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ABSTRACT The privacy leakage resulting from location-based service (LBS) has become a critical issue.
To preserve user privacy, many previous studies have investigated to prevent LBS servers from user privacy
theft. However, they only consider whether the peers are innocent or malicious but ignore the relationship
between the peers, whereas such a relationship between each pairwise of users affects the privacy leakage
tremendously. For instance, a user has less concern of privacy leakage from a social friend than a stranger.
In this paper, we study cyber-physical-social (CPS) aware method to address the privacy preserving in
the case that not only LBS servers but also every other participant in the network has the probability to
be malicious. Furthermore, by exploring the physical coupling and social ties among users, we construct
CPS-aware privacy utility maximization (CPUM) game. We then study the potential Nash equilibrium of
the game and show the existence of Nash equilibrium of CPUM game. Finally, we design a CPS-aware
algorithm to find the Nash equilibrium for the maximization of privacy utility. Extensive evaluation results
show that the proposed approach reduces privacy leakage by 50% in the case that malicious servers and users
exist in the network.

INDEX TERMS CPS-aware privacy utility maximization, location-based service, privacy leakage.

I. INTRODUCTION
Location-based Service (LBS) becomes popular as the devel-
opment of smartphones and mobile networks. Mobile users
can share or obtain various information in different point of
interests (POIs) by mobile applications. For instance, mobile
users can find a place for dinner by a restaurant application.
They can also share photos when visiting some places. Such
querying or sharing behaviors occurred between mobile users
and LBS servers usually need mobile users to submit per-
sonal information including locations and the interests to LBS
servers. If these servers are not trustworthy, they can collect
these personal information and use it for tracking or they
may share with other third party services, thus user privacy
is leaked. Location-based Service (LBS) becomes popular
as the development of smartphones and mobile networks.
Mobile users can share or obtain various information in
different point of interests (POIs) by mobile applications.
For instance, mobile users can find a place for dinner by
a restaurant application. They can also share photos when

visiting some places. Such querying or sharing behaviors
occurred between mobile users and LBS servers usually need
mobile users to submit personal information including loca-
tions and the interests to LBS servers. If these servers are not
trustworthy, they can collect these personal information and
use it for tracking or they may share with other third party
services, thus user privacy is leaked.

Many privacy preserving schemes are studied to avoid
the privacy leakage. For instance, the dummy locations and
caching approaches are applied in [11]. The dummy location
approachmixes the querywith others and send to LBS servers
to avoid the privacy leakage of the real one. To avoid the
privacy leakage by LBS servers, the caching scheme reduces
the number of queries to LBS servers by caching the queries
and replies at nearby nodes to reduce the privacy leakage
by requesting from servers. We use Fig. 1 to illustrate how
dummy location and caching schemes work for privacy pre-
serving in LBS.When user A sends a query to LBS server X1,
it sends k-dummy locations information, including a real
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FIGURE 1. Privacy preserving in LBS and the challenges.

location and k − 1 dummy locations, so that the LBS server
cannot distinguish the real query sent by user A. The similar
approach is also applied to user B when sending a query to
server X2. With caching approach, when user C has a LBS
request, instead of sending the request to server X2, it sends
the query to other users which had such a request and reply
stored locally (e.g., user D).
However, both of dummy location and caching approaches

can only apply in certain conditions. Privacy preserving by
dummy locations needs to coordinate with others to make
sure that the query cannot be easily exposed. Privacy preserv-
ing with caching needs other nodes where the replies cached
are trustworthy. In reality, these conditions are difficult to
be satisfied. For instance, how users preserve their privacy
in the case that not only LBS servers but also other mobile
users are not trustworthy? As shown in Fig. 1, if user D is not
trustworthy as well, the privacy of userC will be leaked by D.
In this work, we propose a cyber-physical-social (CPS)

aware privacy preserving scheme to reduce the privacy expos-
ing when both LBS servers and other nodes in the network
are not fully trustworthy. In the case that both dummy loca-
tions and caching approaches are explored to reduce privacy
exposing, we mainly target on the the questions such as who
will contribute to the privacy preserving, and how they are
stimulated to do so collaboratively. In particular, we compose
a CPS-aware privacy utility maximization (CPUM) game
to stimulate both physical neighbors and social friends to
contribute to the dummy locations and caching for privacy
preserving. We further prove the existence of Nash Equilib-
rium in CPUM game by which a minimal privacy leakage can
be reached. Accordingly, we carry out a CPS-aware privacy
preserving approach to collaboratively help mobile users pre-
serve privacy for each other. The extensive evaluation results
show that the CPS-aware approach invokes the motivation of
mobile users to participate in the privacy preserving and the
privacy leakage is reduced dramatically.

The contributions of this paper are summarized as follows:
• We formulate the CPS-aware privacy preserving
problem to a CPS-aware privacy utility maximiza-
tion (CPUM) problem, and exploit CPUM game to
stimulate the collaboration.

• We show that the CPUMgame has the Nash Equilibrium
and propose a CPS-aware privacy preserving approach
for the minimization of privacy leakage.

• The evaluation results show that the proposed
CPS-aware privacy preserving approach reduces the
privacy leakage of the CPS-aware privacy utility group
by 50%.

The remainder of the paper is organized as follows.
Section II reviews the related works. Section III illustrates the
system model and basic formulation. In Section IV, we intro-
duce CPS-aware privacy utility. The CPS-aware privacy util-
ity maximization game and CPS-aware privacy preserving
approach are presented in Section V. In Section VI, exten-
sive experiments have been carried out. Finally, the paper is
concluded in Section VII.

II. RELATED WORKS
A number of privacy preserving schemes have been proposed
to protect privacy for LBS. Depends on whether Trusted
Third Party (TTP) is employed, existing solutions can be
divided into twomain categories: TTP-based privacy preserv-
ing shemes and TTP free solutions. We briefly review the
related studies in the following.

Firstly, we discuss a group of privacy preserving schemes
based on TTP. In LBS services, the peers are scattered
around the place, and the location k-anonymity model in [7]
shows excellent results theoretically. However, if multiple
users are in the same location or sensitive area it is eas-
ier to leak personal information. Gedik and Liu [5] devel-
oped a suite of scalable and yet efficient spatio-temporal
cloaking algorithms, called CliqueCloak algorithms, to pro-
vide high quality personalized location k-anonymity, aim-
ing at avoiding or reducing known location privacy threats
before forwarding requests to LBS providers. The work
showed that a TTP is required to achieve the anonymiza-
tion of users actual location. To reduce the probability
of the distinguishability of the cloaking technique, it also
combines with other techniques, such as game theory [8]
and dummy locations [12]. Xue and Ding [22] introduced
a location-based privacy-preserving authentication proto-
col (LPA), to preserve the location privacy by combin-
ing anonymous authentication and the top-down security
system together. Pinley et al. [15] combined the complex-
ities of time and space, thus introducing a context-aware
privacy-preserving LBS system to protect the privacy of
LBS system in aspects of both data privacy and commu-
nication anonymity. Zhu et al. [24] proposed a privacy pre-
serving approach in LBS, named EPQ. The EPQ scheme
is characterized by employing an improved homomorphic
encryption technique over a composite order group to protect
users location privacy and the confidentiality of the LBS
data with low overhead in computation and communications.
Sun et al. [18] first designed the attack model by analyz-
ing the security risks of the current dummy-location selec-
tion (DLS) algorithm. Furthermore, they proposed a novel
dummy location privacy-preserving (DLP) which involves
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the users’ computing costs as well as their various privacy
needs based on the security test. Memon et al. [9] proposed
a privacy authentication protection protocol, by which each
vehicles activities can be verified in the term of privacy
preserving manner. Their scheme also takes into account
some practical factors such as moving trend, velocity differ-
ences, and so on, so as to reduce the cost of common users
effectively.

However, even if the encryption method is closing to
perfect, it still bears great risks because TTP commands
too many sensitive information of users. So researchers
looked for the solutions without TTP. In order to achieve
privacy preserving management of location informa-
tion, Ashouri-Talouki et al. [1] put forward an encryp-
tion method based on group location which can achieve
the incognito of users’ actual locations with TTP-free.
Solanas and Martĺłnez-Ballestĺę [17] indicate a TTP-free
protocol for location privacy in location-based services. But
the answer set becomes large if the LBS needs process
many locations. Therefore we can realize privacy preserving
by caching, in which mobile users send query to caching
nodes instead of LBS servers to avoid the identification
tracking by LBS servers. Thomsen et al. [19] explored the
role of the cache mechanism of web search in LBSs. They
exploited the optimal sub-path property so as to allow the
target nodes answer the request from source nodes by caching
through the shortest path. Zhu et al. [26] proposed a novel
collaborative system, MobiCache. It is worth mentioning
that based on MobiCache, they proposed a Dummy Selec-
tion Algorithm (DSA) to preserve the users’ privacy and to
increase the cache hit ratio. Different from the traditional
k-dummy location and cache, DSA chooses dummy locations
which have not been queried before to increase the cache
hit ratio. Paulet et al. [13] proposed a major enhancement
upon previous solutions by introducing a two stage approach,
where the first step is based on Oblivious Transfer and
the second step is based on Private Information Retrieval,
to achieve a secure solution for both parties. Niu et al. [11]
combined both dummy locations and caching approach to
reduce the privacy leakage risk for query. They firstly incor-
porated the effect of caching on privacy and proposed a
caching-based solution to keep privacy from leaking. They
further explored how much caching can be used to improve
privacy. Zhang et al. [23] employed a conditional random
field to model the spatio-temporal correlations among the
contexts, and proposes a speed-up algorithm to learn the
weaknesses in the correlations. The TTP free solutions for
privacy preserving in [6], [20], and [21] exerted differential
privacy preserving schemes to reduce the privacy leakage.

This work differs from the previous studies by incorpo-
rating both physical neighbors and social friends for privacy
preserving. The proposed CPUM game can stimulate mobile
nodes to participate for privacy preserving and meanwhile
maximize the CPS-aware privacy utility to reduce the privacy
leakage.

III. PRELIMINARIES
In this section, we first describe the system model of this
work, and then discuss the formulation of CPS-aware privacy
preserving problem.

A. BASIC MODEL
We consider the CPS-aware privacy preserving in LBS where
the LBS servers are not fully trustworthy, and there are some
other peers in the network also behaving maliciously. They
collect user privacy information when users send query to
them. They may use the collected privacy information to
perform inference attacks to deduce and learn location infor-
mation from users.

In order to preserve user privacy, both dummy location and
caching approaches are exerted in the system as the basic
privacy preserving setup. In particular, in order to avoid the
privacy violation by LBS servers, each user caches queries
and corresponding replies locally to meet the future query
from itself or other users. In this manner, users can reduce
the number of queries to LBS servers thus lessen the privacy
leakage to servers. Meanwhile, when users send queries to
servers or other peer users, they send k-dummy locations
information, including a real location and k−1 dummy loca-
tions. With dummy locations, untrustworthy entities cannot
tell the real identification of the querying user. In spite that
both approaches are applied for privacy preserving, it is still
difficult to prevent privacy leakage. For instance, if the query
result is obtained from a malicious user, the user privacy
will be leaked by malicious cache user. Furthermore, the real
location may be inferred by malicious user or LBS servers if
dummy locations are not well chosen.

Although LBS servers and other peer users are not fully
trustworthy, each user has the trustiness with their physical
neighbors and social friends [2], [3]. Namely, users are will-
ing to send query to their physical neighbors and the neigh-
bors reply the query without leaking it to malicious users,
bywhich users in close proximity can benefit from each other.
Meanwhile, users with social relationship such as friends,
family members, and colleagues, etc. who are trustworthy
to conduct the query and reply with less worrying the loss
of privacy by them. The user combines his or her physical
neighbors and social friends to compose a CPS-aware pri-
vacy preserving group, and conduct the CPS-aware privacy
preserving.

B. PROBLEM FORMULATION
Based on the above-mentioned basic model, we show the
basic formulation of the privacy preserving problem in
LBS. Given a LBS, we assume that a LBS server X
stores all the information with respect to the information
D = {d1, d2, . . . , dm}. For a set of mobile users U =

{u1, u2, . . . , un}, each mobile user ui can store the reply
obtained from LBS server, denoted Di, obviously, Di ⊂ D.
When a user ui sends the LBS query, it selects either LBS
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server or other caching users who can provide the correspond-
ing information and meanwhile maintain the minimal privacy
leakage. Then the user ui sends k-dummy locations to the
information provider. In this process, the user privacy may
be thieved by untrusted LBS servers or other malicious users.
We use pi to denote the query probability of the ith dummy
location. We use normalized query times to represent the
value of pi. If the user i is never queried before, the value
of pi of k dummy location are considered equal to zero.
Accordingly, the higher the query frequency, the higher the
value of query probability. Furthermore, if all users have
the same query probability, no users are distinguished. Thus,
it is a good preservation of privacy. For k-dummy locations,
we choose those dummy locations queried with the same
probability. Themore close the querying probability, themore
difficult the untrusted LBS server or malicious users can infer
the real location. To quantify the identification of the real
location out of k-dummy locations, we define identification
entropy (I-Entropy) [16] as:

Hi = −
k∑
j=1

(pj · logpj), (1)

The larger value ofHi suggests that the uncertainty to identify
the real location is larger resulting in a higher privacy degree.

IV. CPS-AWARE PRIVACY AND THE UTILITY
In this section, we discuss the CPS-aware privacy by tak-
ing physical neighbors and social friends into consideration.
We show the composition of CPS-aware privacy group and
the corresponding CPS-aware privacy utility.

A. CPS-AWARE PRIVACY GROUP
The CPS-aware privacy preserving requires each user to
have a group of users protect privacy by exploring social
and physical relationships. Such a group of users is named
CPS-aware privacy group. Each user in the group contains
physical neighbors and social friends, in which physical
neighbors help each other for privacy preserving to reach a
‘‘win-win’’ case and social friends have the intrinsical inten-
tion to help users with social ties. Indeed, physical neigh-
bors or social friends may involve un-intentioned privacy
leakage. For instance, when a user sends a query to the server,
andmeanwhile a physical neighbor also sends the query to the
server, such conflictmay help to infer the real identification of
the user and also the physical neighbor. Besides, the query of
a user can also be used to infer the privacy of his or her social
friends if they own similar trajectory for visiting POIs. If a
user is in the social set and at the same time in the physical
neighbor set, it may have the double effects to the privacy
leakage. Therefore, we compose them in one group to prevent
the privacy leakage jointly. We illustrate the quantification of
physical neighbors and social friends as follows.

Physical neighbors are bounded by physical coupling
between two users. We define the physical coupling as

the time duration of their contact period over the total
time period. In particular, given two users i and j, we define
that they are in contact if they are in the communication range.
Their kth contact duration is denoted by tkij . Assume they have
x contacts in a time period T [25]. Then the physical coupling

metric is defined as Lij =
∑x

k=1 t
k
ij

T . A larger Lij suggests
a closer physical coupling between i and j. Since physical
coupled neighbors are more frequent with physical contact to
collect information from each other, k-dummy locations are
selected in the physical coupled users. In particular, dummy
locations are selected in the physical coupled users with the
same query frequency with user i.

Two users with social ties are considered social friends,
which are quantified by strength of social ties. We measure
social tie strength by four different social metrics, including
the number of social interactions, common social profile,
common social friends and common social interest groups.
Specifically, given user i and j with social ties, the number of
social interactions is quantified by the interactions between
i and j over the total number of messages sent and received by
both i and j. Similarly, common social profile is measured by
the number of common friends over the total friends owned
by i and j. Common social profile and social interest groups
are also defined in the similar manner. Then the overall social
tie strength between i and j is calculated by the weighted
similarity of above-mentioned metrics, denoted by Sij =∑α

k=1(wk · s
k
ij), where α is the total number of the factors that

affect Sij, wk is the weight, and skij is the value of kth metric.
A greater Sij suggests a closer social relationship between
node i and j.

Combining both physical neighbors and social friends,
the CPS-aware privacy group of user i contains user i itself,
physical neighbors Gpi , and social friends Gsi , represented by
G(i) = {i,Gpi ,G

s
i }, where G

p
i = {j ∈ U : Lij > θp},

suggesting that the physical neighbors of i contain all users
with Lij > θp; Gsi = {j ∈ U : Sij > θs}, suggesting that the
social friends of i contain all users having social ties with i and
their Sij > θs. We use Fig. 2 as an example to illustrate the
CPS-aware privacy group. The query frequency of each user
is {0.3, 0.7, 0.5, 0.7, 0.8, 0.2, 0.1} in the network. For user 4,
its physical coupled users contains {4, 5, 2, 3, 6}, and social

FIGURE 2. CPS-aware privacy group.
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friends of user 4 are {4, 1, 5}. Therefore, The CPS-aware pri-
vacy group of mobile user 4 contains users {4, 1, 2, 3, 5, 6}.
Overall, combining physical coupling and social tie metric,

we define the CPS distance between i and j in the CPS-aware
privacy group as

dij =
1
Lij
·
1
Sij
. (2)

The smaller dij is, the more closely that the user i and j are
bounded up with each other.

B. CPS-AWARE PRIVACY UTILITY
Users consider their CPS-aware privacy group when sending
queries. On the one hand, if a user sends the k-dummy loca-
tion query to LBS server, the privacy leakage is inferred from
its k-dummy locations. Then the inferred privacy leakage
comes from the product of I-Entropy of dummy locations,
the CPS distance between the user and the dummy locations
users in the case that the dummy location users also query
from the LBS server. On the other hand, if a user sends the
query to other users, the inferred privacy leakage is measured
by the product of I-Entropy, the proportion of malicious users
and the distance between the user and dummy locations. Let
Xi = {is, i1, i2, . . . , in} be the selection profile to obtain the
reply from of user i, where n = |Ui| is the number of users in
the i’s CPS-aware privacy group. is is the indicator whether i
selects the LBS server for query. The LBS server is selected
if is = 1, otherwise is = 0. Similarly, ik is the indicator
of whether the kth mobile user is selected for query in the
network. Let a = {a1, a2, . . . , an} be the query strategy set of
all users in the CPS-aware privacy group. Then incorporating
both cases, the privacy leakage of user i is defined as:

Pi(a) = is
(∑
j∈Gp

i

1
Hj
·
1
dij
· js
)

+

n∑
k=1

ik
(∑
j∈Gp

i

1
Hj
· β ·

1
dij
· jk
)
, (3)

where β ∈ [0, 1] is the proportion of malicious users in
all cache information contributors. We uniform the Eq. 3 as
follows:

Pi(a) =
(∑
j∈Gp

i

1
Hj
· γ ·

1
dij
· I{Xi=Xj}

)
(4)

where γ = 1 if is = js = 1 and γ = β if ik = jk = 1, k ∈
{1, 2, ..., n}. I{·} = 1 if the condition {·} is true, indicates both
physical neighbors send query to the same place. Otherwise,
I{·} = 0, indicates no privacy leaks if physical neighbors q
uery from different places. We use the negative value of Pi(a)
as the individual utility of i. Namely, Yi(a) = −Pi(a).
Collaboratively considering the social ties, social friends

also involve the preserving of privacy measured by the
strength of social ties. Therefore, the CPS-aware privacy

utility is measured by

ψi(a) = Yi(a)+
∑
j∈Gs

i

Yj(a) ·Wij (5)

where Gsi is the social friends set of the user i and Wij is the
social tie strength between i and j. The CPS-aware privacy
utility shows the privacy violation that can be avoided by
social friends. The greater value of the CPS-aware privacy
utility, the less privacy is leaked in the CPS-aware privacy
group. Therefore, the objective of the CPS-aware privacy pre-
serving is to maximize the CPS-aware privacy utility, which
is max ψi(a).

V. CPS-AWARE PRIVACY UTILITY MAXIMIZATION
In this section, we investigate the CPS-aware privacy pre-
serving incentives and study to minimize the privacy cost for
sending LBS query.

A. CPS-AWARE PRIVACY UTILITY MAXIMIZATION GAME
In the context of CPS-aware privacy preserving, each user
considers the privacy of the group and tries to maxi-
mize the CPS-aware privacy group utility when sending
queries. The problem falls into the CPS-aware privacy
utility maximization game, which is formulated as G =
(U , {Xi}i∈U , {ψi(a)}i∈U ), where U denotes the set of players
in the game, Xi is the selection profile to obtain the reply
from of i, and ψi(a) is the CPS-aware privacy utility of i.
In particular, each user is a player and the query strategy
ai of player i indicates the query strategy of i. The strategy
combination of all players excluding i is defined as a−i =
{a1, a2, . . . , ai−1, ai+1, . . . , an}. Thus, a = {ai, a−i}. Given
the strategy set a−i, user i chooses the best query strategy
so that ψi(a∗i , a−i) > ψi(a′i, a−i) for all a′i, to maximize
CPS-aware privacy utility. If such a∗i is found, it is the best
query strategy for i with respect to query strategy set a−i.

To find the maximal CPS-aware privacy utility, we attempt
to find the Nash Equilibrium of CPUM game, where Nash
Equilibrium is a kind of strategy combination that makes
the strategy of each player to the best response for other
players at the same time [4]. Nash Equilibrium exists when
none can benefit from changing its own strategy unilaterally.
Namely, a strategy combination a∗ = {a∗1, a

∗

2, . . . , a
∗
n} is

called Nash Equilibrium if and only if for ∀i ∈ U , it always
satisfies ψi(a∗i , a−i) > ψi(a′i, a−i), which conforms the goal
of CPS-aware privacy utility maximization.

To find the Nash Equilibrium of CPUM game, we intro-
duce potential game [10] in which Nash Equilibrium exists
with uniqueness. A game is a potential game if and only if
∀i ∈ U there always exists a function φ(a), which satisfies
ψ(a′i, a−i)−ψ(ai, a−i) = φ(ai

′, a−i)−φ(ai, a−i). Therefore,
we show the existence of Nash Equilibrium in CPUM game
by Theorem 1 as follows:
Theorem 1: The CPS-aware privacy utility maximization

game G = (U , {Xi}i∈U , {ψi(a)}i∈U ) is a potential game.
Proof: We use the following potential function φ(a) to

prove that the CPUM game is a potential game.
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Combining Eq. 4 and Eq. 5, we define the potential
function as:

φ(a) = −
1
2

n∑
i=1

∑
j∈Gp

i

( 1
Hj
· γ ·

1
dij
· I{Xi=Xj}

)
︸ ︷︷ ︸

φ1(a)

−
1
2

n∑
i=1

∑
j∈Gs

i

Wij ·
( 1
Hj
· γ ·

1
dij
· I{Xi=Xj}

)
︸ ︷︷ ︸

φ2(a)

(6)

As is shown in Eq. 6, the potential function is divided into
two parts. The former part φ1(a) is generated due to the
physical coupling in physical domain, and the latter part φ2(a)
is generated due to the social relationships in social domain.
We prove ψ(a′)−ψ(a) = φ(a′)−φ(a) by separately proving
ψ(a′) − ψ(a) = φ1(a′) − φ1(a) + φ2(a′) − φ2(a). Then we
have

φ1(a′)− φ1(a)

= φ1(ak ′, a−k )− φ1(ak , a−k ) (7)

= −
1
2

∑
j∈Gpk

( 1
Hj
· γ ·

1
dkj
· I{X ′k=Xj}

)
(8)

−
1
2

n∑
i=1,i 6=k

∑
j∈Gpi

( 1
Hj
· γ ·

1
dij
· I{Xi=Xj}

)
(9)

+
1
2

∑
j∈Gpk

( 1
Hj
· γ ·

1
dkj
· I{X ′k=Xj}

)
(10)

+
1
2

n∑
i=1,i 6=k

∑
j∈Gpi

( 1
Hj
· γ ·

1
dij
· I{Xi=Xj}

)
(11)

Note that the strategy of user k is irrelevant to those users
who are not in the physical neighbor set of k , which results in
the subtraction eliminating all elements that is irrelevant to k .
Therefore, we have

−
1
2

∑
i 6=k

∑
j∈Gp

i

( 1
Hj
· γ ·

1
dij
· I{Xi=Xj}

)
(12)

+
1
2

∑
i 6=k

∑
j∈Gp

i

( 1
Hj
· γ ·

1
dij
· I{Xi=Xj}

)
(13)

= −
1
2

∑
i∈Gp

k

( 1
Hk
· γ ·

1
dik
· I{Xi=Xk ′}

)
(14)

+
1
2

∑
i∈Gp

k

( 1
Hk
· γ ·

1
dik
· I{Xi=Xk }

)
(15)

It is obvious that Eq. 8 is equivalent with Eq. 14, and
Eq. 10 is equivalent with Eq. 15. Therefore, φ1(a′)− φ1(a)

is further simplified as:

φ1(a′)− φ1(a)

= −
1
2

(∑
j∈Gpk

( 1
Hj
· γ ·

1
dkj
· I{Xk ′=Xj}

))
∗ 2

+
1
2

(∑
j∈Gpk

( 1
Hj
· γ ·

1
dkj
· I{Xk=Xj}

))
∗ 2

= −

∑
j∈Gpk

( 1
Hj
· γ ·

1
dkj
· I{Xk ′=Xj}

)
+

∑
j∈Gpk

( 1
Hj
· γ ·

1
dkj
· I{Xk=Xj}

)
= Yk (ak ′, a−k )− Yk (ak , a−k )

Similarly, we can also prove that

φ2(a′)− φ2(a)

= φ2(a′k , a−k )− φ2(ak , a−k )

=

∑
j∈Gsk

Wkj ·
(
−

1
Hk
· γ ·

1
dkj
· I{Xk ′=Xj}

)
+

∑
j∈Gsk

Wkj ·
( 1
Hk
· γ ·

1
dkj
· I{Xk=Xj}

)
=

∑
j∈Gsk

Wkj ·

(
−

1
Hk
· γ ·

1
dkj
· I{Xk ′=Xj}

−

n∑
i=1,i 6=k

∑
i∈Gpj

1
Hi
· γ ·

1
dij
· I{Xj=Xi}

+
1
Hk
· γ ·

1
dkj
· I{Xk=Xj}

+

n∑
i=1,i 6=k

∑
i∈Gpj

1
Hi
· γ ·

1
dij
· I{Xj=Xi}

)
=

∑
j∈Gsk

Wkj
(
Yj(ak ′, a−k )− Yj(ak−, a−k )

)
Combining above equations, we have ψ(a′) − ψ(a) =

φ1(a′) − φ1(a) + φ2(a′) − φ2(a), thus ψ(a′) − ψ(a) =
φ(a′)− φ(a).
Hence, the strategy game G = (U , {Xi}i∈U , {ψi(a)}i∈U ) is

a potential game.
Thus far, we show that the CPUM game is a potential game

and it has a unique Nash Equilibrium. The CPUM problem is
equivalent to find the Nash Equilibrium of CPUM game. The
detail of the notations is illustrated as Table 1.

B. CPS-AWARE PRIVACY PRESERVING APPROACH
In this section, we propose a CPS-aware privacy utility
maximization approach according to the property that Nash
Equilibrium exists when none can benefit from changing its
strategy unilaterally.

The CPUM approach is proposed in an iteratively manner.
In the initial phrase, the query strategy is assigned and the
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TABLE 1. Notation table.

primary CPS-aware privacy utility is calculated. In partic-
ular, the query candidates are firstly selected by informa-
tion exchanging, and the LBS server is the default query
candidate. Then for each user i randomly selects one query
destination from the candidates, and the query strategy is
denoted as a′i. Each user i calculates the CPS-aware privacy
utility ψi(ai, a−i) according to Eq. 5. In the iteration phrase,
the utility is iteratively updated to reach the Nash Equilib-
rium. It iteratively selects an optional query candidate that has
not been chosen, and marks the query strategy as axi . It com-
pares ψi(axi , a−i) with current ψi(ai, a−i). If ψi(axi , a−i) >
ψi(ai, a−i), it replaces the current query strategy ai to axi .
If none of users needs to change its strategy and no larger
CPS-aware privacy utility is found, the algorithm comes to an
end and the output reaches a Nash Equilibrium. The pseudo
code of the CPS-aware privacy preserving algorithm which
can be found in Algorithm 1. The algorithm is designed in a

Algorithm 1 CPS-Aware Privacy Preserving Algorithm
Input:
1: The physical coupling and social relationships of all users

Output:
2: The Nash Equilibrium strategy combination a∗ =

(a∗1, a
∗

2, a
∗

3, ..., a
∗
n).

3: Initialization: initialize all users’ choose strategies
4: for i = {1, 2, . . . , n} do
5: step 1: user i asks if users nearby have the information

he needs. These who answer ‘‘yes’’ and the server are
being marked as candidates.

6: step 2: user i selects one from the candidates randomly
as his information provider, and the present choose
strategy is named as ai.

7: step 3: Calculate ψi(ai, a−i) according to (7).
8: end for
9: Iteration: to find the Nash Equilibrium
10: for i = {1, 2, . . . , n} do
11: repeat
12: step 1: For a candidate x, calculate ψi(axi , a−i).
13: step 2: If ψi(axi , a−i) > ψi(ai, a−i), change the

present choose strategy to axi . Namely, ai← axi .
14: until ψi(ai, a−i) is largest for i
15: i← i+ 1.
16: end for

distributed manner and thus can apply for LBS users located
in different places.

VI. PERFORMANCE EVALUATION
In this section, we evaluate the proposedCPS-aware approach
to show the effectiveness for privacy preserving in LBSs.

A. EXPERIMENT SETUP
In the experiment, we setup one LBS server in the field and
76 mobile users. The LBS server is able to offer all users with
any kind of LBS information. There are 76mobile users in the
experiment, and we introduce Sigcomm2009 data trace [14]
to compose the physical coupling and social ties among
users. The Sigcomm2009 data trace was collected during the
Sigcomm conference in 2009. The data trace contains social
information of 76 users according to their Facebook social
profiles. Meanwhile, it incorporates user physical coupling
information by their Bluetooth contacts. Among all mobile
users, randomly selected one third users serve as cache to
serve specific LBS information. Different LBS information
may be served by different sets of mobile users. Among all
users, social strength threshold θs is set to 0.5. We compare
the proposed CPS-aware privacy preserving approach with
‘‘non-cooperative’’ approach in which users are selfish and
thus they do not help each other socially for LBS requests.
However, they may still request for service from their physi-
cal neighbors.

In the following experiments, we set up the proportion of
malicious users to 1/3. For each experiment, we run 1000
times for the convergence of the results.

B. EVALUATION RESULTS
We show the evaluation results with respect to privacy
preserving in different conditions. We compare the results
of CPS-aware approach (CPUM) with non-cooperative
approach.

Fig. 3 shows CPUM performance on CPS-aware privacy
utility and average privacy leakage as a function of the num-
ber of iterations. Fig. 3a shows the CPS-aware privacy utility
as a function of the number of iterations. The results show
that the utility value increases rapidly with the increasing
of iterations until the number of iterations reach 100. After-
wards, the utility value increases with a much slower speed
until it reaches 250 iterations, and then it keeps steady. The
results suggest that the proposed CPUM approach reaches
a relatively stable value after 100 iterations and it gets con-
verged after about 250 iterations. Fig. 3b shows the average
privacy leakage as a function of the number of iterations.
It presents that the average privacy leakage of CPUM reaches
a steady state within 100 iterations, which is in line with
the convergence trend of CPS-aware privacy utility. In spite
that the non-cooperative approach has the similar tendency,
the non-cooperative approach suffers from more than 20% of
privacy leakage compared with the CPUM approach. This is
because that the CPS-aware privacy group stimulates the col-
laborations among users to serve for each other thus reduces
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FIGURE 3. CPUM performance on CPS-aware privacy utility and privacy leakage. (a) Social group utility. (b) Average privacy leakage. (c) Random
privacy leakage.

FIGURE 4. Privacy leakage under different conditions. (a) User numbers. (b) Proportion of malicious users. (c) Social strength.

the chances to request from untrustworthy LBS servers.
In order to illustrate the consistence of the coverage tendency,
we show the privacy leakage of five different users with
respect to the number of iterations in Fig. 3c. In particular,
we measure the privacy leakage of user 1, 7, 36, 51, and 62.
The privacy leakage of all users decreases as the increasing
of the number of iterations. Although the convergence speed
of each node is different, they reach a relatively convergence
when the number of iterations in a range of 100 to 200.
Overall, the proposed CPUM approach converges rapidly and
it achieves low privacy leakage.

Fig. 4 shows the average privacy leakage in terms of the
number of users, the proportion of malicious users and the
social strength. In particular, Fig. 4a shows the privacy leak-
age as a function of the number of users. It presents that the
average privacy leakage increases as the increasing of users
due to the augmentation of malicious users, which draws
more difficulties to find the Nash Equilibrium. However,
the Nash Equilibrium always can be found. Taking advantage
of CPS-aware factors, the privacy leakage of the proposed
CPUMapproach has 50% less privacy leakage comparedwith
the non-cooperative approach when the number of users is
10, and the CPUM approach still consumes 14% less privacy
leakage than the non-cooperative approach. Fig. 4b shows the
privacy leakage as a function of the proportion of malicious
users. The privacy leakage increases as the increasing of pro-
portion of malicious users. The proposed approach has 25%

less privacy leakage than non-cooperative approach when the
proportion of malicious users is 10% of the population.When
the proportion of malicious users reaches 80%, the CPUM
approach still has 4% less privacy leakage compared with
non-cooperative approach. As the increasing of malicious
users up to 50%, CPUM approach starts to convert its request
from neighbors to LBS severs while non-cooperativemay still
request from physical neighbors. Finally, we evaluate the pri-
vacy leakage as a function of the social tie strength as shown
in Fig. 4c.Wemanually set social strength as the experimental
value in this experiment. It presents that the non-cooperative
approach is not affected by the social tie strength because
it takes no account of social ties. The proposed CPUM
approach has the same amount of privacy leakage as the
non-cooperative approach since the small value of social tie
takes little effect. When the social tie strength surpasses 0.5,
the privacy leakage of CPUM approach rapidly decreases
up to 50% compared with non-cooperative approach. This is
because the social strength threshold θs is set to 0.5 in the
whole experiment. Overall, the proposed CPUM approach
has less privacy leakage than non-cooperative approach in
terms of different experimental conditions.

VII. CONCLUSIONS AND FUTURE WORK
In this work, we aimed to reduce privacy leakage in the
case that both LBS servers and other participants are mali-
cious. We formulated the privacy preserving problem as
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a CPUM game. Then we show the existence of Nash Equilib-
rium in the game by proving that CPUM game is a potential
game. A CPS-aware privacy preserving approach is proposed
to stimulate the privacy preserving collaboration by coupling
social and physical distance, and maximize the privacy utility
by reaching the Nash Equilibrium. The extensive evaluation
results show that the proposed CPS-aware privacy preserving
approach reduce the privacy leakage up to 50% compared
with non-cooperative approaches. In the future work, besides
the dummy location and cache methods, we will also explore
other privacy preserving such as differential obfuscation asso-
ciating with CPUM game for privacy preserving.
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