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ABSTRACT This paper discusses a fast implementation of the stabilized locally optimal block precondi-
tioned conjugate gradient method, using a hierarchical multilevel preconditioner to solve non-Hermitian
sparse generalized eigenvalue problems with large symmetric complex-valued matrices obtained using
the higher-order finite-element method (FEM), applied to the analysis of a microwave resonator. The
resonant frequencies of the low-order modes are the eigenvalues of the smallest real part of a complex
symmetric (though non-Hermitian) matrix pencil. These types of pencils arise in the FEM analysis of
resonant cavities loaded with a lossy material. To accelerate the computations, graphics processing units
(GPU, NVIDIA Pascal P100) were used. Single and dual-GPU variants are considered and a GPU-memory-
saving implementation is proposed. An efficient sliced ELLR-T sparse matrix storage format was used and
operations were performed on blocks of vectors for best performance on a GPU. As a result, significant
speedups (exceeding a factor of six in some computational scenarios) were achieved over the reference
parallel implementation using a multicore central processing unit (CPU, Intel Xeon E5-2680 v3, and
12 cores). These results indicate that the solution of generalized eigenproblems needs much more GPU
memory than iterative techniques when solving a sparse system of equations, and also requires a second
GPU to store some data structures in order to reduce the footprint, even for a moderately large systems.

INDEX TERMS Generalized eigenvalue problem, FEM, complex-valued sparse matrix pencil, GPU,
Maxwell’s equations.

I. INTRODUCTION
Graphics processing units offer impressive performance that
has been demonstrated in solving many linear algebra prob-
lems, including finding the eigenvalues and eigenvectors
of real- and complex-valued matrices. However, remarkable
speed gains over CPU-based solutions have mainly been
reported in dense cases. Sparse eigenvalue problems require
iterative algorithms, and the performance of sparse solvers
is limited by the efficiency of matrix–vector multiplication.
This operation is memory-bandwidth bound, so to maxi-
mize performance, data structures need to be optimized for
the GPU-architecture, while transfers to and from memory
should be minimized. This implies that the algorithms for
solving sparse problems should be redesigned to make best
use of the fast on-board GPU memory.

II. Related Work
While iterative techniques for solving a system of sparse
equations on one or many GPUs have been considered
in numerous publications [1]–[9], the literature on solving
sparse eigenvalue problems on a GPU is scarce; only algo-
rithms for real and complex Hermitian matrices have been
considered [10]–[15]. The focus is on standard eigenvalue
problems of the form Kx = σx. In practice, one often
needs to investigate the spectrum of a sparse matrix pencil,
which means that one or more eigenvalues of the generalized
problem Kx = σMx are of interest. For instance, general-
ized eigenvalue problems arise in modal analysis using the
finite-element method, which is one of the most important
numerical techniques for solving partial differential equa-
tions. Inmost cases, a few of the smallest eigenvalues are to be
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found. These eigenvalues correspond to the free oscillations
of a system. If there is no loss in the system, the eigenval-
ues are real, and both matrices in the pencil are symmetric
and real, with M being additionally positive definite. In the
presence of loss, the matrices are symmetric but no longer
real—at least one of them must be complex-valued. Conse-
quently, the eigenvalues are also complex, with the imaginary
part corresponding to damping. Computation of damped and
undamped resonances by means of the finite-element meth-
ods is important for acoustics, electromagnetics, and modal
analysis in structural dynamics.

From this description, it is evident that GPU-accelerated
solvers that are capable of dealing with symmetric complex-
valued non-Hermitian matrices are also needed for sparse
generalized eigenvalue problems. It should be noted that,
unlike in standard eigenvalue problems, two matrices need to
be stored and processed by the solver. This means that more
GPU memory is used in these computations than in solving a
standard problem. When the matrices are complex, the mem-
ory requirements double. The amount of fast memory on a
single GPU is limited to 12–16 GB, and it is important to take
this into account when implementing a particular algorithm.
Otherwise, the size of the matrices that the GPU solver can
handle may be so small that it might actually be faster to solve
the problem on a CPU. To make use of GPU computational
power for larger generalized problems (especially when the
matrices are complex), it may be necessary to use more than
one accelerator and to distribute the matrices, and possibly
also the other data structures, between different GPUs.

In this paper, we present a GPU implementation of the
recently developed stabilized locally optimal block precon-
ditioned conjugate gradient (LOBPCG) procedure for solv-
ing large sparse generalized symmetric eigenvalue prob-
lems arising in computational electromagnetics in the finite-
element analysis of lossy resonators. It should be noted
that LOBPCG is intended for finding the smallest eigenval-
ues of problems with real matrices [16], and this algorithm
would normally have been regarded as unsuitable for treating
problems with complex-valued matrices. Recently, however,
we have demonstrated [17] that, with a small modification,
the LOBPCGmethod can be successfully applied to the anal-
ysis of resonates with small and moderate loss. In the present
work, we use this modified LOBPCG algorithm and present
its implementation and performance on a low-cost compu-
tational server with a GPU accelerator. To handle larger
problems, we propose a GPU-memory-saving implementa-
tion and consider a setup involving two GPUs, each sporting
12 GB of fast RAM (random access memory). This paper
extends our recent work on the GPU-accelerated LOBPCG
algorithm for generalized eigenvalue problems [18] to a new
algorithm: the stabilized LOBPCGmethod for the sparse gen-
eralized eigenvalue problem with complex-valued matrices,
and it discusses its single-GPU and dual-GPU implementa-
tions. To improve convergence, we propose a new precondi-
tioner that is geared towards the higher-order finite element
method. This preconditioner takes advantage of the hierarchy

of the basis functions. The generalized eigenvalue problem
we solve we has large nullspace that is spanned by spuri-
ous, nonphysical eigenvectors. To filter out this nullspace,
we use the preconditioned conjugate gradient method. The
sLOBPCG algorithm is more demanding of memory than
the iterative algorithms for sparse linear algebra considered
to date. We thus propose a new GPU-memory-saving imple-
mentation, in which we decompose the pair of matrices in the
matrix pencil (K,M), into blocks. These blocks, rather than
the entire matrices, are then used when applying the precon-
ditioner, and are also employed in sLOBPCG iterations when
constructing the projection subspace (computing residuals,
and projected pencil matrices for the Rayleigh–Ritz method).
To this end, we also consider a dual-GPU implementation
in which the constituent blocks of pencil matrices are split
between two accelerators in such a way that transfer between
the two GPUs is minimized and load balancing is achieved
while the sparse matrix–vector product is computed. We also
obtain increased computational intensity by vector blocking.

The paper is organized as follows: Section II briefly
describes the finite element formulations used to compute
the resonant frequencies of a microwave cavity loaded with a
lossy dielectric material. Section III discusses the LOBPCG
algorithm, as modified for complex-valued problems, and the
preconditioner and memory requirements. The implementa-
tion of our approach—including the choice of a matrix format
for the sparse matrix–vector (SpMV) and sparse matrix–
matrix (SpMM) product—is described in Section IV. Finally,
the results and a comparison with the CPU-implementation
optimized for multicore architectures are presented and dis-
cussed in Section V for various computational scenarios.

III. GENERALIZED EIGENVALUE PROBLEM WITH
COMPLEX-VALUED MATRICES
We consider a resonant electromagnetic cavity� enclosed by
a boundary S (a perfect electric conductor) and loaded with
a dielectric material. The unforced oscillations in this cavity
are governed by the vector Helmholtz equation:

∇ ×

(
1
µr
∇ × EE

)
− k20εr EE = 0, (1)

where EE is the electric field, k0 = ω/c is the wavenumber
(ω being the angular frequency and c the speed of light),
and εr and µr are the relative permittivity and permeability,
respectively.

In order to find the resonances of the cavity, we apply a 3D
vector finite element method formulation with hierarchical
vector basis functions up to the third order [19]. Following
the standard FEM procedure [20], we obtain:

(K− σM)e = 0, (2)

where σ =
(
ω
c

)2, K, M ∈ Cn×n are symmetric sparse
stiffness and mass matrices, respectively, and n is the number
of degrees of freedom (DoF). If no energy dissipation occurs,
both matrices are real-valued andM is positive definite, so all
eigenvalues σ are positive and real.
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If we now assume that the dielectric is lossy and its material
properties are described by a complex-valued frequency-
independent permittivity, M becomes non-Hermitian com-
plex symmetric (M = MT , M 6= MH ). The consequence
of this is that the spectrum is complex. The real part of
σ corresponds to the free oscillation frequency, while the
imaginary part determines the quality factor given by Eq. 8.
To find a few low-order resonances of the cavity, we have
to solve a generalized eigenproblem (2) for several nonzero
eigenvalues with the smallest real part. This can be achieved
by using the shift-and-invert technique [21], which involves
factorizing a large sparse matrix, which is time-consuming
and has highmemory requirements. As the number of degrees
of freedom grows, the number of nonzero elements in the
factors increases rapidly, and the shift-and-invert technique
becomes impossible because of the limitations of CPU
memory.

IV. STABILIZED LOBPCG ALGORITHM FOR
COMPLEX SYMMETRIC GEP
One of the most efficient and most rapidly converging iter-
ative algorithms that can be used to compute small nonzero
eigenvalues of a generalized eigenvalue problems, and which
does not involve large matrix factorization, is the locally
optimal block preconditioned conjugate gradient (LOBPCG)
method. To prevent this method from converging to zero
eigenvalues associated with the nullspace of the discretized
curl–curl operator, the nullspace must be filtered out. Since
the zero eigenvalues of the discretized curl–curl operator have
nonvanishing divergence, filtering can be achieved by explic-
itly enforcing the divergence-free condition during iterations,
as demonstrated in [22].

The LOBPCG algorithm also requires that both matrices
K and M be real or complex-Hermitian at most. For lossy
systems, the Hermitian symmetry required by LOBPCG does
not hold. As shown in [17] the original LOBPCG algorithm
does not converge for cavities loadedwith even a sightly lossy
dielectric. The lack of convergence is due to the inadequate
selection of the projection basis in one of the algorithm’s
steps. A simple algorithmic modifications has been proposed
to stabilize convergence of the LOBPCG algorithm [17].
The modification involves sorting the Ritz values in each
iteration and retaining only those that are close to the tar-
get value. This enhancement stabilized the convergence of
LOBPCG when solving eigenproblems associated with lossy
electromagnetic systems. Algorithm 1 shows the main steps
in the sLOBPCG method. In general, the algorithm looks
for Ritz values and Ritz vectors in the trial space consisting
of the current eigenvector approximation, the preconditioned
residual, and the implicitly computed difference between the
current and the previous eigenvector approximations [16].
The projection of the original problem onto the trial space is
carried out in Line 15. Preconditioned residuals are computed
in lines 7 and 11. Lines 8 and 9 are a convergence check.
The converged eigenvectors are removed from the trial space.
Lines 1 and 12 implement nullspace filtering. Almost all steps

Algorithm 1 Stabilized LOBPCG for Real or Complex Sym-
metric Problems. Inputs: K, M Are Sparse Real or Complex
Symmetric n × n Matrices, P Is a Preconditioner, Y Is a
Basis in the Nullspace, X0 Is the Initial Block Vector of Size
n× (q+1), q Is the Number of Eigenvalues to be Computed,
and MaxIter Is the Maximum Number of Iterations. γ Is the
Shift Value Used in the Sorting Algorithm
The outputs of the sLOBPCG method are the q smallest-
magnitude nonzero eigenvalues {σ1, . . . , σq} stored in a diag-
onal matrix 6output and a dense block vector Xoutput of size n
× q, which consists of the q respective eigenvectors.
0. Initialize P̃0 = P0 = []
1. X0← X0 − Y (YTMY)−1((MY)TX0) B Make X0

M-orthogonal to the nullspace
2. M-orthogonalize columns of X0
3. Compute (XT

0KX0)S̃0 = S̃06̃0,
where 6̃0 = diag(σ1, . . . , σq+1)B Spectral decomposition

4. (60,S0)← Eigenpairs (σi,S̃0ei) sorted by |σi−γ | in the
ascending order.

5. X0← X0S0
6. for k = 0 : (MaxIter− 1) do
7. Compute residuals R̃k = KXk −MXk6k

8. Find D =
{
i : ‖R̃kei‖2 > ε

}
, q̃ = size of D

9. if (q̃ = 1AND i=q+1)OR (q̃ = 0) thenB Convergence
check
.............exit
........end if
10. Let Rk = [R̃k (:, j)]j∈D
11. Apply preconditioner Hk =P−1Rk
12. Hk ← (I− Y(YTMY)−1((MY)T )Hk B Filtering out

nullspace components
13. Hk ← Hk − Xk ((MXk )THk )B Orthogonalization vs.

eigenvector approximations
14. If P̃k nonempty, set Pk = [P̃k (:, j)]j∈D
15. Compute K̃ = [Xk ,Hk ,Pk ]TK[Xk ,Hk ,Pk ],

M̃ = [Xk ,Hk ,Pk ]TM[Xk ,Hk ,Pk ]
16. Compute K̃S̃k = M̃S̃k6̃k , where

6̃k = diag(σ1, . . . , σ(q+1)+2q̃)B Spectral decomposition
17. (6k , S̃k )← Eigenpairs (σi,S̃kei) sorted by |σi−γ | in the

ascending order.
18. Sk = S̃k [e1, . . . , eq+1], 6 = 6k (1 : q+ 1, 1 : q+ 1)
19. P̃k = [RkPk ]Sk (q+ 1 : (q+ 1+ 2q̃), :)
20. Xk ← XkSk (1 : q+ 1, :)+ P̃k
21. end for
22. Eigenpairs: Xoutput = X(1 : n, 1 : q) and 6output =

6(1 : q, 1 : q).

are identical to those of the original LOBPCG algorithm [16],
[22] - the only part which is different are lines 4 and 17 which
perform the sorting that stabilizes the algorithm, given γ as a
target: a rough approximation to the smallest eigenvalue (this
may be known or found by solving a smaller problem with
the shift-and-invert algorithm). The nullspace of the curl–curl
operators is spanned by the eigenvectors x corresponding to
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Algorithm 2 Hierarchical Multilevel Preconditioner
(Hie-ML)
1. z = Hie-ML(r,i)
2. z = 0
3. if i == 1 then
4. z = A−111 r // solve the lowest level
5. else
6. smoothing(z, r) // the highest level
7. ri−1 = r− Ai−1,i z
8. zi−1 = Hie-ML(r,i-1)
9. ri = r− Ai,i−1 zi−1

10. smoothing(z, r) // the highest level

eigenvalues equal to zero that satisfy YTMx 6= 0, where
Y is a gradient projection matrix, which means that these
are fields that do not have zero divergence (∇ · (εE) 6= 0).
These solutions are not physical and should be eliminated—
otherwise the sLOBPCG would converge to these spurious
eigensolutions rather than to physical ones. The elimination
of spurious solutions from the projection subspace is carried
out in each iteration of sLOBPCG and involves the solution
of a linear system with a matrix (A = YTMY). The matrix Y
is very sparse, with at most two nonzero entries with values
of 1 or −1 in each row [22].

A. PRECONDITIONER
The convergence of LOBPCG depends on the choice of
the application-specific preconditioner P . Since the FEM
formulation we consider in this paper involves higher-order
basis functions, we use a multilevel preconditioner that takes
advantage of the hierarchy of basis functions applied in the
FEM method. We used this preconditioner in our previ-
ous work to solve real and complex systems of equations
[3], [4], [9] and also for preconditioning real eigenproblems
solved with classical LOBPCG [18]. The number of levels
depends on the order of the basis functions. The FEM code
we used [23] allowed for basis functions of up to the third
order (QTCuN) [19] so, in our case, the number of levels
is three. In a hierarchical multilevel preconditioner, a global
sparse matrixA is divided in submatrices (Aij) that are related
to the orders of the finite element basis functions. The matrix
used for preconditioning was formed from the stiffness and
mass matrices as A = K − κ2M, where κ is a constant. The
value of κ should be close to the eigenvalues that are being
sought. The division is as follows:A11 A12 A13
A21 A22 A23
A31 A32 A33


=

K11 K12 K13
K21 K22 K23
K31 K32 K33

− κ2
M11 M12 M13
M21 M22 M23
M31 M32 M33


Normally, just one V-cycle of the hierarchical multilevel

preconditioner is enough for convergence. One V-cycle was

TABLE 1. Sparse and dense matrices used in sLOBPCG. P: PCG-V solver;
NSF: nullspace filtering; q: number of eigenvalues to be computed; k :
order of the nullspace.

used in our previous work on the GPU-accelerated LOBPCG
method for real valued generalized eigenvalue problems [18].
However, trials of the stabilized version of LOBPCG intended
for complex GEPs revealed that a single cycle is not suffi-
cient. In the sLOBPCG method presented in Algorithm 1,
this was therefore replaced by iterations of the preconditioned
conjugate gradient solver (PCG-V) [3], [4], [9], which also
executes one V-cycle of the hierarchical multilevel precon-
ditioner for each conjugate–gradient iteration (Algorithm 2).
The number of iterations of the PC-V method depends on
the loss, and ranges from a few for lossless and weakly lossy
structures to a few tens for larger losses.

B. MEMORY REQUIREMENTS
In order to obtain the highest performance, all data should
reside in the GPU memory. The memory requirements of
sLOBPCG are higher than for other iterative algorithms
considered in the literature on GPU-accelerated sparse lin-
ear algebra. To substantiate this claim, the data structures
required to implement the sLOBPCG method (Algorithm 1)
are shown in Table 1. The stiffness matrix can in general
be complex. However, for the type of resonant cavities we
consider in our work, it is always real.

It can be seen that, in addition to sparse matrices (mass,
stiffness, preconditioner, and nullspace), there are a number
of dense tall and skinny complex-valued matrices. The num-
ber of columns depends on the number of eigenvalues q that
we seek.

V. IMPLEMENTATION
The amount of GPU memory available is limited and the
sLOBPCG algorithm is more demanding of memory than the
iterative algorithms for sparse linear algebra considered to
date. Consequently, these methods have to be implemented
with this in mind. To save GPU memory, the precondition
matrix was constructed on-the-fly from the blocks of the
stiffness and mass matrices. That is, instead of storing the
entire matrix A, we store 18 separate submatrices Kij,Mij,

i = 1, 3, j = 1, 3. Also, when the problem is lossy, only
the mass matrix is complex, so by decomposing the precon-
ditioner, we can save additional memory by storing blocks
of Kij, i = 1, 3, j = 1, 3 as sparse real-valued matrices
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and blocks Mij, i = 1, 3, j = 1, 3 as sparse complex-
valued matrices. The preconditioner involves directly solving
the sparse system of linear equations on the lowest level.
This operation is performed on a CPU using Intel’s Pardiso
direct solver. The remaining operations of smoothing and
sparse matrix–vector product to transfer solutions between
levels are carried out on a GPU. For smoothing, we perform
a few iterations of a weighted Jacobi process. Because the
blocks of the preconditioner matrix A, are not stored explic-
itly, the smoothing operation and transfers between levels
are implemented in this GPU-memory-saving variant as a
sequence of matrix–vector multiply–add operations involv-
ing the relevant blocks of the stiffness and mass matrices
and κ . In this respect, the implementation of the precon-
ditioner differs from those presented in our earlier work
[3], [4], [9], [18]. The computational kernels for GPU exe-
cution were programmed in CUDA and we used cuSPARSE
(v8.0) for all the basic operations, except the sparse matrix–
vector product.

A. SPARSE MATRIX-VECTOR AND SPARSE
MATRIX-DENSE MATRIX MULTIPLICATION
Sparse matrix–vector multiplication is the cornerstone of
the sLOBPCG algorithm. The performance of this operation
on a GPU depends on the format used to represent sparse
matrices [24]. It is known that the main architectural bot-
tleneck to the efficiency of the SpMV algorithm is memory
bandwidth. Performance can be improved by vector blocking
[9], [11], [13], [25], [26]. We use blocking in our imple-
mentation, since, when the number of eigenvalues sought is
q > 1, the sequence of matrix–vector multiplications needed
to apply the preconditioner to multiple vectors, to solve a sys-
tem of equations with multiple right-hand sides for nullspace
filtering (steps 1,12), to compute residuals (step 7), to carry
out orthogonalization (step 13), or to carry out the projection
(step 15) can replaced bymultiplications of a sparsematrix by
a block of vectors. Therefore, it is also important to develop
optimized kernels for multiplying sparse matrices by dense
matrices, where the dense matrix is tall and skinny with the
number of columns comparable to q (the number of columns
decreases as the iteration progresses and subsequent eigen-
values converge).

B. PERFORMANCE BOUNDS
To determine the performance bounds for the SpMV (sparse
matrix–vector product) and SpMM (sparse matrix–dense
matrix product) kernels for both real and complex arithmetic,
we use the approach presented in [11]. The upper bound is
given by

Pmax =
Flops
tB

BW , (3)

where tB is lower bound on data transfers in bytes, Flops is
the number of floating point operations for an SpMV, and BW
is the achievable data transfer rate to/from main memory

If the tall and skinny matrix is composed of m vectors of
n elements each, and a sparse n × n matrix has nz nonzero

elements, the lower bound on data transfers in bytes and Flops
is calculated as follows:

tB = K1 · 8 · nz + 4 · nz + 4 ·
nz
K3

+K1 · 8 ·
nz
K3
· m+ K1 · 8 ·

nz
K3
· m (4)

Flops = K2 · 2 · nzm, (5)

where K1 = 1,K2 = 1 for double precision, and K1 = 2,
K2 = 4 for complex double precision, respectively; K3 is
the average number of nonzero elements per row. We con-
sider factors related to n, since they become significant
in tB as the number of vectors (m) in the blocked sparse
matrix vector product increases. The bandwidth for the
hardware can be measured: for the NVIDIA K40 accel-
erator used in [11], the measured bandwidth, as reported
by NVIDIA’s bandwidthTest benchmark, is 180 GB/s,
while for the NVIDIA P100 GPU this is 390 GB/s. The key
from the performance of the PCG-V solver sparse matrix
is A22 = K22 − κM22, used on the highest level of
the multilevel preconditioner from Algorithm 2. For this
matrix K3 = 40, and the upper bound for the SpMV
and SpMM performance on a K40 computed using the
above formula is 28.8 GFlop/s (m=1), 310.5 (m=16) and
68.9 GFlop/s (m=1), 698.2 GFlop/s (m=16) for real dou-
ble precision and complex double precision, respectively.
For the P100 accelerator, the upper limits are 62 GFlop/s
(m=1) or 673 GFlop/s (m=16) for real double precision, and
149 GFlop/s (m=1) or 1513 GFlop/s (m=16) for complex
double precision.

C. SPARSE MATRIX STORAGE FORMAT
The actual performance depends on the matrix sparsity pat-
tern and the format used to store the sparse matrix [24].
In [11], the SELL-P sparse matrix storage format [25], [27]
was used. In this work, we also consider Sliced ELLR-T
(SELLR-T) [28]. Both SELL-P and SELLR-T formats take
advantage of dividing the sparse matrix into slices/blocks
of rows in order to reduce the memory overhead, and they
employ multiple threads to perform computations in each
row. In SELL-P, each slice/block is converted into ELLPACK
format with the row-length of each block padded up to a
multiple of the number of threads assigned to each row.
In SELLR-T, a sparse matrix is reordered from least to the
most populated row and then sliced (Figure 1). In each slice,
a permutation based on ELLR-T proposed in [29] is utilized
in the preprocessing stage. The rows are padded with zeros,
so that the number of elements (including redundant zeros) in
each row is amultiple of 16. This ensures a coalescedmemory
access. Figure 2 shows padding for slices 1 and 4 of thematrix
shown in Figure 1. When a sparse matrix stored in SELLR-T
format is multiplied by a vector (or a dense tall and skinny
matrix), T threads T = 2, 4, 8, . . . work in parallel on the
same row and compute partial sums.

To determine the format that works best in our application,
we compared the performance of SELL-P and SELLR-T for
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FIGURE 1. Matrix reordering and slicing .

our matrices on the same GPU as was used in the implemen-
tation of the GPU-accelerated LOBPCG solver for standard
eigenvalue problems (i.e., when the mass matrix is the iden-
tity matrix) [11]. Tests reported in [30] on Tesla K40 accel-
erator (bandwidth 180 GB/s) showed that, for SpMV (m =
1), SELL-P achieved 82% of the upper bound performance
(with a sparse matrix used [30]). Since Sliced ELLR-T format
allowed us to achieve a slightly higher efficiency (86%) by
our metrics, this format was used in the GPU-accelerated
implementation of the sLOPBCG algorithm. On the NVIDIA
P100 GPU, the SELLR-T format achieves 36.6 GFlop/s
(m=1) or 111.3 (m=16) in the real double precision and
87.5 GFlop/s (m=1) or 243.6 GFlop/s (m=16) for the com-
plex double precision SpMM kernel [9].

D. DUAL GPU IMPLEMENTATION
The SpMV and SpMM procedures were also developed
for two P100 accelerators. As explained above, the main
reason for using more than one accelerator was not the
higher throughput, but to alleviate memory limitations.
For a dual-GPU scenario, the stiffness and mass matrices
were distributed between accelerators using a fast data-
distribution technique that optimizes splitting of the finite-
element method (FEM) matrices, as proposed in [8]. The
technique uses graph partitioning on the level of tetrahedral
FEM mesh and spreads the data between graphics acceler-
ator. It also provides input to the FEM matrix-generation
and assembly process needed to achieve load balancing and
reduce communication between GPUs. In doing so, it also
retains the blocked structure related to the order of the basis
functions used in FEM, which is needed to use the hierar-
chical multilevel preconditioner. In particular, the 18 sparse
stiffness and mass submatrices Kij,Mij, i = 1, 3, j = 1, 3
and PCG-V vectors were divided between two GPUs. The
rest of sparse and dense matrices (the matrices associated
with NSF and LOBPCG in Tab. 1) were stored in a host

FIGURE 2. Zero padding in slices (slices 1 and 4) for a coalesced memory
access.

graphics accelerator. Consequently, one accelerator (the host)
was loaded with more data than the other. This imbalance
could be avoided, but then the performance would deteriorate
significantly.

To provide reference results, the sLOBPCG algorithm was
also implemented on a multicore CPU. For the CPU oper-
ation, whenever possible, we used parallelized procedures
from the Intel MKL library (v. 2017, update 1). This library
is optimized for performance on Intel’s multicore processors,
so we can regard the comparison of the runtimes involved in
the tests as fair.

VI. NUMERICAL RESULTS
All numerical tests were executed on a server with an Intel
Xeon (E5-2680 v3, 2.5 GHz, twelve cores) and 256 GB
memory and one or two NVIDIA Tesla P100s (Pascal accel-
erator) with 3584 CUDA cores and 12 GB GPU RAM
each. We considered a realistic electromagnetic problem—a
dielectric resonator [17]. The structure is show in Figure 3

The resonator consists of a cylindrical cavity, loaded with a
dielectric puck with a notch. The puck placed on a cylindrical
support. The relative permeabilityµ1 of the dielectric is equal
to one, while the relative permittivity is a complex number
given by

εr = ε
′
− j tan δ (6)

where tan δ is the loss tangent. The real part of the relative
permittivity was assumed to be 37 and 2.1, for the puck and
support, respectively. The loss tangent was varied in tests as
described below.

Because of the presence of loss in the dielectric, the eigen-
values of the problem (1) are complex numbers. The real part
is related to the resonant angular frequency ωr , while the
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FIGURE 3. A resonant cavity loaded with lossy dielectrics .

TABLE 2. Test problem description.

imaginary part determines the quality factor Q.

ωr = cRe
√
σ (7)

Q =
ωr

(2πcIm
√
σ )

(8)

We considered two cases: one in which the the loss tangent
for the support and the dielectric pucks were assumed to be
0.001 and 0.01, respectively, and a second problem in which
the losses were taken to be ten times higher. In the second
case, the Q-factor for the lowest order mode is around 10,
and this makes solving the eigenvalue problem challenging,
even for some solvers utilized by industry [31]. In the case
of SLOBPCG, the higher the loss, the more accurate the
solution for the preconditioned residuals should be (step 11 in
Algorithm 1). As a result, in order to find eigenvalues with
the assumed tolerance (εsLOBPCG) for the higher loss case,
the requirements for accuracy of the sLOBPCG precondi-
tioner (P) are significantly higher (εPCG−V ) for the first
problem (10−10 vs. 10−3). The FEM matrices used in the
test were generated using InventSIM FEM [23] code. The
tetrahedral mesh of the structure was generated using Netgen
mesher [32]. Details of the two test problems analyzed in
this paper are shown in Table 2. The complex eigenvalues σ ,
computed using sLOBPCG with the error tolerance set to
ε = 10−4 for LOSSY1 and LOSSY2 setups, are presented
in Tables 3 and 4. The eigenvalues found by our solver
agree very well with the results calculated by commercial
FEM software for solving microwave eigenvalue problems
(the Eigenmode Solver of CST MICROWAVE STUDIO).

TABLE 3. Complex eigenvalues σi computed using sLOBPCG for error
tolerance set to ε = 10−4 for LOSSY1.

TABLE 4. Complex eigenvalues σi computed using sLOBPCG for error
tolerance set to ε = 10−4 for LOSSY2.

TABLE 5. Memory (in GB) requirements and times (in seconds) taken by
CPU-based sLOBPCG implementations for three different
implementations of preconditioner P.

The times taken to find six eigenpairs with a reference
CPU-based sLOBPCG implementation (based on functions
from Intel MKL in parallel mode) using the PCG-V solver for
preconditioning and nullspace filtering, and with nonblocked
SpMVproducts, were 815 and 2633 seconds for LOSSY1 and
LOSSY2, respectively. To solve these eigenvalue problems,
we needed 9.8 GB of CPU RAM. For higher levels of losses
(LOSSY2), the tolerance needed in preconditioning residuals
is high εPCG−V = 10−10, so it is in fact faster to use the direct
solver (Intel Pardiso) for this operation, rather than the PCG-
V solver. In this case, we take advantage of the symmetry of
matrices and solve for all preconditioned residuals at once.
The time taken by sLOBPCG on a CPU can be reduced from
2633 to 665 seconds. However, it should be borne inmind that
the factorization-based Intel Pardiso requires about 3.7 times
more memory than the PCG-V solver, and this grows rapidly
as the matrix size increases, so this scenario is not a good
reference for speed-up tests. In terms of memory usage, this
variant is equivalent to the shift-and-invert approach, which
is not intended for LOBPCG. The runtimes for various GPU-
accelerated scenarios are given in Table 6 and Table 7. The
tables also show the memory needed by each variant. As far
as the GPU-memory usage is concerned, the reference is
a GPU-accelerated implementation of Algorithm 1 with a
nonblocked version of SpMV and the preconditioner stored as
a separate matrix A, rather than constructed on-the-fly from
the blocks Kij,Mij, i = 1, 3, j = 1, 3. Such an implementa-
tion requires 11 GB of GPU RAM of 12 GB available on a
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TABLE 6. Memory (in GB) requirements and time to solution (in seconds)
for two reference implementation (one or two GPUs) of the
GPU-accelerated sLOBPCG algorithm.

TABLE 7. Memory (in GB) requirements and time to solution (in seconds)
for GPU-memory-saving implementations of the sLOBPCG algorithm and
two variant sparse matrix vector products (blocked SpMM, nonblocked
SpMV).

Pascal P100 (Table 6. For the dual-GPU scenario, thememory
requirements drop to 8.5 GB (for dual GPU setups, we give
the memory data for the host GPU, which is more loaded,
as explained in Section IV: Implementation). For this refer-
ence GPU-accelerated implementation a nonblocked matrix–
vector product, the time to solution is shortest for the dual
GPU. Blocking of vectors for the sparse matrix–vector prod-
uct (SpMM) was not possible, as there is not enough of GPU
memory.

Storing 18 separate submatrices—Kij,Mij, i = 1, 3,
j = 1, 3— in memory and then constructing the precondi-
tioner from them reduces the requirements for nonblocked
SpMV from 11 to 8.7 GB. Adding a second GPU allow a
further memory reduction to 7.3 GB (on the host GPU). It can
be noted that, while the memory requirements are reduced,
the time to solution for this variant is longer. Comparing the
runtime data in Table 6 and Table 7, it can be seen that, for the
LOSSY2 case, the time taken by this GPU-memory-saving
variant is 860.4 vs. 738.8 seconds, for a single GPU, and
791.4 vs. 675.5 seconds for the dual-GPU arrangement. This
slowdown is because the matrix–vector products are carried
out in the memory-saving version as a sequence of operations
on individual blocks of the stiffness and mass matrices. How-
ever, thememory-saving implementation allows for blocking,
which is very important for high performance. From Table 7,
it is evident that a blocked sLOBPCG solver requires signifi-
cantly morememory—10.8 GB or 10.3 GB of GPURAM for
one or two graphics accelerators involved in computations.
Nevertheless, comparing the runtimes, it is clear that the
speed gains are large. The gains are particularly spectacular
for the scenario with blocked vectors when many iterations
of the preconditioner are needed (LOSSY2). The effect of
blocking is clearly seen in Figure 4 which shows speedups
for a single GPU setup.

With two GPUs, the solution takes 413.5 seconds, which
is 6.4 times faster than the reference CPU implementation
using the iterative preconditioner (PCG-V). The nonblocked

FIGURE 4. Speedup for blocked (SpMM) and nonblocked (SpMV) kernels
for a single GPU setup.

TABLE 8. Comparison of GPU-based and CPU-based implementations of
the sLOBPCG algorithm. Test problem: LOSSY1.

TABLE 9. Comparison of GPU-based and CPU-based implementations of
the sLOBPCG algorithm. Test problem: LOSSY2.

version is 3.3 times faster than the CPU-implementation
optimized for multicore platforms. For LOSSY1 problems,
the speedups are lower—from 2.9 and 4.6 for the nonblocked
and blocked vectors, respectively. The better speedup seen
with LOSSY2 problems can be explained by the fact that
LOSSY2 needs more iteration of the preconditioner and the
preconditioner is the step of the sLOBPCG algorithm in
which the gains from using a GPU are the highest. Con-
cluding this comparison of the GPU-accelerated sLOBPCG
algorithm with its parallel CPU-only counterpart, we can
observe that GPU with an iterative preconditioner is faster
even than the memory-demanding CPU implementation with
a preconditioner based on the factorization of a sparse matrix
and the direct solution of the system of equations. It is
expected that even larger speedups can be obtained for the
newest generation GPU accelerators. In our work, we used
two NVIDIA Pascal P100 boards with 12 GB of RAM. The
newest generation of NVIDIA’s accelerators, Volta V100,
supports 32 GB RAM, which would allow us to handle
problem about three times larger, and also to obtain faster
performance on nonblocked and blocked SpMV due to the
much higher bandwidth and the increased number of cores.

VII. CONCLUSION
In this paper, fast single and dual GPU-based implementations
of the stabilized locally optimal block preconditioned con-
jugate gradient (sLOBPCG) algorithm were presented.
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Compared to the CPU reference implementation of the
sLOBPCG algorithm, optimized for performance on a
multicore processor using Intel MKL on the Intel Xeon
(E5-2680 v3, 12 threads), the the GPU-accelerated code
has been demonstrated to be 6.4 times faster in some com-
putational scenarios. The approach proposed in the paper
can be used to expedite finete-element modal analysis of
microwave or photonic resonators in the presence of a lossy
dielectric material.
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