 (red band)
and C6 (blue band) levels, respectively. Finally, abnormal
swelling was defined when the PSTT exceeded the predefined
cutoff value of 7 mm at the C2 level.

The design and training of the neural networks were
implemented using Python 2.7 and the Google Tensor-
Flow library (Google, Mountain View, CA, available at
https://www.tensorflow.org) on a computer with the follow-
ing specifications: an NVIDIA GeForce GTX 1080 GPU
(NVIDIA Corp., Santa Clara, CA), a 3.60 GHz octa core
CPU (Xeon, Intel, Santa Clara, CA), and 32 GB memory.
The post-processing of the network output was performed in
MATLAB (MathWorks, Natick, MA).

G. EVALUATION OF PSTT MEASUREMENT AND
DETECTION ACCURACY

To validate the trained model, PSTT values that were mea-
sured using the trained neural networks were compared
with those measured by the radiologist (reference values).
Pearson’s correlation coefficient (r) and intraclass correla-
tion coefficient (ICC) tests were performed, including their
95% confidence intervals (CIs), to assess the correlation
between values obtained by these two methods. To evaluate
diagnostic performance, the ability of the trained networks
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to detect increased PSTT was evaluated in a test dataset
of 132 cervical lateral radiographs of trauma patients from
emergency department records. The cutoff value for normal
and abnormal PSTTs was set to 7 mm at the C2 level,
as recommended [7]. The sensitivity, specificity, accuracy,
false-positive predictive, and false-negative predictive val-
ues of the neural network-based measurements to detect
increased PSTTs were calculated with respect to the radiolo-
gist’s decisions.

All statistical analyses were performed using the statistical
software R package 3.1.2 (the R foundation for statistical
computing, Vienna, Austria). A P value of <0.05 was con-
sidered to indicate statistically significant differences.

IIl. RESULTS

Training comprised 500 iterations, which required 7.25 h for
200 images, with training loss converging after 400 iterations.
In the qualitative review by radiologist, the trained networks
were confirmed to have successfully drawn the prevertebral
and anterior vertebral lines at the C2 (n = 132/136; 97.06%)
and C6 (n = 126/136; 92.65%) levels.

Fig. 5 shows examples of the automated drawing of the
prevertebral and anterior vertebral lines in cervical lateral
radiographs. As can be seen, both lines were successfully
drawn from the top of the cranial portion to the bottom of
the caudal portion of the prevertebral soft tissues, in various
lordotic angles, reversed lordotic curves, or straightening of
the cervical radiographs. However, there were four failures
at the C2 level and six failures at the C6 level (Fig. 6).
Close observation of these revealed that they were of poor
quality, making it difficult and too confusing to draw clear
lines (even for radiologists) due to marked deviations from
standard imaging requirements.
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FIGURE 5. Various examples of the automated drawing of the prevertebral and anterior vertebral lines in cervical lateral radiographs.
Both lines were successfully drawn from the top of the cranial portion to the bottom of the caudal portion of the prevertebral soft
tissues at different lordotic angles, with reversed lordotic curves, or straightening of the cervical radiograph.

FIGURE 6. Failed cases of automatic line drawing at the C2 and C6 levels. (a) Four failed cases at the C2 level due to poor
quality imaging, which prevented even the radiologists from drawing lines. Of note, the second radiograph was severely
rotated beyond the coverage of the network structure. (b) Six failed cases at the C6 level were caused by excessive shoulder

shadowing or poor image quality.

Therefore, 132 radiographs were evaluated to determine
the correlation and diagnostic performance of our pro-
posed method with respect to the decisions of the radiol-
ogist. The measurements obtained by the trained networks
showed a high correlation with those manually obtained
by the radiologist at the C2 level (r = 0.8663, 95% CI
0.8162-0.9034, p < 0.05; ICC = 0.9283, 95% CI, 0.8989—
0.9492) and a fair correlation at the C6 level (r =
0.7720, 95% CI 0.6904-0.8343, p < 0.05; ICC = 0.8667,
95% CI, 0.8104-0.9062) for both normal and abnormal
PSTTs (Fig. 7).

In terms of detecting the abnormal increased PSTTs
(i.e., swelling) at the C2 level, among 132 radiographs,
our deep learning-based interpretation method gave only
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two false positives (positive on automatic measurement and
negative on manual measurement; n = 2/132; Table 1).
Using the radiologist’s decisions as the reference point,
the sensitivity, specificity, positive predictive, negative pre-
dictive, and accuracy values of increased PSTT detec-
tion of the neural network-based method were 100%
(95% CI, 66.37-100), 98.37% (95% CI, 94.25-99.80),
81.81% (95% CI, 53.23-94.68), 100% (95% CI, —100), and
98.48% (95% CI, 94.63-99.82), respectively.

IV. DISCUSSION

In this study, we demonstrated that deep learning could
be used for radiographic measurement and interpretation of
PSTT, with a relatively small training dataset (i.e., 200).
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FIGURE 7. Bland-Altman plot comparing the means measurements by the neural network and by the radiologist.
(a) C2 level: Pearson’s correlation coefficient = 0.8663 and ICC = 0.9283. (b) C6 level: Pearson’s correlation

coefficient = 0.7720 and ICC = 0.8667.

FIGURE 8. Example of successful line drawings, even when the radiographs contained metallic fixation devices, intravenous lines, or oxygen lines.

TABLE 1. Confusion matrix for the performance of the trained network
compared with that of a radiologist.

Radiologist
Normal  Abnormal Total
Trained  Normal 121 0 121
networks  Abnormal 2 9 11
Total 123 9 132

If a greater number of datasets are used for training, we antic-
ipate that accuracy will be increased further.

Radiographs from eight different radiographic devices,
including CR and DR, were used in our training and testing
to ensure the relevance of our results to clinical settings.
Although CR and DR provided different image textures and
qualities, there was no significant difference in performance
of our proposed method regarding the detection success rate.
If we had restricted our study to a single image type or
scanner with a comparable number of images, the training and
testing performance may have been higher than reported in
this study. This is because the dataset would have been more
consistent, and therefore, the training would have been more
efficient.

The training group also included patients from both
outpatient and emergency settings. In a crowded emer-
gency department with limited availability of radiologists,
automated PSTT measurement and swelling detection can be
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invaluable in the workup of patients with cervical trauma.
A warning system or an alarm function using this automated
system could be implemented in a radiographic imager or in
the image viewing system of PACS to ensure the fast and
immediate detection of possible cervical spinal injury.

We used only minor data preparation steps, such as crop-
ping and resizing of cervical radiograph images to make them
uniform for training. No rotation, magnification, or panning
was performed during this step. The acquired cervical radio-
graphs were cropped such that the images ran from the top of
the maxillary sinus to the clavicle. To reduce the training time
and to make the size of input images uniform, we also resized
all images to a 256 x 256 matrix. These steps could be auto-
mated by deep learning technology, provided the availability
of enough data.

In clinical settings, it is often inevitable that artifacts such
as wire lines or devices, e.g., will be overlaid onto radio-
graphs. In our study, we encountered cases with intravenous
or oxygen line shadows (n = 7), surgical fixation devices
(n = 2), and endotracheal intubation (n = 2). Even with
these artifacts, the neural networks performed well in the
line drawings, except for one case that contained wires and
endotracheal tubes that were aligned in the same direction
as the prevertebral line (first image in Fig. 6(a)). This radio-
graph was even too confusing for the radiologist to draw
lines. In all other cases with artifacts, automated line drawing
was successful (Fig. 8). Another apparent issue was with
the shoulder shadow affecting measurement at the C6 level.
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In this study, we had six measurement failures for this reason,
which caused invisible lower cervical vertebrae (Fig. 6(b)).
In these cases, even the radiologist could not draw the lines
properly.

PSTTs were successfully measured on machine-drawn
lines at the C2 level, and these correlated almost per-
fectly with the manual measurements. When using an
established cutoff value (7 mm), the detection rate of
increased PSTTs was 100% (sensitivity of 100% and
specificity of 98.37%). Correlation strengths between the
automated and manual measurements were less robust at
the C6 level, probably because of the patient’s shoul-
der shadow. The size and extent of the shoulder shadow
varied among patients because of differences in body
sizes.

This study had several limitations. First, our deep learning-
based interpretation method was trained to follow the radiol-
ogist’s decisions on radiographic readings only. We did not
intend to estimate further diagnostic information or confir-
mation that could be found in more advanced imaging exams,
such as CT or magnetic resonance imaging. This is because
radiologists cannot make such estimates without examining
tomographic images.

Second, we used a relatively small dataset for training
(200 radiographs). To ensure our proposed interpretation
method is applicable to a wider selection of institutions,
datasets from multiple sites should be used for further training
and testing. Nevertheless, we are confident that the perfor-
mance of our neural network system was excellent in the
current datasets and that its efficacy would increase if the
number of training datasets increased.

To overcome the shortage of training datasets, we decom-
posed the radiologist’s decision-making strategy into three
steps and trained our networks to learn each step, making
the strategy possible even with the small number of datasets.
If there were enough datasets for training, direct learning
between the input images and the radiologists’ decisions
might have been possible; however, that would require far
more datasets than could be obtained from even multiple
hospitals. Furthermore, because our networks learned the
intermediate steps in diagnosis, it could provide intermediate
results for radiologists to verify, such as the prevertebral
and anterior vertebral lines, the PSTT distribution along the
cervical spine, and the final PSTT values (swelling or not) at
the C2 level. This capability offers radiologists with opportu-
nities to verify whether the conclusions are accurate based
on intuitive steps. Many deep learning applications suffer
from the critics of the so-called ‘“‘black box” issue, which
suggests that radiologists should not blindly accept the results
of deep learning systems because they cannot check how
the system reached its conclusions. However, by providing
detail of the results at intermediate steps that are familiar
to radiologists, which are therefore easily understood and
verified, our system can provide greater confidence in the
final decision.
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V. CONCLUSION

In conclusion, we demonstrated that our neural network-
based interpretation method successfully learned the radi-
ologist’s step-by-step skills when interpreting radiographs
for potential injury of the cervical spinal. The correlation
and accuracy of our method were high with respect to the
radiologist’s decisions, implying that they will be clinically
relevant for determining PSTTs and swelling. These results
support the use of deep learning techniques to assist radiol-
ogists in their work, showing that they can provide timely
and highly accurate warnings that require only rapid human
confirmation.
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