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ABSTRACT G.fast suffers from strong far-end crosstalk at high frequencies in cable binders containing
a large number of twisted copper pairs. For the 212-MHz G.fast spectrum, the power penalty incurred by
the conventional zero-forcing precoding-based linear vectoring (LV) scheme is far more substantial than it
was over the 30-MHz VDSL2 spectrum. In this paper, we propose a novel non-LV (NLV) scheme based
on Babai’s nearest plane approximation of the closest lattice point problem on the reduced lattice basis.
Similar to the conventional Tomlinson–Harashima precoding (THP)-based NLV, the proposed approximate
perturbation aided lattice encoding (APPLE) scheme closely approaches the dirty paper coding capacity
which provided that the system employs a fully rate-adaptive power allocation policy per tone per pair.
However, if the system employs a scalar power policy that is only rate-adaptive with respect to each tone,
APPLE becomes capable of achieving a higher throughput per binder than THP. APPLE’s transmitter
complexity is considerably lower than that of the conventional lattice encoding schemes (e.g., vector
perturbation) and comparable to that of THP.

INDEX TERMS G.fast, far-end crosstalk, vectoring, transmit precoding, lattice reduction, closest lattice
point, nonconvex optimization.

I. INTRODUCTION
G.fast has emerged as the new standard of the copper
based digital subscriber line (DSL) technology. The motiva-
tion of G.fast is to achieve a substantial throughput boost,
while preserving the fiber-to-the-cabinet (FTTC) or fiber-to-
the-distribution-point (FTTdp) network infrastructure, which
aims for fiber-level performance without the excessive cost
of fiber laying over the subscribers’ last mile coverage. Since
the DSL standard relies on discrete multitone (DMT) trans-
mission, the research community generally resorted to spec-
trum expansion to satisfy the need for ever-increasing data
rates. The operational G.fast profile only exploits the first
half (up to 106 MHz) of the proposed 212 MHz spectrum,
which is claimed to support Gigabit throughput rates.

However, future broadband access anticipates multi-
Gigabit throughputs, which necessitates the exploitation of
the full 212 MHz spectrum and possibly an even fur-

ther spectrum expansion. However, since DSL relies on
pairs of twisted copper wires, its performance is detrimen-
tally affected by the inevitable electromagnetic coupling,
i.e. crosstalk, between closely spaced pairs. The DSL termi-
nation unit (DTU), which is deployed in either a street-corner
cabinet for FTTC or at a distribution point for FTTdp, serves
a number of customer premise equipment (CPE) within the
same street. The pairs connecting these CPEs are usually
bundled together into a single large-diameter DSL binder.
As a DSL binder is coated with a screening surface, it is
the crosstalk within the binder, which is the dominant form
of impairment. The impact of crosstalk increases rapidly
with frequency, which dictates that the high-frequency tones
exhibit considerably worse channel quality than those of low
frequency. Far-end crosstalk (FEXT) refers to the interference
imposed on the distant receiver. As demonstrated by the mea-
surements of Fig. 1, the channel frequency response of both
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FIGURE 1. Direct and FEXT path channel frequency responses over the 212 MHz bandwidth for 10-pair cables of length 50m and 100m,
respectively. For both the direct and the FEXT paths, the channel gain decreases at a much faster rate for longer cables. In order to have
non-negative signal-to-interference ratio at the receiver end, the channel gain of the direct path must be at least 10 dB higher than the
average of FEXT because the number of FEXT paths dominates within the cable.

the direct paths and the FEXT paths decreases over frequency.
However, since the number of FEXT paths dominates,
the total FEXT level experienced per direct path actually
increases over frequency. The increase of the relative FEXT
exhibits a much faster rate for long cables than for short ones.

In general, FEXT is quasi-static over time and can be
mitigated by vectoring [1]. When a DSL binder is exclu-
sively managed by a single Internet service provider (ISP),
vectoring is more or less capable of eliminating FEXT.
The FEXT-cancelation effect of vectoring is achieved by
transmit precoding (TPC) for downstream communication.
For frequencies beyond 106 MHz, the channel inversion
type of linear vectoring (LV), including both the regular-
ized channel inversion of [2] and the diagonal precoding
of [3], would impose significantly higher signal-to-noise-
ratio (SNR) penalty than below 106 MHz of the G.fast spec-
trum, subject to a specific per-pair transmit power spectral
density (TxPSD) mask and to a particular per-pair aggregate
transmit power (ATP) limit [4]. On one hand, the TxPSD
mask is lower for G.fast frequencies beyond 106 MHz.
On the other, inverting the ill-conditioned high-frequency
channels results in higher PSD improvement than it does for
low-frequency bands.

The SNR penalty caused by LV at high frequencies results
in a significantly higher information loss. Modulo type
non-linear vecoring (NLV) schemes may be used to mit-
igate this loss. The optimal vectoring scheme is expected
to achieve the throughput given by the dirty paper cod-
ing (DPC) scheme of [5]. The Tomlinson-Harashima precod-
ing (THP) [6], [7] based NLV reduces the SNR penalty by
successive interference cancelation (SIC) at the transmitter
side. Despite its near-optimality regarding the throughput
per binder under a fully adaptive power policy, poor user
fairness is an issue commonly associated with THP. On the
other hand, since in practice DSL systems are susceptible

to non-stationary impairments such as the impulsive noise,
usually suboptimal power policies are employed in favor of
agile reconfigurability. Under a scalar power policy, where
the power allocation is uniform for all customers at each tone,
the overall performance of THP is predominantly influenced
by that of the worst-case customer on a per-tone basis.

In this paper, we aim for solving the problems associated
with the THP-based NLV scheme. We propose a novel vec-
toring scheme, which is termed as approximate perturba-
tion aided lattice encoding (APPLE). Our scheme achieves
a higher throughput per binder than NLV under a scalar
power allocation policy at a modest complexity increase.
For time-invariant channels, APPLE is near-optimal, just like
NLV under the fully optimized power allocation policy. The
remainder of the paper is structured as follows. Section II
introduces the main components of a vectored multi-user
DSL system, including the basics of the conventional LV
and NLV schemes as well as the related lattice theory pre-
liminaries. Section III details the operation of APPLE with
respect to its main components. Section IV characterizes the
performance of APPLE and its advantage over conventional
vectoring schemes. Finally, Section V concludes the paper.

II. SYSTEM MODEL
ADMT-based multi-user G.fast system consists of a group of
multiple-input-multiple-output (MIMO) subsystems of iden-
tical dimensionality. Considering a binder having K twisted
pairs modulated with I DMT tones, the received signal
becomes:

yyyi = HHH ixxx i + nnni (i = 1, 2, . . . , I), (1)

where the (K × 1)-element vectors yyyi, xxx i and nnni represent
the received symbol vector, transmitted symbol vector and
additive white Gaussian noise (AWGN) imposed on the tone
indexed by i and E{‖nnni‖2} = σ 2

n . The (K × K )-element
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transfer matrix HHH i is the DMT channel of the ith tone.
When the cyclic prefix used for DMT is sufficiently long,
these channels are considered independent and thus do not
inflict any inter-tone interference. The diagonal entries ofHHH i

are the direct link channel coefficients corresponding to each
individual pair, while the off-diagonal entries are the FEXT
channel coefficients. On the frequency band below 106MHz,
HHH i is approximately diagonal and therefore near-orthogonal.
However, for the freuqency band beyond 106 MHz, HHH i no
longer exhibits diagonal dominance. In G.fast, since the
symbols are all drawn from quadrature amplitude modu-
lated (QAM) constellations [8], we will consider (1) as a
complex-valued system.

The main purpose of downstream vectoring is to maxi-
mize the throughput of a DSL binder via a FEXT canceller
and a power controller. Additionally, modulo type vectoring
schemes also utilize back end signal coolant.1 When relying
on an optimized choice of the coolant-controller-canceller
trio, each CPE’s received symbol yik becomes mutually inde-
pendent. Therefore the equalized symbol vector zzzi can be
readily obtained from yyyi without multi-stream equalization.
The general structure of a vectored DTU transmitter is given
by a cascade of the three modules formulated as:

xxx i =���iAAAiũuui. (2)

1) Signal Coolant. Applying the back-end signal coolant
lll i to the users’ message symbol vectoruuui will reduce the
power boost incurred by the FEXT canceller ���i. The
coolant lll i results in a remapping of uuui to the expanded
signal space. The above remapping transforms uuui into
the perturbed symbol vector ũuui. The distributed CPE
receivers can remove the effect of lll i and detect each
received symbol yik independently without the full
knowledge of lll i, which is analogous to the physical
phenomenon of ‘vaporization’ of liquid coolant.

2) Power Controller. Represented by the non-negative
real-valued diagonal matrix AAAi, it is used for coor-
dinating the transmit power allocated to each mes-
sage symbol uik in order to achieve a similar quality
of service for all users, while simultaneously maxi-
mizing the throughput under the limit of the TxPSD
mask and the ATP budget. The power allocation policy
for tone i corresponding to the controller AAAi is given
by PPPi = (AAAi)TAAAi.

3) FEXT Canceller. The front-end FEXT canceller ���i

is a linear filter that, together with the signal coolant,
maps the message vector uuui to a multi-dimensional sig-
nal space related to the inverse channel GGGi = (HHH i)−1.
Hence the equivalent channel between the message
symbol vector uuui and the received symbol vector yyyi is
interference-free. In certain vectoring schemes, such
as THP, the CPE receivers may require an additional

1The back end modulo operation, as will be discussed later, typically
serves the purpose of reducing precoded signal power at the transmitter’s
output, akin to how coolant prevents excessive temperature increase in
motors and reactors.

equalizer to compensate for the uncorrelated direct
channels.

The initialization of G.fast systems, which is used for inform-
ing the DTU of the downstream channel state informa-
tion (CSI), currently relies on the training-based vectoring
feedback mechanism of [9] defined for the frequency divi-
sion duplexing based VDSL2 deployment. However, the time
division duplexingmode used in G.fast exhibits bi-directional
channel symmetry, which suggests that the downstream CSI
can be inferred from the upstream CSI. Since DSL channels
are essentially time invariant, we will assume that the DTU
has perfect knowledge of the downstream CSI, which is
acquired during the initialization process.

A. PRELIMINARIES
The vectoring scheme of (2) invoked for the system given
in (1) can be viewed as a lattice-based mapping spanning I
independent Euclidean spaces, where each Euclidean space
contains K complex-valued dimensions. Within one instance
of the Euclidean space CK , a K -dimensional lattice is a sub-
space isomorphic to the subspace of Gaussian integers GK ,
therefore GK itself also constitutes a lattice. Lattices are
frequently used as tools for investigating correlated signaling
either across multiple spatial locations (as in our scenario),
or time instances or alternatively frequency bands, all of
which are characterized by the dimensions of the correspond-
ing lattice. In fact, lattice-based coding schemes generally
have provable optimality [10], [11]. A comprehensive intro-
duction to the fundamentals of lattice theory and its general
applications may be found in [12]. Without loss of generality,
a lattice is defined as follows:
• Lattice. A (K×K )-elementmatrixGGG= [ggg1,ggg2, · · · ,gggK ]
having linearly independent columns generates a
K -dimensional lattice L(GGG). The columns of the gen-
erator matrix GGG constitute a basis of L(GGG). The basis
vectors constitute a parallelotope of volume V (GGG) =√
det(GGGHGGG).

Since integer-operand algorithms are mostly based on
real-valued integers, the K -dimensional complex-valued
Euclidean space CK must be decoupled into the
2K -dimensional real-valued Euclidean space R2K . The sub-
space GK is subsequently transformed into the subspace of
real integers Z2K . This is accomplished by the following
transformation of matrices and vectors:

GGG→
[
<(GGG) −=(GGG)
=(GGG) <(GGG)

]
, uuu→

[
<(uuu)
=(uuu)

]
. (3)

The real-valued system characterizes the geometric proper-
ties of lattices more explicitly, but it is equivalent to the
original system. It is important to note that any lattice L(GGG)
of more than two real dimensions has an infinite set of
legitimate basis, but the corresponding parallelotopes all have
identical volume. However, a basis constituted by short vec-
tors is in general considered to be of better quality than one
containing long vectors. The commonly accepted orthogo-
nality defect criterion for assessing the quality of a lattice
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basisGGG is defined as:

δ(GGG) =

K∏
k=1
‖gggk‖

V (GGG)
, (4)

where δ(GGG) ≥ 1 and the equality is true if and only if GGG is
perfectly orthogonal. Since V (GGG) is constant for all basis of
the same lattice L(GGG), (4) shows that a shorter basis is also
more orthogonal.

For the convenience of further analysis, we shall employ
the uniformly distributed input (UDI) as the general mes-
sage symbol alphabet, which is representative of the clas-
sic square-shaped and cross-shaped QAM constellations,
complying with the choice of constellations in the G.fast
standard [8].
• Uniformly Distributed Input. The UDI refers to the
continuous region U represented by the 2K -dimensional
unit hypercube centered at the origin obeying:

U = {uuu : |uk | <
1
2
, k = 1, 2, . . . , 2K }, (5)

which represents the union of K independent users’
QAM constellations or the union of 2K independent
users’ pulse amplitude modulated (PAM) constellations.

FIGURE 2. Uniformly Distributed Input (UDI) approximation
of 32 QAM (left) and 64 QAM (right). Both the cross-shaped and the
square-shaped constellations can be squeezed into the unit square.
The average constellation energy increase due to the UDI approximation
is uniquely determined by the QAM scheme itself. This is sometimes
known as the power loss [13] due to modulo encoders.

The 2D UDI depicted in Fig. 2 approximates the conven-
tional QAM constellations of any given modulation order.
The power characteristics of a given QAM constellation, such
as its peak-to-average power ratio and maximum symbol
energy can be readily inferred from the UDI approximation
associated with amplitude scaling. The required scaling is
mostly a result of the convention that QAM constellations
have an average energy constraint, rather than obeying the
maximum amplitude constraint exhibited by UDI. However,
it is also a consequence of the power loss [13] incurred by
applying the signal coolant in THP and in othermodulo-based
encoders. For a real-valued vector yyy, the (entry-wise) base-
a modulo reduction 000a[yyy], commonly associated with the
signal coolant, is defined as:

000a[yyy] = yyy− ab
yyy
a
+

1
2
c, (6)

where b·c represents the (entry-wise) floor function. As seen
in [14], modulo encoders require a common modulo base for
each user’s input alphabet. If yyy is drawn from the UDI, then
each entry yk naturally shares the common modulo base of
a = 1. All modulo reductions in this paper are given in
base-1, unless explicitly stated otherwise.

B. CONVENTIONAL VECTORING
Prior to the ratification of VDSL2, it was maintained that LV
is near-optimal due to the diagonal-dominant structure of the
CSI matrix, as well as owing to the low insertion loss of the
direct channels. Under the common definition of vectoring,
the signal coolant and FEXT canceller correlate only within
the sameDMT tone.Without loss of generality, let us limit the
discussion within this section to a single DMT modulated
tone. In LV based downstream transmission, the transmitted
symbol vector xxxLV and the equalized symbol vector zzzLV are:

xxxLV = GGGAAAuuu, zzzLV = AAAuuu+ nnn, (7)

where the FEXT canceller is represented byGGG = HHH−1. Due to
the power constraints represented by the TxPSDmask and the
ATP budget, the legitimate transmit power policy is limited
byGGG.

In contrast to the 30 MHz VDSL2 spectrum, G.fast will
occupy a bandwidth of 212 MHz. The channel quality of a
high frequency tone suffers from the significant increase of
the direct channel insertion loss and from the FEXT. The
NLV scheme uses modulo-type signal cooling and therefore
incurs a lower power penalty than LV. In NLV, the FEXT
canceller QQQ of Fig. 3, which is a unitary matrix, is obtained
via the triangular decomposition ofHHHH

= QQQRRR. The diagonal
matrixDDD is constructed using the diagonal entries of the lower
triangular matrix RRRH . With feedback aided signal cooling,
the transmitted vector of a NLV based DTU is given by:

xxxNLV = QQQAAAũuu, where ũuu = 000[uuu+ (III −DDD−1RRRH )ũuu], (8)

and the corresponding equalized symbol vector is formulated
as:

zzzNLV = AAAuuu+000[DDD−1nnn]. (9)

Comparing the expressions in (7) and (9), given the same
non-orthogonal channel matrixHHH , the same noise power and
power constraint, it is readily seen that (9) results in a higher
SNR, since the power enhancement achieved by a full channel
inversion GGG is higher than that of a partial inversion DDD−1 of
the diagonal/direct channels.

It has already been shown that using THP as a TPC
technique for UDI message symbols can in theory approach
the Shannon capacity of parallel Gaussian channels upto a
small discrepancy of 1.53 dB within the high SNR regime.
This SNR-loss is owing to the shaping loss [13]. However,
under practical circumstances, the performance of vectored
DSL heavily depends on the validity of the assumption that
the DTU has perfect non-causal knowledge of the down-
stream CSI. Additionally, impulsive noise and/or alien FEXT
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FIGURE 3. Conventional LV based DTU (top) and conventional NLV based DTU (bottom) operating on a single
tone. The three components of a vectored transmitter are: front-end linear FEXT canceller (blue), real-valued
power controller (red) and back-end signal coolant.

FIGURE 4. The Fundamental Mapping Region of each vectoring scheme
and the Voronoi Cell for a two-user system in R2. If the special
configuration of AAA = III is invoked for the power controller, then each
vectoring mapping region is respectively congruent to the fundamental
mapping region.

caused by other interfering sources operating within the same
frequency band will also impact the performance of vector-
ing. Therefore fully vectored transmission with (information-
theoretic) optimal power policy is not used in practice.

C. VECTORING MAPPING REGION
The mapping region representation intuitively characterizes
the most significant power transfer characteristics of a vec-
toring scheme, such as the TxPSD exhibited by the vectored
transmitter. By assuming the power controller of Eq. (7)
to be an identity matrix AAA = III , it is plausible that LV
maps a given vector uuu of UDI symbols, as a point in R2K ,
onto an origin-centered fundamental parallelotope mapping
region GGGU , which is a translation of the basis of the lat-
tice L(GGG). Since the distribution region of ũuu and that of
uuu are identical, the fundamental mapping region of NLV
is geometrically the orthotope QQQDDD−1U obtained by a shear
transformation of the parallelotopeGGGU . An example in R2 is
illustrated in Fig. 4. With any other designated choice of the
power controller AAA, the vectoring mapping region illustrates
the specific distribution of the precoded symbol vector xxx in

the signal space. The underlying transformation of any given
vectoring scheme corresponds to mapping the elements of the
UDI set U onto the vectoring/fundamental mapping region,
usually by (implicitly) invoking a mapping matrix. A map-
ping matrix exists if the corresponding vectoring mapping
region is a parallelotope, which includes the special case of
an orthotope.

The power transfer characteristics exhibited by vectoring
are worth investigating in consideration of the TxPSD and
ATP constraints originally conceived for the DSL standards.
Let the vectoring mapping region be the (origin-centered)
K -dimensional polytope P . Then we can list some of these
relevant geometric properties as follows.

1) SECOND CENTRAL MOMENT
The (normalized) second central moment of an origin-
centered K -dimensional polytope P is given by:

σ 2
P =

∫
P

‖xxx‖2

V (P)
dxxx =

∫
P

K∑
k=1

|xk |2

V (P)
dxxx, (10)

where σ 2
P represents the total average power E{‖xxx‖2} of the

signal xxx. When the power constraints are imposed on each
individual element xk , it is more insightful to consider the
following relative of σ 2

P , which we define as:

ξP =
∫
P

max
1≤k≤K

|xk |2

V (P)
dxxx. (11)

It is apparent that ξP is the average peak power per pair of the
binder. Calculating either σ 2

P or ξP for a general convex poly-
tope P remains an open problem. However, for well-behaved
shapes such as parallelotopes, σ 2

P can be readily obtained.

2) MAXIMUM EUCLIDEAN SPREAD
The TxPSD mask and ATP limit in [4] are proposed
with respect to the maximum TxPSD per-tone-per-pair and
the maximum power per-pair. The absolute power limit
(rather than the average power) per-pair exhibited by the
encoded signal xxx is characterized by a set of K scalars
vvv = [v1, v2, . . . , vK ], which we refer to as the maximum
Euclidean spread (MES) ofP . The kth element vk of theMES
vector vvv is given by:

vk = max
xxx∈P
‖xxx cos θk‖ (k = 1, 2, . . . ,K ), (12)

53442 VOLUME 6, 2018



Y. Zhang et al.: Approximate Perturbation Aided Lattice Encoding

where θk refers to the angle between xxx and the 2D Cartesian
plane spawned by the kth pair in the signal space. It may
be readily recognized that P actually belongs to R2K and
each pair (that transmits QAM symbols) occupies two of the
2K real dimensions. The two real dimensions constitute a
2D Cartesian plane. If we denote the projection region of P
onto the Cartesian plane spawned by the kth pair as JP |k ,
then (12) may be intuitively interpreted as the length of the
longest vector in JP |k . The elements of vvv are referred to as the
MES per (complex) dimension. We note that if a PAM-based
system is considered, then the MES per real dimension is the
projection of P onto each Cartesian axis. Fig. 5 demonstrates
the difference between the two cases.

FIGURE 5. The Maximum Euclidean Spread of a system xxx = GuGuGu in R2

decoupled from a system xxx = gugugu in C, where we have GGG = [ggg, g̃gg],
‖ggg‖ = ‖g̃gg‖ and ggg ⊥ g̃gg. Mapping the UDI U onto GGG results in the solid
square fundamental mapping region S. The minimum bounding box of
the fundamental mapping region is the dashed square, which shows the
MES of S in R2. However, it is apparent that ‖eee‖ = maxxxx∈S ‖xxx‖ and
therefore ‖eee‖ should be the MES of S in C1.

Example: Let us now review the two-user example of
Fig. 4 in more detail, where both users transmit a 1D signal,
i.e. PAM symbols. Observe that the MES per real dimension
is characterized by a minimum-sized bounding box (e.g. the
dot dashed boundary of Fig. 5) confining the vectoring map-
ping region S . The minimum-sized bounding box of the
parallelogram S contains four vertices of S. By exploiting
the symmetry of parallelograms, we only have to find two
of the four vertices that are located the farthest along the
Cartesian axis. The symmetry of a parallelogram can be
readily extended to that of a 2K -dimensional parallelotope.
For a 2K -dimensional parallelotope, we have to find exactly
2K vertices out of all 22K vertices of the parallelotope.

The analysis of the above example of MES in R2K may be
extended to the vectoring mapping regionP of a QAM-based
system in CK . The MES of P in the kth Cartesian plane,
namely vk , is upper bounded by the vector sum of P on
the two Cartesian axis of the kth plane (as demonstrated by
eee and eee′ of Fig. 5). Due to the symmetry of P , the K vertices
corresponding to the K MES values vk constitute a subset of
the 2K vertices corresponding to theMES per real dimension.
The MES vvv can be found using Alg. 1.

Algorithm 1 Maximum Euclidean Spread per Complex
Dimension
1 Input: An origin-centered N -dimensional
parallelotope P whose edges are given by the columns of
the N ×N complex-valued matrixGGG = [ggg1,ggg2, . . . ,gggN ];

2 Output: N -vector vvv = [v1, v2, . . . , vN ] indicating the
MES per complex dimension;

3 ḠGG = {[<(GGG)T ,=(GGG)T ]T , [−=(GGG)T ,<(GGG)T ]T };
4 for m = 1, 2, . . . , 2N do
5 for n = 1, 2, . . . , 2N do
6 if ḡggn(m) < 0 then
7 sssn←−ḡggn/2;

8 else
9 sssn← ḡggn/2;

10 qqqm←
∑2N

n=1 sssn ;
11 if m ≤ N then
12 vm←

√
qqq2m(m)+ qqq2m(m+ N )

13 else if vm−N <
√
qqq2m(m)+ qqq2m(m− N ) then

14 vm−N ←
√
qqq2m(m)+ qqq2m(m− N )

Line 3 of Alg. 1 may be ignored, if the input is a real-valued
matrix that had already been decoupled. Line 10 computes the
vector sum and finds the farthest vertex qqqm of P in the real
dimensionm. Line 11-14 calculates and compares the projec-
tion ofqqqm in the given Cartesian plane. Since Alg. 1 calculates
the MES of a parallelotope, it can be used for determining the
maximum amplitude of the transmitted symbols and therefore
also the peak TxPSD per pair for both LV and NLV.

III. APPROXIMATE PERTURBATION
AIDED LATTICE ENCODING
Lattice-based encoding constitutes an important category
of near-capacity transmission techniques. The success of
lattice-based encoding as a vectoring scheme will depend
on the specific geometry of the lattice generated by the
inverse channel GGG. Each tone operates independently and
therefore the DMT based system of (1) spawns I lattices
in independent Euclidean spaces. Based on the coolant-
controller-canceller vectoring model of (2), we will consider
the basic operations of APPLE for a single DMT channel.
Let the FEXT canceller be represented by ��� = GGG and the
power controller be of a designated configuration AAA (con-
figuring the power controller will be the main concern of
Section III-D). Then the integer-valued signal coolant lllopt is
produced according to the following cost function:

lllopt = argmin
lll
{ max
1≤k≤K

|xk |2}, (13)

which may be relaxed to the following integer least squares
problem, given that xxx = GAGAGA(uuu+ lll):

lll ′opt = argmin
lll
‖GAGAGA(uuu+ lll)‖2. (14)
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The exact solution to the optimization problem of (14)
is given by enumeration algorithms such as the classic sphere
encoder of [15], which results in the vector perturbation
based TPC scheme proposed in [16]. In R2K , the sphere
encoder finds the lattice point on L(GAGAGA) that is the clos-
est to the given point GAuGAuGAu. The vectoring mapping region
of the VP encoder of (14) is the Voronoi cell of the lat-
tice L(GAGAGA) centered at the origin. The Voronoi cell is in
general not a parallelotope, if L(GAGAGA) does not have any
orthogonal basis (Fig. 4). Therefore no mapping matrix exists
for VP, if no orthogonal basis exists for L(GAGAGA). For lattices
of moderate dimensions, the second central moment of a
2K -dimensional Voronoi cell is tightly lower-bounded by that
of a 2K -dimensional sphere of the same volume [17].
A conventional sphere encoder consists of the lattice

reduction preprocessing followed by the search-tree based
enumeration. The enumeration result is not affected by lattice
reduction, but the enumeration complexity is. Known enu-
meration algorithms that work on lattices having unknown
statistics tend to have an exponentially increased complex-
ity, as demonstrated in [18]. Given a DSL binder encapsu-
lating a large number of twisted pairs, the computational
cost of VP becomes excessive. As a consequence, we will
find an approximate solution of (14) based on the nearest
plane method of Babai [19] on short lattice basis. We will
first characterize the performance of lattice reduction, and
then we present the coice of the additive signal coolant lll
based on the lattice reduction aided TPC scheme of [20].
Finally we present the novel power control scheme and the
bit loading algorithm for achieving the claimed near-optimal
performance of APPLE.

A. LATTICE REDUCTION
Babai’s nearest plane approximation of the closest lattice
point [19] depends heavily on the specific geometric prop-
erties of the reduced lattice basis. The objective of lattice
reduction is to find the particular basis containing the short-
est vectors out of all legitimate basis. The notion has since
been relaxed to that of finding a basis containing reasonably
short vectors in favor of a reduced computation time, using
for example the Lenstra-Lenstra-Lovász (LLL) method [21].
A value of 1 − 10−6 is used for the LLL constant defined
in [21] in order to find a shorter basis than the one found with
the aid of the usual LLL constant of 0.75.

For comparison, we consider a set of channel measure-
ments based on a 100 meter DSL binder encapsulating
10 twisted pairs of 0.5 mm diameter each. The measurements
span the entire 212 MHz bandwidth of the G.fast spectrum.
The performance of the LLL reduction and that of the optimal
Minkowski reduction [22] are compared in Fig. 6, where the
orthogonality defect of the LLL-reduced basis δ(GGGL) and that
of theMinkowski reduced basis δ(GGGM ) are plotted. On the left
of Fig. 6, it is shown that the orthogonality defect of the basis
associatedwith the inverse channels increases over frequency.
The quality of these basis starts to degrade at below 50 MHz,
while the degradation becomes dramatic beyond 100 MHz

FIGURE 6. Orthogonality defect of the inverse DMT channels and the
reduced basis. For comparison purpose, we assume that the Minkowski
reduction algorithm in [22] does indeed produce the shortest possible
basis for a given lattice. The basis given by the inverse channel loses
orthogonality before 50 MHz, but LLL-reducible and Minkowski-reducible
basis only occur after 90-100 MHz.

without lattice reduction, which brings a major challenge
to the 212 MHz G.fast profile in comparison to the current
operational profile of 106 MHz. Despite δ(GGG) exceeds 1010

for a handful of inverse channel matrices GGG, both δ(GGGL) and
δ(GGGM ) manage to stay below 105 for the entire 212 MHz
bandwidth. Based on the right side of Fig. 6, the relative gap
between δ(GGGM ) and δ(GGGL) is in fact negligible compared to
the gap between δ(GGGL) and δ(GGG), therefore the employed LLL
reduction is near-optimal.

The orthogonality defect, as well as several other signif-
icant geometric measures of an LLL-reduced basis, such as
the lengths of the basis vectors, can be theoretically (upper
and lower) bounded for any lattice associated with a partic-
ular channel matrix. However, the known bounds are loose,
hence they do not reflect the average performance sufficiently
accurately. Therefore we do not incorporate these bounds into
our investigations.

B. OPERATION OF APPLE
Let us consider the complex-valued DTU-side encoder of (2)
as a decoupled real-valued system for one of the I DMT
tones. Based on the DTU transmitter structure of Fig. 7,
we employ the following triangular decomposition of the
matrixGGGAAA:

GGGAAA =WWWBBBTTT−1, (15)

where WWW has orthogonal columns and BBB is an upper trian-
gular matrix with diag(BBB) = diag(III ). The integer-valued
unimodular matrix TTT transforms the given lattice basis GGGAAA
to the LLL-reduced basisWWWBBB. Following the decomposition
of Eq. (15), the nearest-plane solution lllnp of the optimization
problem of (14) is given by:

lllnp = −TTT l̃ll, where l̃ll = dWWW−1GAuGAuGAu+ (III −BBB)l̃llc, (16)
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FIGURE 7. APPLE based non-linear DTU for a single tone.

where d·c denotes the element-wise rounding-off operation to
the nearest integer. The symbol vector xxxAPPLE transmitted by
the APPLE encoder is then given by:

xxxAPPLE = GAGAGA(uuu+ lllnp)

= GAGAGA(uuu− TTT dWWW−1GAuGAuGAu+ (III −BBB)l̃llc)

= WWW (mmm−BBBdmmm+ (III −BBB)l̃llc)

= WWWûuu, (17)

where we have mmm = BTBTBT−1uuu and ûuu = mmm − BBBdmmm + (III − BBB)l̃llc.
The coolant is removed by a modulo operation at the CPE
side. Therefore the equalized symbol vector is given by:

zzzAPPLE = AAAuuu+000[nnn]. (18)

SinceBBB is an upper triangular matrix with diagonal entries of
bkk = 1 ∀k , the feedback encoder in Fig. 7 is carried out in
reverse order, commencing from k = 2K . In this case ûk is
given by:

ûk = mk −
2K∑
j=k

bkjdmk −
2K∑

j=k+1

bkj l̃jc

= mk − (
2K∑

j=k+1

bkj l̃j + dmk −
2K∑

j=k+1

bkj l̃jc)

= (mk −
2K∑

j=k+1

bkj l̃j)− dmk −
2K∑

j=k+1

bkj l̃jc

= 000[mk −
2K∑

j=k+1

bkj l̃j]. (19)

The last equality results from the fact that the difference
between any real number and its nearest integer belongs to
the UDI interval of (−1/2, 1/2]. As a consequence, ûuu and the
message symbol vector uuu are both distributed over the UDI
region U . Therefore, according to (17) and (19), the mapping
matrix of APPLE isWWW and the vectoring mapping region of
APPLE is characterized by the setWWWU .
Let the power controller be AAA = III and the inverse chan-

nel GGG be LLL-reducible, i.e. TTT 6= III . Then the fundamen-
tal mapping region of APPLE has a lower second central
moment and a lower MES per dimension than those of LV
and NLV. However, since the mapping matrixWWW of APPLE
and the mapping matrixQDQDQD−1 of NLV both have orthogonal
columns, the corresponding fundamental mapping regions
are orthotopes. This is graphically demonstrated in Fig.4.

C. COMPLEXITY OF APPLE
In this section, we consider the complexity of the APPLE
transmitter and compare it to that of the conventional LV
and NLV. Since the system requires initialization, we will
briefly investigate the complexity of initialization (excluding
the configuration of the power controller) and the standard
symbol encoding independently.

The initialization of APPLEmainly involves the decompo-
sition of (15), i.e. a combination of LLL-reduction having a
complexity order ofO[(2K )4 log(max ‖gggk‖)] and a triangular
decomposition having a complexity order ofO[(2K )3], while
the initialization of LV andNLV requiresmatrix inversion and
triangular decomposition (both imposing a complexity order
ofO(K 3) for complex-valuedmatrices), respectively. APPLE
incurs the highest initialization overhead, but its polynomial
complexity order is similar to that of the other aforementioned
matrix operations. Bearing in mind that the DSL channels are
quasi-static, the complexity of initialization can be ignored
for practical purposes.

During the steady-state operation, both the power con-
troller and the FEXT canceller (for all vectoring schemes) are
linear matrix filters of size K , therefore they have a complex-
ity order ofO(K 2). The decision feedback loop in THP has a
complexity order ofO(K 2), whereas the same loop in APPLE
has a complexity order of O[(2K )2]. Meanwhile, APPLE
includes two additional matrix filters, both of which have a
complexity order ofO[(2K )2]. Hence the overall complexity
of APPLE isO[(2K )2], while the complexity of both LV and
NLV isO(K 2). If thematrix filters rely on parallel computing,
then LV has a complexity order ofO(K ), NLV hasO(K 2) and
APPLE has O[(2K )2].

It is worth noting that an extension of the LLL algo-
rithm has been proposed in [23] for operating directly in
CK without using the decoupling transformation of (3).
The results of [23] demonstrate that the complex-valued
LLL (cLLL) algorithm performs almost identically to the
original real-valued LLL algorithm. In this case, the com-
plexity of APPLE is alsoO(K 2). Therefore the complexity of
APPLE is comparable to that of NLV, which is significantly
lower than that of the sphere encoder. We summarize our
findings in Table. 1.

D. POWER CONTROLLER AND POWER
ALLOCATION POLICIES
The power controller enforces a designated power alloca-
tion policy for the K twisted pairs of the DSL binder with
respect to each of the I DMT channels in the system
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TABLE 1. Complexity order of the vectoring schemes with parallel
computing.

characterized by (1). The main functionality of the power
controller is to coordinate the amount of power allocated
to the message-coolant mixture signal so that the per-pair
TxPSD mask Pi and per-pair ATP limit A defined in [4] are
both satisfied, which are:

max
xxxi∈P i
|x ik |

2
≤ Pi ∀i, k (20)

I∑
i=1

max
xxxi∈P i
|x ik |

2
≤ A ∀k, (21)

where P i is the vectoring mapping region corresponding to
the ith tone. The power controller’s allocation policies may
be given in two categories, including the scalar power policy
and the optimized power policy.
Under a scalar power allocation policy, the power con-

troller sets the scaling matrix AAAi for each tone i as a scalar
matrix, and the difference amongst each user’s channel
quality and FEXT condition is ignored. The scalar power allo-
cation policy can be efficiently reconfigured in case of impul-
sive noise. Typically, the power controller’s allocation policy
is configured and determined during initialization, when the
DTU-side symbol encoder acquires downstream CSI. How-
ever, if the seamless rate adaptation (SRA) protocol such
as [24] is invoked (e.g. when high-power impulsive noise
occurs), then the power allocation policy must be modified
without re-initialization in order to sustain continuous con-
nection. In this case, the flexible reconfiguration of a scalar
power allocation policy is advantageous.

Alternatively, the power controller may employ a specif-
ically formulated optimized power allocation policy, which
maximizes the sum rate of the binder with respect to a partic-
ular SER requirement. Configuring the power controller for
this specific criterion requires two-dimensional optimization.
Due to the discrete nature of bit allocation in a practical
rate adaptive system, computing the power controller’s opti-
mal power allocation policy is a non-convex optimization
problem. Furthermore, the constraint of the TxPSD mask
and the ATP limit are imposed with respect to each twisted
pair. The context is akin to a wireless scenario, where the
power constraint is imposed with respect to each transmit
antenna rather than the whole antenna group. Related work
about the optimized power allocation policy for DSL systems
utilizing LV/NLV under per-pair power constraints can be
found in [25].

1) SCALAR POWER ALLOCATION POLICY
Let the scalar power allocation policy be given by PPPi = γ iIII ,
in which case the scaling matrix is AAAi = III

√
γ i. In general,

if we denote the vectoring mapping region of APPLE for
tone i as P i, we may find that E{Pi/γ i} = ξP i based
on the definition of (11). Given the orthotope shape of P i

based on (17), (18) and (19), as well as the improved orthog-
onality of reduced lattice basis, we may characterize the
average achievable SNR of each tone and therefore the SER
performance of APPLE.
Lemma 1: For square QAM (i.e. 2b-QAM for b =

2, 4, 6, ...) constellations, the average SER ζ iAPPLE of tone i
achieved by APPLE under a scalar power allocation policy
is lower bounded by:

ζ iAPPLE ≥ 1−

1− erfc
√ 2Pi

σ 2
n det[HHH i(HHH i)H ]−1/K

2

,

(22)

where erfc(·) represents the complementary error function.
Furthermore, HHH i is the channel matrix of tone i and σ 2

n is the
noise variance, as in (1).

The SNR of each equalized symbol zik of the same tone i
is characterized by γ i/σ 2

n based on (18) and on the scalar
power policy we employed, which is dependent on the sec-
ond moment of APPLE’s vectoring mapping region accord-
ing to the relationship between (10) and (11). The second
moment of a 2K -dimensional parallelotope is known to be
lowered bounded by that of a hypercube of the same volume
and dimension. Based on the definition in [12], the second
moment of a 2K -dimensional hypercube C having volume2

V (C) = V (P i) = det[(GGGi)HGGGi] = det[HHH i(HHH i)H ]−1 is
formulated as:

σ 2
C = dim(C)G(C)V (C)2/dim(C) =

K det[HHH i(HHH i)H ]−1/K

6
,

(23)

where dim(C) = 2K and the dimensionless second moment
of a hypercube is G(C) = 1/12. Upon revisiting the differ-
ence between (10) and (11), we may identify that KξP i/σ 2

P i

actually represents the peak-to-average ratio (PAR) of the
per-pair TxPSD. Since the transmitted signal xxx i is assumed to
be distributed over the hypercube C, we may further hypoth-
esis that C is positioned in such a way that its 2D facets
are parallel to the Cartesian planes. In this case, each pair
achieves a common minimum PAR, which is given by that
of the U-constellation of (5), i.e. (1/2)2/(1/12) = 3. There-
fore the following holds regarding the geometry of APPLE’s
vectoring mapping region P i:

ξP i ≥
3σ 2

P i

K
≥

3σ 2
C

K
=

det[HHH i(HHH i)H ]−1/K

2
. (24)

2If the transformation of (3) is applied, then the fundamental volume is
det(GGGi) for the real-valued basisGGGi.
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Hence the following SNR bound exists for APPLE indepen-
dent from the optimality of the employed lattice reduction
criterion:

E{γ i/σ 2
n } ≤

2Pi

σ 2
n det[HHH i(HHH i)H ]−1/K

. (25)

As a consequence of using the additive coolant lll inp of (16),
the mixture ũuui of Fig. 7 (rather than the ûuui of (17)) is drawn
from an infinite-sized periodically-expanded constellation.
Thus for each user, ũik is distributed over the infinite-sized
QAM constellation.3 For infinite-QAM, every point on the
constellation diagram has exactly four nearest neighbors of
identical distance. Hence the exact SER performance of
APPLE is identical to that of an infinite-QAM constella-
tion transmitted over an AWGN channel, and the proof of
Lemma 1 is completed.

As demonstrated in Fig. 2, both even-bit square-QAM
and odd-bit cross-QAM constellations may be approxi-
mated by the UDI. However, due to the ‘missing’ cor-
ner points of a cross-QAM constellation, some points of
the infinitely-spliced cross-QAM will no longer have four
equi-distance neighbors, since there will be ‘holes’ in the
constellation. This typically results in an overestimation of
the encoded PSD ξP i and therefore an overestimation of SER.
A study of the exact effect of the missing points as well
as the error rate performance of the cross-QAM in linear
environments may be found in [26].

FIGURE 8. SNR gain of NLV and that of APPLE in comparison to the SNR
penalty of LV.

On the other hand, given the mapping matrix WWW i,
the exact second moment of the corresponding parallelotope
is given by the trace function, σ 2

P i = tr[(WWW i)HWWW i]. We may
apply similar analysis to the geometry of LV and NLV for
finding the relative SNR and SER performance of each vec-
toring scheme. For simplicity, we assume the minimum PAR
KξP i/σ 2

P i = 3 for LV and NLV as well, even though the
actual PAR is higher in both cases. In Fig. 8, we characterize
the SNR gain of APPLE over LV and compare it to the SNR

3This is easily obtained if we splice infinite amount of square QAM
constellations, e.g. the boxed 64 QAM of Fig. 2, side by side.

gain of NLV over LV for the 100-meter cable characterized
by Fig. 6. It is shown that APPLE has a peak SNR gain in
excess of 10 dB over NLV for the worst-case channel, while
the advantage of APPLE is more than 5 dB over NLV in
average.

FIGURE 9. SER performance of 16 QAM vs ATP limit per pair under scalar
power allocation policy over the full 212 MHz bandwidth. The lower
bound of APPLE is given by Lemma 1, while the theoretical performance
of LV and NLV is calculated with the trace approximation.

In Fig. 9, the simulated SER of each vectoring scheme
using 16 QAM as the input constellation, the lower bound of
Lemma 1, as well as the theoretical SER performance of LV
and NLV using the trace approximation are compared. It is
shown that Lemma 1 has a 0.5 dB difference compared to our
simulation result, while the gap is negligible for LV and NLV
between simulation results and the theoretical performance.
At high SNR regime, the SER performance of APPLE is
close to that of the sphere-encoder-based VP scheme, both of
which significantly outperform the conventional NLV and LV,
by over 15 dB SNRmargin. Due to the ATP constraint of (21),
whose historical maximum is 8 dBm in the G.fast 106b
profile [8], transmitting a full set of 16 QAM symbols over all
tones at an SER of below 10−4 is impossible for LV and NLV.

2) OPTIMIZED POWER ALLOCATION POLICY
Assuming a given symbol error rate requirement, configuring
the optimized power allocation policy for a rate-adaptive
system is also often referred to as the bit loading process.
For anM i

k -QAM based system, bit loading is an optimization
process, which we formulate as follows:

max
I∑
i=1

K∑
k=1

bik where bik = log2(M
i
k ), (26)

subject to the constraints of (20) and (21). Based on the
characterization of the equalized symbol vector zzzi in (7), (9)
and (18), the diagonal element Aikk of the controllerAAA

i defines
the SNR of the equalized symbol. For a given PSD σ 2

n of the
AWGN, Aikk also defines the legitimate power allocation Pikk .
For QAM symbols, the legitimate bit load b of an AWGN
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channel with respect to a given SNR η and a coding gain α is
given by:

b = log2M = log2(1+
αη

δ
), (27)

where δ characterizes the gap between the M -QAM scheme
and the capacity of an AWGN channel with respect to the
SER target ζ . The SNR gap δ is defined as [27]:

δ =
1
3

[
√
2 erfc−1

(
ζ

2

)]2
. (28)

It is apparent that ηik = Pikk/σ
2
n . However, since bik

assumes integer values upto a bit cap of bmax, the minimum
required power Pikk also takes discrete values. Therefore the
optimization problem of (26) is non-convex.

On the other hand, the power constraints (20) and (21)
impose instantaneous limits on the peak TxPSD and peak
ATP per pair. Given the vectoring mapping region P i (which
depends on AAAi) of the transmitted symbol vector xxx i and the
MES vvvi of the polytope P i, the peak TxPSD of the ith tone
of the kth pair is characterized by |vik |

2, while the peak ATP
of the kth pair is characterized by

∑I
i=1 |v

i
k |
2 accordingly.

We note that the power allocation Pikk calculated using (27)
and (28) refers to the average constellation energy, which
must be up scaled by the peak-to-average ratio in order to
find the peak value of the TxPSD and that of the ATP.

E. BIT-LOADING ALGORITHM
Let us consider the common scenario, where the power con-
troller invokes the optimized power allocation policy. The
combinatorial optimization problem (26) may now be consid-
ered as fitting the largest parallelotope within the duocylinder
defined by the TxPSD mask of each pair, with the additional
constraint of the ATP limit spanning I independent Euclidean
spaces.

The LLL reduction algorithm involved in (15) presents
many analytical challenges. If AAAi is not a scalar matrix,
then decomposing GGGiAAAi results in a completely different
unimodular matrix from the one obtained by decompos-
ing GGGi. The two unimodular matrices are not known to be
related linearly, hence there is no known technique of effi-
ciently deriving APPLE’s vectoring mapping region from its
power-policy-agnostic fundamental mapping region. There-
fore we employ a heuristic bit loading algorithm appropri-
ately adapted from [28] and [29]. The algorithm is given
in two consecutive parts, namely in Alg. 2 and Alg. 3,
respectively.

Let f (bik ) denote the minimum required power alloca-
tion with respect to the given SER target, coding gain
and AWGN PSD, when transmitting at b bits/symbol on
tone i pair k .4 Given our power allocation policy PPPi and
the time-invariant FEXT canceller GGGi, F(PPPi) represents the
mapping matrixWWW i of APPLE following the decomposition
GGGi
√
PPPi = WWW iBBBi(TTT i)−1 akin to that of (15). Alg. 2 and Alg. 3

4If the multi-pair channel of a given tone i is partially vacant, i.e. bik = 0
for some choices of k , then we define f (0) = ε for some complementary
signal with negative SNR.

Algorithm 2 TxPSD-Constrained Bit Loading

1 Initialization: bik ← bmax ∀i, k; PPPi← f (bmax)IIIK ∀i;
WWW i
← F(PPPi); vvvi← MES(WWW i);

2 for all tones i = 1, . . . ,T do
3 while max1≤k≤K |vik |

2 > Pi do
4 kmax← argmaxk (max1≤k≤K |vik |

2);
5 for all candidate pairs k = 1, . . . ,K do
6 b̄ik ← bik − 1; P̄ik ← f (b̄ik );

7 P̄PP
i
←

diag[Pi1, . . . ,P
i
k−1, P̄

i
k ,P

i
k+1, . . . ,P

i
K ];

8 W̄WW
i
← F(P̄PP

i
); v̄vvi← MES(W̄WW

i
);

9 1|vikmax
|
2
|k ← |vikmax

|
2
− |v̄ikmax

|
2;

10 k∗← argmaxk (1|v
i
kmax
|
2
|k );

11 bik∗ ← bik∗ − 1;
12 PPPi←

diag[Pi1, . . . ,P
i
k∗−1, f (b

i
k∗ ),P

i
k∗+1, . . . ,P

i
K ];

13 WWW i
← F(PPPi); vvvi← MES(WWW i);

Algorithm 3 ATP-Constrained Bit Loading

1 Initialization: bik , P
i,W i and vi from Alg. 2;

2 while max1≤k≤K (
∑I

i=1 |v
i
k |
2) > A do

3 kmax← argmaxk [max1≤k≤K (
∑I

i=1 |v
i
k |
2)];

4 for all tones i = 1, . . . ,T and lines k = 1, . . . ,K do
5 b̄ik ← bik − 1; P̄ik ← f (b̄ik );

6 P̄PP
i
← diag[Pi1, . . . ,P

i
k−1, P̄

i
k ,P

i
k+1, . . . ,P

i
K ];

7 W̄WW
i
← F(P̄PP

i
); v̄vvi← MES(W̄WW

i
);

8 1|vikmax
|
2
|i,k ← |vikmax

|
2
− |v̄ikmax

|
2;

9 Find (i∗, k∗)← argmaxi,k [1|v
i
kmax
|
2
|i,k ];

10 bi
∗

k∗ ← bi
∗

k∗ − 1;
11 PPPi

∗

← diag[Pi
∗

1 , . . . ,P
i∗
k∗−1, f (b

i∗
k∗ ),P

i∗
k∗+1, . . . ,P

i∗
K ];

12 WWW i∗
← F(PPPi

∗

); vvvi
∗

← MES(WWW i∗ );

are the two parts of the loading algorithm that operates under
the constraint of (20) and (21), respectively. The entire load-
ing algorithm operates under the greedy bit-removal concept,
which has been proven to be optimal for a single-pair DMT
scenario [30].

In Alg. 2, the system is initialized by assigning the max-
imum admissible bit allocation bik = bmax. The allocation
policy of the power controller, the vectoring mapping regions
and the MES are determined for all tones and all pairs there-
after. With respect to each tone i, the TxPSD of each pair is
compared against the mask Pi. If the highest TxPSD exceeds
the mask, then the corresponding pair is denoted as kmax and
its TxPSD is given by |vikmax

|
2. Using the greedy principle,

the specific pair k∗ where subtracting a single bit would have
caused the largest reduction of |vikmax

|
2 is selected. The bit

load bik∗ is then updated to have one less bit. The TxPSD
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characterized by the new bit allocation of tone i is then com-
pared against the mask. Alg. 2 terminates, when the TxPSD
mask is fully compliedwith for all tones right across the entire
bandwidth of the system.

Alg. 3 seeks to comply with the ATP requirement using
the results obtained in Alg. 2. If the highest ATP exceeds the
limit A, then the pair kmax associated with the highest ATP∑I

i=1 |v
i
kmax
|
2 is identified first. The algorithm then deter-

mines the load bi∗k∗, where subtracting a single bit would have
caused the largest reduction of the ATP of the pair kmax. Then
bi∗k∗ is updated to have one less bit and the new ATP of each
pair is compared against the limit A. Alg. 3 terminates, when
the maximum ATP has been reduced below the limit.

If the power controller invokes a scalar power allocation
policy, then the efficiency of Alg. 2 (as well as of Alg. 3)
is boosted in two ways. On one hand, the scalar power
allocation policy does not differentiate between each pair,
hence searching for the optimal pair in line 5-9 for the case
of achieving a bit reduction is unnecessary. On the other
hand, the vectoring mapping region and the mapping matrix
of APPLE can be efficiently obtained from the fundamental
mapping region with the aid of simple scaling. Therefore it
is unnecessary to carry out the lattice reduction of (15) from
scratch for each update of the power policy, as seen in line 8
of Alg. 2.

IV. RESULTS
We consider an ambitious futuristic configuration, which we
expect to herald the next-generation metallic access network
beyond G.fast. The following results are obtained using chan-
nel measurements characterizing a 100-meter 10-pair DSL
binder as well as a 50-meter 10-pair one, both of which
occupy the expanded baseband spectrum of frequencies span-
ning all the way upto 300 MHz. The TxPSD mask of [4] is
imposed for the below 212MHz range and a flat TxPSDmask
extended from the 212 MHz point onwards is imposed for
frequencies over 212 MHz. The ATP limit remains at 8 dBm
per pair as in the 106b G.fast profile, while a −150 dBm/Hz
AWGNPSD is assumed.Without loss of generality, let the bit
loading be capped at 15 bits corresponding to 32768-QAM as
in VDSL2. The sum-rate achieved by APPLE is compared
against those achieved by the conventional LV and NLV,
as well as against the capacity given by the sum-rate of DPC.
The DPC capacity is computed under the relaxed constraint
of the total average (instead of peak) TxPSD per binder
akin to the context of the original DPC scheme, i.e. we have
‖xxx i‖2 ≤ KPi.

In Fig. 10 and Fig. 11, the sum-rate lower bound of each
vectoring scheme, obeying the constraints of the peak TxPSD
and peak ATP is shown for both the 50m and 100m cable
length and for both the optimized and for the scalar power
allocation policy. The performance of APPLE is almost iden-
tical to that of NLV, when the controller employs the opti-
mized power allocation policy. By contrast, under the scalar
power allocation policy, the sum-rate of APPLE exceeds that
of both LV and NLV.

FIGURE 10. Sum-rate of 10-Pair 0.5mm short DSL binders configured with
optimized power allocation policy. An extended baseband spectrum of
upto 300 MHz is used with noise floor at −150 dBm/Hz.

FIGURE 11. Sum-rate of 10-Pair 0.5mm short DSL binders configured with
scalar power allocation policy. An extended baseband spectrum of upto
300 MHz is used with noise floor at −150 dBm/Hz.

FIGURE 12. Per-pair throughput of a 10-Pair 0.5mm DSL binder of
length 50m.

The throughput of APPLE and that of NLV are compared
in more details in Fig. 12 and Fig. 13. It is explicitly shown
that APPLE can achieve an improved user-fairness and a
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FIGURE 13. Per-pair throughput of a 10-Pair 0.5mm DSL binder of
length 100m.

better worst-case performance than NLV under the optimized
power allocation policy, while retaining an identical sum-rate.
On the other hand, APPLE can also achieve a higher sum-rate
than NLV when both have identical fairness under the scalar
power allocation policy.

V. CONCLUSIONS
Given the expanded spectrum of G.fast, the extra high-
frequency tones no longer have diagonally-dominant chan-
nels. The crosstalk has dramatically increased, especially
beyond 106 MHz. To satisfy the peak TxPSD per pair con-
straint and the peak ATP per pair constraint, we proposed a
novel vectoring scheme, referred to as APPLE, by exploiting
the geometric properties of lattices and their short-length
basis. The improved signal coolant of APPLE results in sig-
nificant SNR gains over both LV and NLV, hence it achieves
a better SER performance. For the family of modulo type
vectoring schemes, APPLE is shown to achieve a higher
sum-rate than NLV under guaranteed fairness. Viewed from
a different perspective, APPLE achieves improved fairness
over NLV, while maintaining a similar sum-rate. Since DSL
channels are quasi-static, the advantage of APPLE is realized
at minor complexity sacrifice over the state-of-the-art NLV
bench marker.
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