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ABSTRACT DNA methylation plays an important role for initiation and development of human cancers;
therefore, it is used as a biological marker for early detection of cancer. A huge number of features for
each sample and a low number of the available samples are two main problems of this field. This paper
presents novel vertical, horizontal, and cascaded DNA methylation feature analysis methods in promoter
regions. Vertical analysis processes each feature across all normal or cancer samples to get indicators about
the methylation level. The generated values are used to select a subset of features within a given threshold.
This set undergoes a horizontal analysis process where we group many features into a window that is used
to yield a single value. Hence, the original sample size goes through two reduction steps: the first one is
an unsupervised feature selection via the vertical analysis of the features and the second one is a feature
extraction via the horizontal process of the selected features. For evaluation and comparison, we used
traditional feature selection methods and SVD to compare themwith the proposed approaches and found that
the proposed approaches outperform all other approaches with a good margin. The results of vertical anal-
ysis or horizontal analysis alone are better than traditional approaches. Moreover, the results are improved
more when combining both types of analysis. With only 97 features, the proposed combined approach is
99.16% accurate while the best traditional classification is only 98.16% accurate with 31 195 features. The
combined approach achieved 8.8% to 54.3% improvement percentages compared to all other approaches in
terms of a mean absolute error and a root-mean-square error. This indicates that the cascaded approach is far
better than the previous approaches. Moreover, the combined approach improves the system accuracy and
reduces space and processing complexities of the system.

INDEX TERMS DNA methylation, feature selection, feature extraction, cancer prediction, differential
methylation.

I. INTRODUCTION
Cancer is responsible for 13% of global deaths and can
develop anywhere in the body but all cancers are character-
ized by multiple genetic and epigenetic genomic alterations
which lead to uncontrolled cell growth and reduced cellu-
lar differentiation [1]–[3]. In fact, epigenetics is the science
that mainly studies external and environmental factors which
activate or inhibit the work of genes and affect how the cell
reads genes. The DNAmethylation is an important epigenetic
factor which plays an important role for the initiation and
progression of human cancers and therefore could potentially

be employed as a biomarker for early detection of cancer
and as a predictor of treatment response. More specifically,
the aberrant methylation of CpG islands in the promoter
region is widely recognized as a tumor suppressor silencing
mechanism in cancer [4], [5]. DNA methylation can change
the DNA phenotype not its genotype where it can change the
gene expression in cells when they divide from stem cells
into a particular tissue cells. The changed gene expression
stabled and the cell does not revert back to the stem cell or
another type of cell [3]. Hence, understanding the molecular
mechanisms of epigenetic alterations at the early stages of

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

53533

https://orcid.org/0000-0002-7174-6083
https://orcid.org/0000-0001-8449-5239


A. F. Al-Juniad et al.: Vertical and Horizontal DNA Differential Methylation Analysis for Predicting Breast Cancer

tumorigenesis may be very important in developing new can-
cer treatments. In fact, DNA methylation can be influenced
by several factors including age, environment / lifestyle, and
disease state [2], [3].

Computationally, the dataset of DNA methylation suf-
fers from two significant problems, namely the high-
dimensionality and high noises which are considered big
challenges for classification. In addition, DNA methylation
dataset has large number of features (genes or probes) with
small number of samples. So, during training process this
may lead to performance degradation of classification and
raise the risk of overfitting [6].

One possible solution is to use feature selection to obtain
the most relevant feature set and eliminate the redundant
and irrelevant features [7], [8]. This set of discriminative
features will play an important role for classifying normal
samples from cancer ones. Sometimes, generating new fea-
tures from the existing ones via feature extraction will be
more efficient and sometimes combining feature selection
with feature extraction will produce a more powerful method
for classification [9]. This will reduce overfitting, improve
prediction accuracy, decrease the time and space complexities
of the classification process and open new directions for this
field.

However, this is not an easy job for DNA methylation.
The question that may arise ‘Does the DNA methylation
value at the feature level give useful information for clas-
sification?’ The answer is ‘‘yes’’ but up to a very limited
level. The methylation values are actually continuous and
are different from sample to sample within the same sample
set. Hence, the usefulness of these values as isolated values
is very limited. A more logical approach is to accumulate
these values at the feature level across all samples or at the
sample level across many features to achieve more useful
indicators.

This paper introduces both methods of dealing with the
methylation values. It starts by accumulating the values at the
feature level across all samples and hence finding the average
value for each sample set alone. This process is done for
both normal and cancer sample sets. The absolute difference
between the two means is used as an indicator for feature
selection or deselection. In the second step, the differences
between some of the extracted features are accumulated hori-
zontally within a specified window to produce a new feature.
This extraction process uses the sum of differences between
successive features within the window. Therefore, the differ-
ential analysis is utilized vertically to select some features and
then horizontally to extract new features. Beside their better
performance, our approaches minimize the processing time
and the allocated memory while maintaining high accuracy.

The main contributions of this paper are:
• Building a framework for differential DNA methylation
classification.

• Proposing a novel Differential Mean Feature Selection
(DMFS) by utilizing the vertical analysis of features
across the sample sets.

• Proposing a novel Differential Windowed Feature
Extraction (DWFE) by utilizing the horizontal differ-
ential DNA methylation analysis which generates new
compact and representative feature set.

• Proposing a cascaded DMFS-DWFE approach of verti-
cal and horizontal analysis of DNA methylation.

The rest of this paper is organized as follows: the related
work of DNA methylation and differential DNA methyla-
tion is given in Section II. The dataset and the examined
methodologies are presented in Section III. In section 4,
we analyze the obtained results and discuss them. The last
section lists conclusions and highlights the possible future
work directions.

II. RELATED WORK
The DNA methylation refers to the addition of a
methyl (CH3) group to the cytosine or adenine nucleotides.
This methyl group may be added to the fifth carbon
atom of the cytosine base or the sixth nitrogen atom of
the adenine base in the context of 5’-CG-3’ (CpG dinu-
cleotide) across human genome by DNA methyltransferase
(DNMT) enzymes [3], [10]. Many studies linked the aber-
rant DNA methylation to cancer. However, most of these
studies have been limited to the analysis of promoters and
CpG islands (CGIs). Recently, new technologies for whole-
genome DNAm (methylome) analysis have been devel-
oped [11], [12].

DNA methylation can be classified into hyper or hypo
methylation.Many studies have associated hyper-methylation
of tumor suppressor genes and hypo-methylation of onco-
genes to the tumorigenic process [1]–[5], [13]. Hence,
finding the hyper-methylated regions helps us to early dis-
cover the cancer [5], [14]. Ehrlich and Jiang [15] indicated
that DNA hypo-methylation associated with cancer is prob-
ably as frequent as cancer-linked DNA hyper-methylation.
They gave a caution to be used in development of treat-
ment schemes for cancer involving DNA demethylation
because they might result in increased tumor progression.
Sproul et al. [16] suggested that the hyper-methylated gene
does not directly contribute to cancer development via silenc-
ing. Instead aberrant hyper-methylation reflects developmen-
tal history and the perturbation of epigenetic mechanisms
maintaining these repressed promoters in a hypo-methylated
state in normal cells [17].

Ehrlich and Lacey [18] found that much more cancer-
linked hypo-methylation of unique gene sequences and
hyper-methylation of repeated sequences than previously
found, although there are differences in the frequency
with which subsets of sequences undergo hypo- or hyper-
methylation. Tan et al. [10] indicated that aberrant DNA
methylation is a frequent epigenetic event in pancreatic
cancer. They identified 23 and 35 candidate genes that
are regulated by hyper-methylation and hypo-methylation
in pancreatic cancer, respectively. They also identified can-
didate methylation markers that alter the expression of
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genes critical to gemcitabine susceptibility in pancreatic can-
cer. Fukushige and Horii [19] described the mechanism that
established andmaintained DNAmethylation patterns as well
as the mechanism of aberrant gene silencing in cancer. More-
over, they introducedmethods to isolate theDNAmethylation
biomarkers. They indicated that probably some combination
of the various biomarkers, including genetic, epigenetic and
serum ones will facilitate more reliable diagnosis, and DNA
methylation biomarkers will be central to this development.

Model et al. [20] demonstrated how phenotypic classes can
be predicted by combining feature selection and discriminant
analysis. They showed that the right dimension reduction
strategy is of crucial importance for the classification perfor-
mance. Feltus et al. [21] and Previti et al. [22] used classifi-
cations algorithms to classify CpG islands. Zhuang et al. [23]
highlighted the importance of tailoring the feature selection
and classification methodology to the sample size and bio-
logical context of the DNAmethylation study. Das et al. [24]
described a computational pattern recognition method for
both CpG islands and non-CpG island regions that is used
to predict the methylation landscape of human brain DNA.
A feature selection algorithm based on sequential forward
selection was developed by Baur and Bozdag [25]. Their
algorithm utilized different classificationmethods to compute
gene centric DNAmethylation using probe level DNAmethy-
lation data.

Zhou et al. [26] tried to find efficient feature selec-
tion methods to select a small number of informa-
tive genes using mutual information and rough sets.
Nayyeri and Noghabi [27] proposed a sparse compact incre-
mental learning machine for cancer classification on microar-
ray gene expression data that is robust against diverse
noises and outliers. Moghadam et al. [28] proposed a rule-
based classifier to report combinations of CpG sites for
identifying particular methylation changes in these sites.
Kurdyukov and Bullock [29] gave an assessment of DNA
methylation within particular regulatory regions/genes of
interest. Wong et al. [7] presented a feature set reduction to
enable a scalable feature selection on datasets with high
dimensional data. They argued that this approach handles
efficiently high resolution datasets that achieve better dis-
ease subtype classification of samples for potentially more
accurate diagnosis and prognosis. This allows clinicians to
make more informed decisions in regards to patient treatment
options.

Hira and Gillies [8] tried to utilize prior knowledge to
segment microarray datasets to identify candidate sets of
genes for hypothesis testing. They divided the methylation
dataset into subsets that contains only the probes that relate to
a known gene pathwaywhichwill be used later independently
for classification. Hira et al. [30] studied the relationship
between response to the treatment and the features extracted
from the measured methylation profiles to predict the out-
come of a putative treatment regime. Ding and Peng [31]
proposed a feature selection framework called a mini-
mum redundancy – maximum relevance feature selection to

provide a more balanced coverage of the space and capture
broader characteristics of phenotypes.

List et al. [32] argued that a largely improved classification
model can be obtained by combining methylation and gene
expression data which reflects differences not only on the
transcriptomic, but also on an epigenetic level. Jain et al. [33]
usedmethylation profiles to classify four different kidney and
lung cancer types with an accuracy exceeding 90% with only
16 features. Saeys et al. [34] gave a basic taxonomy of feature
selection techniques, and discussed their use for bioinformat-
ics applications. Li et al. [35] gave an optimal search-based
subset selection method for high-dimensional gene array data
that evaluate the group performance of genes and help to
pinpoint global optimal set of marker genes. Li and Yin [36]
proposed a multi-objective biogeography based optimization
method to select the small subset of informative gene relevant
to the classification.

Recently, Raweh et al. [37] utilized feature selection and
proposed feature extraction methods for predicting cancer.
They tried to analyze the set of selected features for further
investigation where they found that the DNA methylation
density of this set can clearly differentiate the cancer tissue
from normal one.

III. MATERIALS AND METHODS
The Cancer Genome Atlas (TCGA) dataset fromMax Planck
Institute for Informatics (MPI) is used in this study [38].
The dataset contains several types of cancer: blood, breast,
intestinal, brain and other types of cancer. For a specific gene,
promotors are responsible for establishing transcription and
are located near the transcription start sites of genes. There are
100 to 1000 base pairs for each promotor and many binding
sites for the RNA polymerase complex may be there along its
length. The degree of DNA methylation that extracted from
the gene promoter regions are 31195 promoters. In this paper
the breast cancer is examined where the number of samples
are 598 (98 are normal samples and 500 are cancer samples),
so we have a matrix of DNA methylation values consists
of 598 rows and 31195 columns (features) in addition to the
last column which is the class type with binary value (0 for
normal sample or 1 for cancer sample).

Figure 1 shows the DNA methylation density for breast
normal and cancer tissues. The density values show three dif-
ferent methylation levels, low, medium, and high methylation
levels. The low methylation values correspond to hypometh-
lation that activates genes while high methylation values
correspond to hypermethylation that makes genes silent [37].
The density graph shows that hyper and hypo methylated
features are more than medium methylated features for both
normal and cancer tissues. This drives the classification to
good accuracy results. For further improvements, we need to
capture the minor differences between methylation values of
normal and cancer ones.

In general, the two density graphs look similar except
their thickness. This indicates that the individual methylation
values are very close and usually the difference between
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FIGURE 1. DNA methylation density for both normal and cancer tissues
of breast [37].

the normal and cancer values is very small which cannot
be captured easily. The DNA methylation values for cancer
tissues occupy wider range than that of normal one but with a
very small margin. This makes it difficult for many machine
learning techniques to differentiate between them for further
improvement.

A. SIMPLE CLASSIFICATION
There are many classification techniques and each one of
them has its own pros and cons. This paper will test three
different classification techniques, namely; Naïve Bayes clas-
sifier, random forest classifier, and support vector machine
classifier. The Naïve Bayes classifier is the direct and sim-
plest classifier that utilizes Bayes theorem for conditional
probabilities of random variables given known observations
to build the classifiers. In this classifier all features are
assumed independent from each other and it calculates inde-
pendently the probability of each feature for a particular class
label [39], [40]. This classifier is simple and computationally
fast to reach a decision. The disadvantage of this classifier
is that it assumes a specific form for the feature probability
distribution of each class.

The second examined classifier is Random forest which
is an ensemble predictor close to the nearest neighbor
predictor. The ensemble predictors assume that strong pre-
dictors can come up from weak ones. Starting with decision
trees with controlled variance as weak predictors, random
forest goes ahead and combines these weak predictors to
form an ensemble. The advantages of this classifier are
robustness, no requirement for normalization, and immunity
to collinearity [41].

The third classifier is the support vector machine which is
a supervised learning process. It uses a non-linear mapping
to map the input vectors into some high dimensional feature
space Z. The transformed feature space of SVM classifier
needs a kernel function to fit a maximum-margin hyper-
plane in it. This transformation is usually high dimensional
and uses nonlinear polynomial or radial basis kernel func-
tions [42]. The SVM classifier is computationally expensive
but with high prediction accuracy when compared to other
classifiers [39]. Two parameters are associated with the SVM
training, namely, the cost and the kernel function parameters.
For our experiments we set the batch size to 100, and the cost
to 1. In terms of kernel functions, we test both polynomial
and radial basis kernel functions and use the one giving the
best results.

For our experiments, R language (RStudio 1.1.453) and
WEKA 3.8.1 tools are used as implementation medium. Two
metrics are used for evaluating the prediction quality of our
experiments, namely, mean absolute error (MAE), and root
mean square error (RMSE). The mean absolute error is given
by [43]:

MAE =
1
n

n∑
i=1

|pi − ai| (1)

where pi is the predicted class, ai is the actual class and n is
the number of tested samples. The root mean square error is
defined as [43]:

RMSE =

√√√√1
n

n∑
i=1

(pi − ai)2 (2)

Moreover, we use two metrics for measuring the model
performance namely, classification accuracy and F-measure.
Accuracy is the ratio of the number of correct predicted
classes to the total number of tested samples. Both measures
will be calculated directly from the confusion matrix which
provides us with a complete view about the model perfor-
mance [44], [45]:

Accuracy =
tp + tn

tp + fp + tn + fn
(3)

Here, tp and tn are the numbers of true positive and true
negative cases respectively. Similarly, fp and fn are the num-
bers of false positive and false negative cases respectively.
Accuracy works well if we have equal number of samples
for each class and the cost of misclassification of cancer is
very high. Therefore, we will use also F-measure which will
tell how precise and robust the classifier is. The greater the F
measure, the better is the model performance.

F-measure is a good measure to get a balance between
precision and recall for uneven class distribution as for Breast
cancer where we have 98 normal samples and 500 cancer
samples. A balanced F-measure is a single score due to a
harmonicmean of precision and recall which can be any value

53536 VOLUME 6, 2018



A. F. Al-Juniad et al.: Vertical and Horizontal DNA Differential Methylation Analysis for Predicting Breast Cancer

TABLE 1. Results of simple classification approach.

between 0 and 1 [44], [45].

F =
2× Precision× Recall
Precision+ Recall

=
2tp

2tp + fp + fn
(4)

The results of the above mentioned classifiers for breast
tissues are depicted in Table 1.

The results show that SVM is the best in terms of accuracy,
F-measure and MAE while random forest is the best in terms
of RMSE. This indicates that the system can identify the
cancer from normal cases with 98.16% with only 0.0184 as
MAE. Hereafter, we will use SVM for the classification
purpose whenever it is required because it is the best among
the examined classification ones.

B. FEATURE SELECTION
It is beyond doubt that the feature selection is very important
for large scale data but unfortunately the best method does
not exist. The researchers try either to find a good method
for a specific problem setting or to merge many methods
for a hybrid approach [46]. The main goal for using feature
selection techniques is to reduce the number of attributes in
the dataset by including only useful features in the dataset
without changing them. This is usually done by selecting
relevant features that may describe properly the problem on
hand and discarding irrelevant ones without affecting the
system performance which has to be within an acceptable
range [47], [48].

We used three algorithm-independent feature selection
methods, namely Information gain, Correlation-based, and
ReliefF. These methods are simple, fast, and able to handle
large-scale datasets [49]. The Information Gain filter con-
siders a single feature at a time and evaluates the features
according to their information gain. Whereas the Informa-
tion Gain filter is univariate method, the Correlation-based
is multivariate filter algorithm that uses a correlation-based
heuristic evaluation function to rank feature subsets. The
ReliefF filter which is an extension to the original Relief
algorithm based on randomly selecting an instance from the
data and then locating its nearest neighbor from the same and
opposite class [49].

Feature selection methods return the features as an ordered
list. The first feature in this list has the highest weight and
represents the highest importance to describe the problem
in hand. Usually, selecting a representative set of features
from the generated ordered list requires manual trial and error
search which may give different results for various applica-
tions. For our experiments, we got it 9% for some methods
and 3% for others therefore we test all methods with three
selection percentage values 3%, 6% and 9%. Low selection

FIGURE 2. DNA methylation density for both normal and cancer tissues
of breast due to feature selection.

percentages show that the employed method can identify the
discriminative features efficiently.

The DNA methylation density graph, after selecting some
discriminative features, for both normal and cancer tissues
are given in Figure 2. The density graph for normal samples
follows to a large extent the same way of original density
graph of Figure 1. The difference depends only on the methy-
lation level for the hyper and hypo methylated features which
now become smaller. On the other hand, the density graph
for cancer samples differs totally from that of original cancer
samples. The medium methylation values now dominate the
density graph and become very important for the classifica-
tion process.

Numerically, the results of the examined feature selection
methods in Table 2 show that Information Gain and ReliefF
methods give good results with only 9%of the features, which
are around 2808 out of 31195. These results are better than
those of SVM simple classification by 0.6814%, 0.611%,
36.41% and 20.2% in terms of accuracy, F-measure, MAE,
and RMSE respectively. We follow the same formulae given
in [43] for calculating improvement percentages. This indi-
cates that many features are redundant and do not contribute
to the classification process if not misguide the classification
process and behave like outliers. Another important point
here is that the system complexity is reduced a lot and is now
about 9% only of its original one.

C. SINGULAR VALUE DECOMPOSITION ANALYSIS
One may argue that the DNA methylation microarray may
not lead to good results due to the noise in data and the
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TABLE 2. Results of feature selection approach.

limited range of the values. Hence we must find new ways
to change the matrix internal structure. In general, there
are two approaches to change the internal structure of the
DNA methylation microarray, namely feature extraction and
matrix decomposition. In this section, we will employ sin-
gular value decomposition (SVD) which is actually Eigen
decomposition. SVD is useful for high-dimensional matrices
because it can be used for dimensionality reduction. The
result of this procedure is a three low-dimensional matrices,
namely, left-singular (I), singular (D) and right-singular (W)
matrices respectively [50], [51]. The process of decomposing
the original matrix to its basic components will be useful
for identifying the most important features for that matrix.
The eigenvalue vector of the decomposed matrix is the most
important basic component of the decomposition process
which can be employed to generate a new version of that
matrix. The decomposition process sorts the eigenvalues for
the matrix which can be as many as the matrix size or only a
little number.

Systematically, we decompose the microarray matrix AQN
(the class column is not included, only features are included
in microarray matrix AQN ) using SVD into three matrices
IQP, DPP and WPN . This paper uses the first two matrices
for generating a reduced matrix by selecting only some useful
eigenvalues. Hence, the dimensionP of the twomatrices (DPP
and IQP) is reduced into L by selecting only L eigenvalues
from thematrixDPP and the corresponding columns inmatrix
IQP. After that, the reduced matrix AQL is reconstructed by
matrix-matrix multiplication as follows:

AQL = IQL∗DLL (5)

Next, the class column is added to the reduced matrix AQL
to get a new matrix which is used as an input to the classifier.
Decomposing the DNA methylation microarray using SVD
and thereafter selecting a predefined percentage of its eigen-
values will allow us to see the effect of changing the internal
structure of the matrix for the classification process. The new
values will highlight the importance of the new features for
predicting the cancer tissues.

TABLE 3. Results of SVD approach.

For our experiments, we use the top 5%, 10%, 20%, and
30% of the eigenvalues (the total number of eigenvalues after
applying SVD is r = 598) for generating the new matrix.
As listed in Table 3, the results show that the top 5% eigen-
values give the best results among others. For comparison,
the results are better than SVM classification but less than
that of feature selection experiments by very small margins.
However, the number of features here is very small, i.e. only
30. This will give very good time and space complexities
for such approach with almost the same prediction results as
feature selection.

D. VERTICAL AND HORIZONTAL DNA
METHYLATION ANALYSIS
Apparent promoter methylation plays a critical role in human
breast carcinogenesis because it occurs at the early stage
of breast tumor. High methylation value may silence tumor
suppressor genes which lead to cell growth and hence to the
genesis of neoplasia like breast tumorigenesis. Therefore it
is used as a potential marker for early diagnosis and ther-
apeutic of breast cancer. However, methyaltion values are
usually scaled between 0 and 1 and no clear threshold can
be obtained for identifying normal and cancer related values.
The best way to deal with this complex problem is to relate
values to each other and see if there is any difference. Hence,
identifying those features having remarkable differences will
be a very good input to the classification process. The dif-
ference in the methylation values can be considered as an
important biomarker for determining cancer. This will lead to
differential methylation approaches which can be processed
vertically among cancer and normal samples of the same
tissue or horizontally among different features of the same
sample.

In fact, most of the previous work deals with methylation
values separately while others try to find the differential
methylation regions biologically and then make a computa-
tional analysis on those regions. However, we argue that the
differences between DNA methylation values will be more
useful, efficient and will give better indicators. The main idea
here is to identify differential methylation values vertically
and horizontally to maximize the utilization of this biomarker
for predicting breast cancer.

The vertical DNA methylation analysis is done on all
samples to select the most discriminative features which will
discriminate cancer samples from normal samples as shown
in Figure 3. Actually, vertical analysis tries to exploit the
differences in methylation values between normal and cancer
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FIGURE 3. Idea of vertical and horizontal DNA methylation analysis.

samples. On the other hand, the horizontal DNA methylation
analysis tries to extract new features based on differences of
methylation values across each sample. The sum of absolute
differences within a window will be the new feature and will
be a good indicator across that window. The following sub-
sections discuss the proposed vertical and horizontal analysis
separately and highlight the strengths of each one of them for
predicting cancer tissues. The last subsection discusses the
proposed combined approach.

E. DIFFERENTIAL MEAN FEATURE SELECTION (DMFS)
We analyze vertically each feature across all samples and find
themean value of the DNAmethylation values of both normal
and cancer samples separately. These feature-wisemeans rep-
resent global descriptors for all features over normal or can-
cer samples. Now a rough estimation of the usefulness of
each feature for classifying samples into normal or cancer
ones can be developed using the absolute difference between
the mean values of normal and cancer samples. So we will
call this novel approach as Differential Mean Feature Selec-
tion (DMFS). The means for both cancer and normal tissues
will reflect the minor differences between the two samples
at the feature level. It is true that the mean may show some
compensation behavior but this will be for usual features. For
unusual features, the DNA methylation will be low or high
and hence it will have a clear impact on the mean value.

A threshold value to select the feature or not is used for
this unsupervised feature selection process. The threshold
value indicates that the difference between the two mean
values of normal and cancer samples is adequate to say that
feature is discriminative for cancer classification. However,
the main important point here is how to identify the appropri-
ate threshold value? For our work we use trial and error policy
to estimate this value. However, someone can utilize other
approaches to do that. Our criterion for selecting this value
is to test the system many times and selects the threshold
value that gives the best results. Hence, this will depend on
the search space and the cancer type. Figure 4 illustrates

FIGURE 4. Vertical DNA methylation analysis (DMFS approach).

the process of DMFS where the two vectors containing the
average of normal samples and the average of tumor samples
are first calculated. After that the absolute difference vector is
calculated based on the twomean vectors. The resulted vector
is named weighting vector. Finally, the weighting vector is
used to select features which correspond to a weight larger
than a certain predefined threshold.

Mathematically, the set of features for each sample is:

F = 〈f1, f2, . . . , fm〉 (6)

The cardinality of this set ism. Assume ani and a
c
i aremeans

of feature i across normal and cancer samples, respectively.
Accordingly, we can define the feature-wise vector means for
normal and cancer samples as:

An =
〈
an1, a

n
2, . . . , a

n
m
〉

Ac =
〈
ac1, a

c
2, . . . , a

c
m
〉

(7)

Based on this we can define the differential methylation of
feature i as:

dmi =
∣∣ani − aci ∣∣ (8)

Alternatively, the differential methylation vector is:

WV =
∣∣An − Ac∣∣ = 〈dm1, dm2, . . . , dmm

〉
(9)

WV is the weighting vector used for selecting features
for the classification process. The system selects the fea-
tures, with weights greater than a predefined threshold (THR),
which will be used for the classification process. Usually,
the threshold value is tuned to get the best prediction accu-
racy. Hence, the set of selected features will be:

FS =
{
fσ (i) : dmσ (i) ≥ THR

}
(10)
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TABLE 4. Results of DMFS approach.

where σ is a permutation that orders features based on their
differential methylation values such that dmσ (1) ≥ dmσ (2) ≥
. . . ≥ dmσ (m).

The results of DMFS approach are listed in Table 4.We can
notice that it performs very well even with just 3% of the
features, which are around 936 out of 31195. This indicates
that 97% of the features are redundant and do not contribute to
the classification process. Moreover, the system complexity
is reduced by a very good factor and it is now only 3% of its
original one.

F. DIFFERENTIAL WINDOWED FEATURE
EXTRACTION (DWFE)
Feature extraction explores the features of the dataset under
consideration and tries to extract hidden information and
hence creates new features [52]. In literature, some authors
treat feature selection and feature extraction interchangeably
as the feature selection process which is the process of
extracting relevant features from the available ones. However,
in this paper we will differentiate between them and consider
the process as a feature selection process if only some features
are selected from the available ones according to some criteria
and consider the process as a feature extraction process if
some mathematical or logical operation is applied on avail-
able features to build new ones.

Actually, isolated methylation values may not give useful
information out of thousands of such values. A more logical
approach is to compare them with each other and see the
difference between them. This will detect if there is any
sudden increment or decrement in the values especially in the
hyper or hypo-methylation regions. For this purpose, we set
the window size to a predefined value and sum the absolute
differences between successive values in the window and set
the sum as a new extracted feature for that window. This way,
we will gain the following benefits:
• The number of features is decreased by the window size
factor.

• The differential movement of methylation values is cap-
tured within the window.

Figure 5 shows the process of horizontal DNA methyla-
tion analysis which is called Differential Windowed Feature
Extraction (DWFE). In this approach, each sample is divided
into a number of windows equal to:

d =
⌈ m
W

⌉
(11)

where m is the number of features in each sample andW is a
predefined window size.

FIGURE 5. Horizontal DNA methylation analysis (DWFE approach).

For each window,Wj, the summation of differences is used
to produce one value V (j) for this window as follows:

V(j) =
Wj−2∑
i=0

|fi+1 − fi| (12)

where j = 1, . . . , d is the window index,Wj is the actual size
of window j, and i = 0, . . . ,Wj−1 is the feature index within
window j.

Wj =

{
W j < d
m%d j = d

(13)

DWFE extracts d features from m DNA methylation fea-
tures. The window size maybe tuned to get the best prediction
accuracy.

The results of this approach for breast tissues are
98.8295%, 0.988, 0.0117, and 0.1082 in terms of accuracy,
F-measure, MAE, and RMSE respectively. These results are
similar to that of feature selection with only 312 extracted
features that represent only 1% of the original sample size and
only 11.11% of the size of feature selection approach. This
is a very big achievement in reducing the cardinality of the
feature set besides keeping the same system accuracy.

G. CASCADDED DMFS-DWFE
The results of the proposed DMFS and DWFE are promising
and indicate their good ability to classify breast cancer tis-
sues. This encouraged us to go one step further by exploring
the combined effect of the vertical and horizontal differential
methylation as a biomarker to predict breast cancer. In this
direction, we propose a cascaded DMFS-DWFE approach,
which works as follow: First, DMFS is applied on the whole
dataset as mentioned before to select some discriminative
features on which we will apply the next step. After that
DWFE is applied on the set of the selected features resulted
from the vertical analysis. The process needs two input values
which are the selection threshold value and the window size.
The values of the threshold and the window size are tuned to
get the best prediction accuracy.
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FIGURE 6. Cascaded DMFS-DWFE approach.

TABLE 5. Results of cascaded DMFS-DWFE approach.

Figure 6 shows the whole cascaded process where the pro-
posed DMFS is applied on all features using different thresh-
old values to select different percentages of features 10%,
20%, and 30% as listed in Table 5. We increased the selec-
tion percentages here compared to the previous approaches
because we have another layer of refinement for features
and therefore we have to keep enough number of features.
For each percentage of the selected features, the proposed
DWFE is applied with window size of 100. The results of the
cascaded approach show that it is the best among all studied
approaches. The following highlights some important points:

• This approach takes only tens of features which are very
small compared to the original number of features.

• The results of this approach with only some tens of
features are better than individual DMFS and DWFE
approaches.

IV. RESULTS ANALYSIS AND DISCUSSIONS
As a classification method, SVM shows good results with
respect to other examined classification methods. It achieves
98.2% for identifying cancer samples correctly. Further
improvement is achieved by ReliefF feature selection method
which achieves 98.8% for identifying cancer samples cor-
rectly with only 9% of the original features. In this paper,

TABLE 6. List of experiments for all approaches.

we go further by investigating the benefit of Eigenvalues for
the classification process where we used SVD for decom-
posing the original matrix and utilizing the top 5% useful
Eigenvalues for generating new matrix and then employing
it for the classification process. This experiment achieves
98.7% accuracy in classifying cancer samples which is better
than simple SVM classification but less than ReleifF results.

The achieved results of the proposed approaches outper-
form the traditional approaches in overcoming the high-
dimensionality of the DNAmethylation data, which is usually
higher than the number of collected samples. In addition to
that, our approaches identify the most discriminative features
for accurate cancer prediction. To approve that, six sets of
experiments were conducted in this paper, one set for each
approach. The experiment set of some approaches consists of
many experiments based on the employed methods for that
approach. There are some predefined parameters for some
experiments that are discussed inside them. For summary,
Table 6 depicts the considered approaches and lists the exper-
iment(s) for each one.

The best results for all approaches are listed in Table 7
along with the number of features for each of them. The
results show that applying the proposed approaches gives a
good improvement. The improvement value depends on the
method used and the applied approach. The results exhibit
that DMFS outperforms simple SVM classification, SVD,
ReleifF feature selection, and DWFE with only 3% of the
features, i.e. 936 out of 31195 features. The improvements
compared to simple ReliefF feature selection are 0.17%,
0.2%, 14.53%, and 7.4% in terms of accuracy, F-measure,
MAE, and RMSE respectively. The improvements are very
good with regards to errors which indicate that the system
predictions about the class are very close to the actual ones.
This is very important for cancer prediction as usually failing
to predict the cancerous case will be very dangerous for the
patient.
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TABLE 7. Best results for all examined approaches.

TABLE 8. Improvement percentages of cascaded DMFS-DWFE approach
compared to other approaches.

DMFS shows 98% accuracy to tag each sample to its
correct class while it shows 99% to classify correctly can-
cer samples which demonstrates very high classification
performance. These values jump to 99.16% accuracy and
99.2% F measure with the proposed combined approach
which indicates that our model is very precise for predicting
the sample class and the true positive cancer cases. This is
very important here as we do not want to misclassify any
caner case as normal case.

For more clarification, Table 8 illustrates the improvement
percentages of the best approach (cascaded DMFS-DWFE)
compared to all other approaches. The results show that there
is a small improvement in accuracy compared to all other
approaches which is around 1% only. The same thing is
achieved for F-measure which has nearly the same improve-
ment percentage. However in terms of MAE and RMSE there
are very good improvements compared to other approaches.
The range of these improvements is 8.8% to 54.3%. This indi-
cates that the cascaded approach is far better than the previous
approaches. The low value of prediction error indicates that
prediction quality is very good and the system can predict the
class of each sample with high accuracy.

Graphically, Figure 7 illustrates the improvement percent-
ages of cascaded DMFS-DWFE approach compared to other
approaches in terms of MAE and RMSE. The results show
that differential methylation is very strong in identifying
the cancer tissues. Sometimes, the difference is very small
between the methylation values of successive features but if
captured it will be very useful for classification purposes.

The required number of features for each approach is given
in Table 7. This number is very important especially for DNA
methylation where thousands of features are usually there.
The results say that SVD is the best in terms of the utilized
number of features where it is only 0.096% of the original

FIGURE 7. Improvement percentages of cascaded DMFS-DWFE approach
compared to the other approaches in terms of MAE and RMSE.

FIGURE 8. Accuracy comparison of all approaches.

FIGURE 9. F-Measure comparison of all approaches.

size. However, its accuracy is somehow equal to that of simple
feature selection. On the other hand, cascaded DMFS-DWFE
has only 97 features where it is 0.31% of the original size but
with superiority over the other approaches in all aspects.

In fact, the number of features for both approaches is very
low compared to other approaches and hence we overcome
the main difficulty of such applications which is the dimen-
sionality size of the dataset. The second best one in this regard
is DWFE which has only 312 features and can be adjusted
more based on the nature of the dataset. Moreover, its accu-
racy is very good compared to many other approaches. This
illustrates that our approaches are good in terms of accuracy,
time and space complexities which make it appropriate for
such high dimensional microarray data.
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FIGURE 10. MAE comparison of all approaches.

FIGURE 11. RMSE comparison of all approaches.

Figures 8 to 11 show the effect of differential DNAmethy-
lation analysis when we compare it to other approaches. The
error is very small for the cascaded approach which indicates
that the prediction values are either the same or very close to
the original one. That means differential methylation is very
effective for classifying tissues.

The prediction accuracy is improved with very less number
of features and therefore the prediction time is reduced so
much. In fact, the system complexity can be discussed in
terms of space and time processing. Table 7 illustrates that
the number of features is reduced so much with the proposed
approaches which in turn will reduce the processing time so
much since the system will use only these features at the
classification stage. The offline stage for generating the set
of features will be hidden from the user and can be done
anytime or regularly if the samples are modified each time.
Moreover, we need to store only that number of features for
the classification purpose.

V. CONCLUSIONS
DNA methylation is an epigenetic indicator for activat-
ing or silencing a gene. The proposed framework exploits
the DNA differential methylation vertically and horizontally
to predict breast cancer more accurately. Vertically, DMFS
utilizes differential mean between the mean of normal and
cancer samples. The differential mean is used to select the
most discriminative features above a certain threshold. Hori-
zontally, the DWFE extracts new features based on the sum-
mation of absolute differences of DNA methylation values

within a certain window. In general, the results of the pro-
posed DMFS and DWFE approaches show improvements
over simple classifier, traditional feature selection methods
and SVD in terms of accuracy, F-measure, MAE, and RMSE.

In addition, the cascaded DMFS-DWFE approach exploits
the combined effect of DMFS and DWFE approaches. The
results of the cascaded DMFS-DWFE approach are the best
among all examined approaches in this paper especially in
terms of MAE and RMSE. The combined approach is very
good also in terms of the time and space complexities as the
number of features is reduced by a very significant factor.
This is a very good achievement for such huge and high
dimensional dataset. The dataset cardinality is reduced from
31195 to only 97 with the cascaded approach.

The proposed feature extraction can be modified and tuned
in terms of the employed method for calculating the new
feature or tuning the window size. Moreover, the feature
selection percentages and window size can be calculated
automatically based on some factors of the dataset like mean
methylation value within the window which may be explored
in future work.
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