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ABSTRACT This paper proposes a small-signal stability analysis method for the three-phase multi-
functional grid-connected inverter (MFGCI) system with an unbalanced local load based on impedance
modeling. To attenuate the imbalance introduced by the local load, a modified power quality-compensation
algorithm for the MFGCI based on the conservative power theory is proposed and incorporated into the
stability analysis. The impedance model of the three-phase system is developed by adopting the complex
space vector method to simplify the stability analysis process in this paper. In addition, based on the
proposed impedance model and stability analysis, it is proven that the unbalanced local load can affect the
stability of the system when the grid-impedance is not negligible. Furthermore, the adoption of the active
imbalance compensation can reshape the impedance characteristics of the unbalanced system and improve
the stability. The accuracy of the proposed impedance model, and the stability analysis results are verified
by the simulation and experimental results.

INDEX TERMS Multi-functional grid-connected inverter, three-phase imbalance compensation, impedance
model, small-signal stability.

I. INTRODUCTION
Three-phase voltage-source grid-connected inverters are
widely used in grid-integrated distributed generations (DGs).
Due to their high flexibility and controllability, the grid-
connected inverters are applied not only to transmit the active
power of DGs but also to help achieve the compensation of
power quality problems (e.g., harmonic or three-phase imbal-
ance distortion). Thus, the concept of the multi-functional
grid-connected inverter (MFGCI) has been proposed [1].
When the MFGCI is connected to the grid, most of its
functions are realized by controlling the output currents.
Therefore, the current control loop of the grid-connected
inverter has been the research focus of late [2]–[4]. How-
ever, previous studies indicate that the current control loop
can cause oscillation of the grid-connected inverter in weak
grid conditions [5]. To study the small-signal stability
issue, impedance (admittance) models, both in synchronously
rotating frame and stationary frame, have been proposed,

taking into account the current control loop and the phase-
locked loop (PLL) [6]–[8]. The method to establish the
impedance model in phase-domain was proposed [8]. Then,
the complex space vector method was adopted to derive
the impedance model [9]. The proposed impedance models
are mostly matrix-based, due to the coupling between the
d and q axes or different sequence components. To sim-
plify the stability analysis process, a single-input-single-
output (SISO) equivalent impedance model was proposed
considering the coupling between the positive-sequence and
negative-sequence components of grid-connected inverter
systems [10].

Besides the current control loop, a previous study proved
that the three-phase imbalance of the grid-impedance can
also reduce the stability of the grid-connected inverter system
based on the impedance analysis [11]. However, in practice,
the DGs are commonly connected to the distribution grid
with local loads. Thus, the imbalance of the system can
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also be caused by the unbalanced local load. In addition,
to compensate for the imbalance distortion, the active com-
pensation algorithm is integrated into the control system of
the MFGCI to extract the imbalance load current component
as the reference value for the output-current [12]. Theoreti-
cally, by tracking the calculated reference value, the unbal-
anced load current can be offset by the output-current of the
MFGCI. Thus, the three-phase balanced current of the point
of common coupling (PCC) can be achieved [13].

From the viewpoint of system impedance model, it can
be considered that the active compensation changes the
three-phase unbalanced feature of the system output
impedance to the three-phase balanced feature. Moreover,
the equivalent impedance of the compensated system is
directly related to the current control loop and the imbal-
ance compensation algorithm of the MFGCI. Accordingly,
the small-signal stability of the three-phase system can be
affected by not only the unbalanced local load but also the
adoption of the active imbalance compensation. However,
existing impedance modeling methods do not consider adopt-
ing the active imbalance compensation algorithm. The small-
signal stability study for the MFGCI system with unbalanced
local load is also inadequate.

To study this issue, the impedance model for the three-
phase system including the MFGCI and the unbalanced local
load is proposed in this paper. By adopting the complex space
vector method, the positive-sequence and negative-sequence
SISO impedance models previously proposed [10] are uni-
fied. Furthermore, the modified imbalance compensation
algorithm based on the conservative power theory (CPT) is
integrated into the proposed impedance model. By adopt-
ing the compensation algorithm, the imbalance load cur-
rent can be extracted in phase-domain without the dq
transformation [14]. Moreover, the compensation current
generated by the compensation algorithm can exclude the
balanced reactive component of the load current, which helps
to save the compensation capacity [15]. Based on the pro-
posed impedance model, the detailed stability analysis for
the three-phase system is performed in this paper taking into
account the influence of the grid-impedance. The analysis
verified that the imbalance of the local load can affect the
stability of the system. The study also proved that the adop-
tion of the proposed CPT-based compensation algorithm can
decrease the imbalance of the system by reshaping the equiv-
alent impedance of the unbalanced load. Therefore, the sta-
bility of the system can be enhanced. Both the simulation and
experimental results confirmed the accuracy of the proposed
model and the stability analysis results.

This paper is organized as follows. In Section II, based
on the complex space vector method, the three-phase system
impedance model is built considering the MFGCI with an
LCL filter and the unbalanced local load. In Section III,
the imbalance compensation algorithm based on the CPT is
integrated into the model to derive the equivalent impedance
of the compensated system. The verification of the pro-
posed model is also presented. The stability analysis of the

system taking the grid-impedance into account is performed
in Section IV. Section V presents the experimental results.
Finally, the conclusions drawn from this work are given in
Section VI.

II. SMALL-SIGNAL IMPEDANCE MODEL OF THE
THREE-PHASE GRID-CONNECTED INVERTER SYSTEM
WITH THE UNBALANCED LOCAL LOAD
A. TOPOLOGY OF THE THREE-PHASE SYSTEM AND
IMPEDANCE MODEL OF THE UNBALANCED LOAD
When the MFGCI and the unbalanced local load are con-
nected to the same PCC, the topology of the three-phase
system is illustrated in Fig. 1.

FIGURE 1. Topology of the three-phase system with the unbalanced local
load and the MFGCI.

As illustrated in Fig. 1, The LCL filter is adopted in the
MFGCI to eliminate the high-frequency harmonic caused by
the pulse-width modulation (PWM). The LCL filter is com-
posed of the inverter-side inductor L1, the grid-side induc-
tor L2, and the capacitor C . R is the damping resistor. The
three-phase delta-connected load is connected to the same
PCC with the MFGCI. To simulate the active and reactive
power consumption, each phase-to-phase load is considered a
resistor with a parallel inductor. The admittances of the loads
are denoted as Yab, Ybc, and Yca.
To simplify the analysis, the complex space vector method

is adopted to derive the impedance model of the three-phase
system. The three-phase quantities in a three-phase system
can be represented as complex space vectors [16]. In addition,
the rotating direction of the positive-sequence quantity at the
fundamental-frequency is defined as the positive direction.
Considering the existence of a small-signal perturbation, the
three-phase voltage of the PCC UP can be expressed as:

UP = U0 + Ue

= U0ejω0t + Ueej(ωet+θe) ωe ∈ (−∞,+∞) (1)

where U0 is the three-phase voltage at the fundamental-
frequency;ω0 is the fundamental angular frequency;U0 is the
magnitude of U0; Ue is the three-phase perturbation voltage;
ωe is the angular frequency of Ue; the magnitude of the
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perturbation voltage is denoted by Ue; θe is the initial phase
of the perturbation voltage. As a small-signal perturbation,
the magnitude of the perturbation voltage meets the condition
Ue � U0. By adopting the complex space vector method,
a positive-sequence perturbation voltage can be expressed as
Ue at a positive angular frequency (ωe > 0) and a negative-
sequence perturbation voltage can be expressed as Ue at a
negative angular frequency (ωe < 0). Based on this defini-
tion of the complex space vector, the components of UP are
depicted in Fig. 2.

FIGURE 2. Complex space vector diagram in abc-frame for the
three-phase voltage of the PCC. (Clockwise direction is the positive
direction. In the presented case, ω0 > 0 and ωe < 0.)

When a negative-sequence perturbation is added to the
three-phase voltage of the PCC, the complex space vectors
of U0 and Ue can be represented as shown in Fig. 2. It shows
that by introducing the concept of negative angular frequency,
the expressions for positive-sequence and negative-sequence
quantities can be unified.

When the unbalanced load is connected at the PCC under
the UP with small-signal perturbation, the three-phase load
current IL can be expressed as:

IL =


IL0 = IL0ej(ω0t+θL0)

ILN0 = ILN0ej(−ω0t+θLN0)

ILe = ILeej(ωet+θLe)

ILNe = ILNeej(−ωet+θLNe)

(2)

Under U0 and Ue, IL includes IL0 at the frequency ω0and
ILe at the frequencyωe. Moreover, due to the imbalance of the
load, the current components ILN0 at the frequency −ω0 and
ILNe at the frequency−ωe also exist in IL. IL0, ILN0, ILe, and
ILNe represent the magnitudes of the space vectors IL0, ILN0,
ILe and ILNe, while the initial phases of the space vectors are
represented by θL0, θLN0, θLe, and θLNe, respectively.
According to the small-signal linearization method,

the voltage and current components related to the
small-signal perturbation is considered. Therefore, an equiva-
lent small-signal impedance model in the frequency-domain
for the three-phase unbalanced load can be derived and is
depicted in Fig. 3.
In the frequency-domain, the expression of the perturba-

tion voltage Ue can be derived as:

Ue(ω) = 2πUeejθeδ(ω − ωe) (3)

FIGURE 3. Small-signal Impedance model for the three-phase
unbalanced load.

The load current in the frequency-domain IL(ω) under
Ue(ω) can be expressed as:

IL(ω) =

{
ILe(ω) = 2π ILeejθLeδ(ω − ωe)
ILNe(ω) = 2π ILNeejθLNeδ(ω + ωe)

(4)

According to the space vectors of the three-phase load
current shown in (4), the three-phase load can be modeled
as a balanced admittance (or impedance) in parallel with a
voltage-controlled-current-source. The equivalent balanced
admittance of the load at the frequency ωe is represented as
YL(ωe) in Fig. 3. Additionally, YL(ωe) can be derived based
on the expressions of the phase-to-phase load admittances as:

YL(ωe) =
ILe(ω)
Ue(ω)

= Yab(ωe)+ Ybc(ωe)+ Yca(ωe) (5)

As shown in (5), the expressions of the phase-to-phase load
admittances in the frequency-domain at ωe are represented as
Yab(ωe), Ybc(ωe), and Yca(ωe).
The imbalance of the local load produces ILNe(ω) at the

frequency −ωe. Since ILNe(ω) is at the different frequency
from theUe(ω), the voltage-controlled-current-source is used
to represent the relation between the current and the exter-
nal excitation voltage. In addition, the coupled-admittance
YLN(ωe) is defined to describe the relationship between
ILNe(ω) andUe(ω). The expression of YLN(ωe) can be derived
as:

YLN(ωe) =
ILNe(ω)
U∗e (ω)

= −

[
ej

4π
3 Yab(ωe)+ Ybc(ωe)+ ej

2π
3 Yca(ωe)

]∗
(6)

where U∗e is the conjugate vector of Ue. Based on (5)
and (6), the proposed small-signal impedance model can be
directly derived based on the expressions of the actual loads
in the frequency-domain.

B. IMPEDANCE MODEL OF THE UNBALANCED
THREE-PHASE SYSTEM WITH THE MFGCI
When theMFGCI is connected to the grid at the same PCC as
the unbalanced load, the small-signal impedancemodel of the
three-phase system can be represented as depicted in Fig. 4.

As illustrated in Fig. 4, the Norton equivalent model of the
grid-connected inverter [6] is adopted. Iinv(ω) is the three-
phase output-current of the MFGCI in the frequency-domain.
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FIGURE 4. Small-signal Impedance model for the three-phase system
including the unbalanced load and the MFGCI.

The current-source is an equivalent of the current control loop
of the MFGCI. Is(ω) is the output-current of the equivalent
current-source. Yinv(ωe) is the equivalent admittance which
represents the interference from the perturbation voltage Ue.
The expression of the equivalent impedance can be derived
based on the complex transfer functions [16] of the control
system.

FIGURE 5. Block diagrams for the control system of the MFGCI. (a) The
diagram for the current control scheme. (b) The diagram for the PLL.

As shown in Fig. 5(a), the current control scheme in the sta-
tionary frame is adopted in the MFGCI. Idref and Iqref are the
active-power current reference and the reactive-power current
reference, respectively, in the dq-frame. The Idref and Iqref
are considered as constants in small-signal analysis. Thus,
the power current reference can be expressed in complex form
as Irefejθref. To achieve power transmission and power quality
compensation, the output-current reference Iref includes two
separate parts. One is the power current reference which is
derived from Irefejθ ref by dq-abc transformation. The other is
the compensation current reference ICref, which is calculated
based on IL and UP. Hi(s) is the transfer function of the
current controller. K represents the PWM gain. D(s) is the
transfer function for sampling delay and can be expressed as:

D(s) =
1− e−Tss

Tss
e−Tss (7)

where Ts is the sampling period of the control system.
P(s) is the transfer function of the LCL filter, and can be
expressed as:

P(s) =
CRs+ 1

CL1L2s3 + CR(L1 + L2)s2 + (L1 + L2)s
(8)

Based on Hi(s), D(s), and P(s), the closed-loop transfer
function of the current control loop can be derived as:

G(s) =
KHi(s)P(s)

1+ KHi(s)P(s)D(s)
(9)

According to Fig. 5(a), when UP contains the perturbation
voltage Ue, the interference current component at the fre-
quency ωe can be introduced in Iinv through N (s) and PLL.
N (s) can be derived as:

N (s) =
CL1s2 + CRs+ 1

CL1L2s3 + CR(L1 + L2)s2 + (L1 + L2)s
(10)

As illustrated in Fig. 5(b), the synchronous reference frame
phase-locked loop (SRF-PLL) is adopted to calculate the
phase of U0. However, the perturbation voltageUe can cause
disturbance to the calculated phase θPLL [8]. Therefore, the
interference 1IPLL is introduced to the output-current refer-
ence by the dq-abc transformation based on θPLL. According
to the PLL small-signal model previously proposed [8], [9],
the expression of 1IPLLin the frequency-domain can be
expressed as:

1IPLL(ω) =
1
2
Irefejθref

[
F(s− jω0)D(s)

]∣∣
s=jωe

Ue(ω) (11)

where

F(s) =
Kps+ Ki

s2 + U0(Kps+ Ki)
(12)

In (12), Kp and Ki are the proportional-coefficient and the
integral-coefficient of the SRF-PLL, respectively.

Based on the above-mentioned analysis, the Norton equiv-
alent model presented in Fig. 4 for the grid-connected inverter
can be expressed as:

I inv(ω) = Is(ω)− Yinv(ωe)Ue(ω) (13)

Is(ω) can be further expanded as:

Is(ω) = G(s)|s=jω [IPref(ω)+ ICref(ω)] (14)

where IPref(ω) is the frequency-domain expression for power
current reference in abc-frame and can be expressed as
2π Irefejθrefδ(ω − ω0). Moreover, the equivalent admittance
Yinv(ωe) can be derived based on (7), (9), (10), and (11) as

Yinv(ωe) =
[

N (s)
1+ KHi(s)P(s)D(s)

−
Irefejθref

2
F(s− jω0)D(s)G(s)

]∣∣∣∣
s=jωe

(15)

In summary, based on (5), (6), (14), and (15), the expres-
sions of the different components which compose the small-
signal model shown in Fig. 4 can be obtained.
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III. SMALL-SIGNAL IMPEDANCE MODEL CONSIDERING
THE ACTIVE IMBALANCE COMPENSATION ALGORITHM
The small-signal model proposed in Section II reveals
the relationship between the compensation current refer-
ence ICref and the inverter output-current Iinv. As shown
in Fig. 5(a), ICref is calculated based on the load current IL.
Therefore, the coupling between the MFGCI and the unbal-
ance load is introduced by the compensation current extrac-
tion unit.

In this Section, the compensation current extraction algo-
rithm in the stationary frame is proposed based on the CPT.
By adopting the complex space vector method, the expression
of ICref is derived based on the expression of IL, considering
the load topology presented in Fig. 1. Thus, the equiva-
lent impedances for the compensated unbalanced load are
derived. Furthermore, the small-signal impedance model for
the three-phase system with the MFGCI and the compen-
sated unbalanced load is confirmed based on the impedance
measurement.

A. COMPENSATION CURRENT EXTRACTION
ALGORITHM BASED ON THE CPT
The CPT provides a method to decompose the current com-
ponents in the stationary frame, and has been successfully
applied for harmonic current and imbalance current compen-
sation [12]–[14]. In this study, the CPT-based compensation
current extraction algorithm is adopted to extract the unbal-
anced load current. Taking the existence of the perturbation
voltage Ue into account, several modifications are made to
the extraction algorithm. The block diagram for the proposed
algorithm is presented in Fig. 6, based on the complex space
vector method.

As shown in Fig. 6(a), Iba and Ibr are the equivalent
balanced active current and the equivalent balanced reactive
current, respectively, calculated based on the CPT. The com-
pensation current reference ICref can be obtained by eliminat-
ing Iba and Ibr from ILs. ILs is the sampling value of the load
current IL. The calculation process of Gb and Bb is shown
in Fig. 6(b).

Since the sampling period Ts � T0, the delay effect of
sampling at ω0 and−ω0 can be neglected. Only the sampling
values atωe and−ωe are affected by the sampling delayD(s).
Thus, based on (7), the sampling value ofUP can be expressed
as:

UPs =

{
U0

Ues = D(s)|s=jωe Ue
(16)

The sampling value of IL can be expressed as:

ILs =


IL0
ILN0
ILes = D(s)|s=jωe ILe
ILNes = D(s)|s=−jωe ILNe

(17)

Based on the CPT, the unbiased time integral for the peri-
odic quantity x (the period of x is T .) is defined by (18) to

FIGURE 6. Block diagrams of the compensation current extraction
algorithm based on the CPT. (a) The process for the calculation of ICref.
(b) The process for the calculation of Gb and Bb.

calculate the reactive power [14].

xi = x∫ − x̄∫

=

∫ t

0
x(τ )dτ −

1
T

∫ T

0
x∫dt (18)

Thus, the unbiased time integral for a complex space vector
X=Xej(ωt+θ) can be derived as:

X i = X∫ − X̄∫
=

[(
X
/
jω
)
− Xejθ

/
jω
]
−

[
−Xejθ

/
jω
]

= X
/
jω (19)

According to (18) and (19), the unbiased time integral can
be achieved by eliminating the initial value from the ordinary
time integral result. For a periodic quantity, the initial value of
the ordinary time integral is constant and can be obtained by
calculating the average value [17]. However, the period of the
perturbation voltage Ue is uncertain in practice. Accordingly,
as illustrated in Fig 6(a), the high-pass-filter (HPF) with low
cutoff-frequency is adopted to eliminate the initial value of
the ordinary integral result. Thus, the unbiased time integral
result for UPs can be derived as:

UPsi = U0i + Uesi = U0
/
jω0 + Ues

/
jωe (20)

According to the CPT, the instantaneous active power p
is defined as the inner product between UPs and ILs. The
instantaneous reactive powerw is defined as the inner product
between UPsi and ILs [14]. The p and w can be expressed as:

p = (U0 + Ues) • (IL0 + ILN0 + ILes + ILNes)
w = (U0i + Uesi) • (IL0 + ILN0 + ILes + ILNes) (21)
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According to the definition of the inner product, the result
of an inner product between two complex space vectors at
the same frequency is constant. The result of an inner product
between two complex space vectors at different frequencies is
a sinusoidal quantity. To obtain the average active power Pavg
and average reactive power Wavg, the low-pass-filter (LPF)
is adopted to eliminate the sinusoidal quantities. Since the
cutoff-frequency of the LPF is set close to 0 rad/s, the expres-
sions for Pavg and Wavg can be expressed as:

Pavg = U0 • IL0 + Ues • ILes
Wavg = U0i • IL0 + Uesi • ILes (22)

The same method is used to obtain UPsn and UPsin as
illustrated in Fig. 6(b). The expressions can be derived as:

UPsn = U0 • U0 + Ues • Ues = U2
0 + U

2
es

UPsin = U0i • U0i + Uesi • Uesi = U2
0i + U

2
esi (23)

According to the model of the unbalanced load presented
in Section II.A, the load current components at the frequency
ω0 and ωe can be expressed as IL0 = YL(ω0) U0 and
ILe = YL(ωe) Ue, respectively. According to the load topol-
ogy shown in Fig. 1, YL(ω) can be derived based on (5) as:

YL(ω) = GL + jBL
/
ω (24)

where

GL = 1
/
Rab + 1

/
Rbc + 1

/
Rca

BL = −
(
1
/
Lab + 1

/
Lbc + 1

/
Lca
)

(25)

Based on the calculation process shown in Fig. 6(b),Gb and
Bb can be derived according to (22)-(25) and the expressions
of IL0 and ILe as:

Gb = GL Bb = −BL (26)

Therefore, the compensation current reference ICref can be
derived as:

ICref = ILs − GbUPs − BbUPsi

= ILN0 + ILNes (27)

It is revealed that the CPT-based compensation current
extraction algorithm can extract the load current components
at the frequency −ω0 and −ωe which are caused by the
imbalance of the load.

B. SMALL-SIGNAL IMPEDANCE MODEL FOR THE
COMPENSATED UNBALANCED LOAD
According to the Nortonmodel of theMFGCI, the compensa-
tion current produced by the MFGCI can be derived based on
the expression of ICref. By integrating the compensation cur-
rent into the model of the unbalanced load, the small-signal
impedance model for the equivalent compensated load can
be derived as shown in Fig. 7. Based on the small-signal lin-
earization method, the components related to the small-signal

FIGURE 7. Small-signal Impedance model for the unbalanced load
compensated by the MFGCI.

perturbation voltage are used to drive the equivalent admit-
tances of the compensated load. Accordingly, the current of
the equivalent load ICL(ω) can be derived based on (27) as:

ICL(ω)=

{
ICLe(ω) = ILe(ω)
ICLNe(ω) = [1− G(s)D(s)]|s=−jωe ILNe(ω)

(28)

Thus, the equivalent admittances for the compensated load
can be derived based on (5) and (6) as:

YCL(ωe) =
ICLe(ω)
Ue(ω)

= YL(ωe) (29)

YCLN(ωe) =
ICLNe(ω)
U∗e (ω)

= [1− G(s)D(s)]|s=−jωe YLN(ωe) (30)

According to (29) and (30), the adoption of the proposed
compensation algorithm changes the characteristic of the
coupled-admittance YLN(ωe), which is determined by the
imbalance of the load. The equivalent balanced admittance
YL(ωe) is not affected by the compensation.

C. VERIFICATION FOR THE SMALL-SIGNAL MODEL BASED
ON IMPEDANCE MEASUREMENT
According to the theoretical analysis in Section II and
III, the mathematical expressions of the small-signal model
are derived considering the active imbalance compen-
sation. To verify the accuracy of the proposed model,
the impedance (admittance) measurement is performed in
the MATLAB/Simulink environment. The topology for the
measurement system is presented in Fig. 8.

FIGURE 8. Diagram of the system for impedance measurement.
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TABLE 1. Parameters of the MFGCI and the unbalanced load.

As illustrated in Fig. 8, the small-signal perturbation volt-
age Ue is in series with U0. Based on the measured value
of the current at the PCC IP, the component of IP at the
frequency ωe (represented as IPe) and the component of IP
at the frequency −ωe (represented as IPNe) can be obtained.
According to the small-signal model presented in Fig. 4,

the admittance and coupled-admittance of the three-phase
system under the perturbation voltage Ue can be obtained
based on the values of IPe, IPNe, and Ue, and can be
expressed as:

Yinv(ωe)+ YL(ωe) = IPe
/
Ue

YLN(ωe) = IPNe
/
U∗e (31)

In addition, when the imbalance compensation algorithm
is adopted, Yinv(ωe) + YCL(ωe) and YCLN(ωe) can also be
measured based on (31).

In the simulation, the fundamental frequency is 50Hz.
U0 = 100V and Ue is set as 0.1U0. The load resistor is
only connected between phase A and phase B to simulate the
imbalance of the system. The main parameters of the MFGCI
and the unbalanced load are listed in Table I.

The multi-parallel proportional-resonant (PR) controller is
commonly used to realize the current control in the ordinary
grid-connected inverter and the MFGCI [2], [15], [18]. Thus,
the multi-parallel PR controller is adopted in the system as
current controller Hi(s) and can be expressed as

Hi(s) = Kp +
∑

i=1,3,5,7

2Khiωcis

s2 + 2ωcis+ ω2
i

(32)

The parameters for Hi(s) are Kp = 0.011; Kh1 = 0.35,
ω1 = 100π , ωc1 = 2; Kh3 = 0.3, ω3 = 300π , ωc3 = 2;
Kh5 = 0.3, ω5 = 500π , ωc5 = 2; Kh7 = 0.3, ω7 = 700π ,
ωc7 = 2.

The values of the admittances at variable frequencies
can be obtained using the measurement system presented
in Fig. 8. To verify the accuracy of the proposed small-
signal, the measured values of the admittances are compared
with the calculated values based on the formulas presented

in Section II and III. Additionally, the admittances consider-
ing the imbalance compensation are also compared with the
admittances without the imbalance compensation to verify
the effectiveness for the proposed compensation algorithm.
The results are presented in Fig. 9.

FIGURE 9. Theoretical curves and measurement results for the equivalent
admittances (solid lines: theoretical calculation results; dots:
experimentally measured results). (a) Admittances without the imbalance
compensation. (b) Admittances with the imbalance compensation.

In Fig. 9, the theoretical values for different admittances
are presented as solid lines, and the measured values of
the admittances are represented by the dots. It can be seen
that the measured values of the admittances match the val-
ues of the theoretical curves. Moreover, a comparison of
the compensated coupled-admittance YCLN with the uncom-
pensated coupled-admittance YLN clearly reveals that the
imbalance compensation significantly decreases the magni-
tude of the coupled-admittance, especially at the frequen-
cies with resonant controllers (i.e. ±3th, ±5th and ±7th

harmonic frequencies). Accordingly, it can be proven that
the active compensation of the MFGCI can mitigate the
imbalance of the system caused by the unbalanced load.
The equivalent balanced admittances of the three-phase sys-
tem (Yinv + YL and Yinv + YCL) are not affected by the

VOLUME 6, 2018 54871



W. Jin et al.: Stability Analysis Method for Three-Phase MFGCIs

imbalance compensation. However, it should be noted that
the change of the magnitude-frequency and phase-frequency
characteristics of the coupled-admittance can affect the
small-signal stability of the system, which is analyzed in the
next section.

IV. COMPLEX SPACE VECTOR-BASED SMALL-SIGNAL
STABILITY ANALYSIS FOR THE THREE-PHASE SYSTEM
A. SMALL-SIGNAL STABILITY ANALYSIS METHOD
As illustrated in Fig. 4, when the three-phase system with
unbalanced load is connected to the grid without the grid-
impedance, the unbalanced load current component at the
frequency−ωe is decoupled from the circuit at the frequency
ωe. However, the grid-impedance commonly exists in prac-
tice, particularly in weak grid condition. In this situation,
the circuit at the frequency ωe and the circuit at the frequency
−ωe are coupled due to the coupled-admittance YLN, which
can be observed in Fig. 10.

FIGURE 10. Diagram of the coupling between the circuit at the frequency
ωe and the circuit at the frequency −ωe.

The diagram in Fig. 10 reveals that due to the grid-
impedance Zg and the unbalanced load current at the fre-
quency −ωe, the voltage UPNe at the frequency −ωe is
introduced at the PCC. As a result, the additional cur-
rent component is introduced into the circuit at the fre-
quency ωe by the coupled-admittance and can be derived as
YLN(−ωe)U∗PNe(ω). In Fig. 10, YP(ωe) = Yinv(ωe) + YL(ωe).
Zg(ωe) is the grid-impedance. In the circuit at the frequency
−ωe, the admittance and the grid-impedance are expressed as
YP(−ωe), and Zg(−ωe).
Based on the model shown in Fig. 10, an equivalent

SISO system (Ue(ω) is the input, IPe(ω) is the output.)
can be obtained taking the coupling between the circuits
at ωe and −ωe into account [10]. Furthermore, the equiv-
alent admittance of the three-phase system considering the
grid-impedance can be derived based on (5), (6), and (15) as
follows:

Yloop(ωe) =
IPe(ω)
UPe(ω)

=

[
YP(ωe)− YLN(−ωe)Y ∗LN(ωe)

×
Z∗g (−ωe)

1+ Z∗g (−ωe)Y ∗P (−ωe)

]
(33)

The stability of the proposed SISO equivalent sys-
tem can be analyzed based on the Nyquist curve of
Zg(ωe)Yloop(ωe) [6]. For the complex space vector based
model, the system is asymptotically stable if the Nyquist
curve of Zg(ωe)Yloop(ωe) does not encircle −1 for
−∞ < ωe < +∞ [16].

B. STABILITY ANALYSIS CONSIDERING THE
GRID-IMPEDANCE AND THE IMBALANCE
COMPENSATION
Based on the small-signal stability analysis method, the
stability of the MFGCI system with unbalanced load is inves-
tigated. Considering the grid-impedance as three-phase bal-
anced inductance Lg, the expression of Zg(ωe) is

Zg(ωe) = jωeLg (34)

The parameters of the system are listed in Table I. The
small-signal stability analysis is conducted in three scenarios:
A) Lg = 0.1mH. The imbalance of the local load is not

compensated. YL(ωe), YLN(ωe), and Yinv(ωe) can be
obtained based on (5), (6), and (15). The Nyquist curve
of Zg(ωe)Yloop(ωe) is shown in Fig. 11(a).

B) Lg = 1.8mH. The imbalance of the local load is not
compensated. YL(ωe), YLN(ωe), and Yinv(ωe) are the
same as the admittances in scenario A. The Nyquist
curve of Zg(ωe)Yloop(ωe) is shown in Fig. 11(b).

C) Lg = 1.8mH. The unbalanced local load is com-
pensated by the MFGCI based on the proposed com-
pensation algorithm. In this scenario, Yloop(ωe) can be
obtained by using YCL(ωe) and YCLN(ωe) to replace
YL(ωe) and YLN(ωe) in (33). YCL(ωe) and YCLN(ωe) can
be obtained based on (29) and (30). The Nyquist curve
of Zg(ωe)Yloop(ωe) is illustrated in Fig. 11(c).

In scenario A, the magnitude of Zg(ωe) is close to 0,
especially within the control bandwidth of the current control
loop (hundreds of Hertz). Thus, the coupling between the
circuits at ωe and –ωe is weak in this situation. As shown
in Fig. 11(a), the Nyquist curve of Zg(ωe)Yloop(ωe) is far away
from the (−1, 0), which means the system is stable.

In scenario B, while the grid-impedance increases, the
coupling between the circuits caused by the unbalanced load
is strengthened. As illustrated in Fig. 11(b), when Lg =
1.8mH, the system is unstable because the Nyquist curve of
Zg(ωe)Yloop(ωe) encircles the (−1, 0).
In scenario C, by adopting the proposed imbal-

ance compensation algorithm, the magnitude of the
coupled-admittance is decreased as shown in Fig. 9(b). Thus,
the coupling between the circuit at ωe and the circuit at –ωe is
attenuated. Therefore, as illustrated in Fig. 11(c), the system
becomes stable in this situation while the Lg is still equal to
1.8mH.

V. EXPERIMENTAL RESULTS
To verify the stability analysis presented in Section IV, the
experimental platform is built according to the circuit topol-
ogy displayed in Fig. 1. The control system of the MFGCI
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FIGURE 11. Stability analysis for the three-phase system. (a) The
unbalanced load is not compensated (Lg = 0.1mH). (b) The unbalanced
load is not compensated (Lg = 1.8mH). (c) The unbalanced load is
compensated by the MFGCI(Lg = 1.8mH).

is implemented in the DSP processor TMS320F28335. The
experimental parameters of the MFGCI and the local load
are the same as the parameters used for theoretical anal-
ysis which are listed in Table I. In practice, the MFGCI
and the unbalanced local load are connected to the local
distribution grid through a 130V/400V step-up transformer.
Also, a three-phase inductor is used as the equivalent grid-
impedance. The experimental setup is shown in Fig. 12.

FIGURE 12. The experimental setup.

Three experiments, corresponding to the stability analysis
scenarios presented in Section IV.B, are conducted to verify
the analysis results. The experimental results are presented
in Fig 13.

The waveforms of Iinv (three-phase output-current of the
MFGCI), IP (three-phase current of PCC), and UP (three-
phase voltage of PCC) are presented for different scenarios
in Fig. 13.

The experimental results for the scenario A are presented
in Fig. 13(a). Since the unbalanced load is not compensated,
IP is three-phase unbalanced, even though the output-current
of the MFGCI is balanced. Except for the unbalanced current
at the negative fundamental frequency, few harmonic com-
ponents exist in the waveforms of Iinv, IP and UP. Thus, the
three-phase system is stable when Lg = 0.1mH.

The experimental results for the scenario B are shown
in Fig. 13(b). The results reveal that when Lg is increased
to 1.8mH, serious harmonic distortions for both currents and
voltages of the three-phase system arise, which indicates that
the system is unstable.

The experimental results for the scenario C are shown
in Fig. 13(c). When the Lg is still equal to 1.8mH, the
proposed imbalance compensation algorithm of the MFGCI
is adopted. The results indicate that the imbalance of IP is
clearly reduced. Moreover, the harmonic distortion of the
system is significantly decreased which confirms that the
system is stable.
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FIGURE 13. Experimental results for the three-phase system. (a) The
unbalanced load is not compensated (Lg = 0.1mH). (b) The unbalanced
load is not compensated (Lg = 1.8mH). (c) The unbalanced load is
compensated by the MFGCI (Lg = 1.8mH).

FIGURE 14. Harmonic spectra for the phase A current of IP in different
scenarios.

To better illustrate the small-signal stability in the different
scenarios, the harmonic spectra for the phase A current of
IP in three scenarios are obtained based on the Fast-Fourier-
Transform (FFT) analysis. The harmonic spectra are dis-
played in Fig. 14. The spectra show that when the imbalance
compensation algorithm is adopted, the phase A current of IP
at the fundamental frequency is increased. Thus, as shown
in Fig. 13(c), the balanced IP can be achieved. When the
system is unstable, the harmonic components of the phase
current rise significantly.

VI. CONCLUSION
In this paper, the complex space vector based small-signal
impedance model is proposed for the three-phase system
including the MFGCI and the unbalanced local load. The
MFGCI is adopted to realize the power transmission and
imbalance distortion compensation in the system.

To achieve the imbalance compensation, a CPT-based
active imbalance compensation algorithm is proposed and
integrated into the MFGCI. By incorporating the control
scheme of the MFGCI and the imbalance of the local load,
the impedance model presented in the paper reveals a spe-
cific small-signal response feature of the unbalanced three-
phase system. Based on the proposed model, the theoretical
analysis and impedance measurement results prove that the
CPT-based active compensation can attenuate the imbalance
of the system by reshaping the equivalent impedance of the
compensated load.

In addition, the small-signal stability analysis for the three-
phase system is also presented based on the impedance
analysis method. The analysis results indicate that the imbal-
ance of the local load can affect the small-signal stability
of the three-phase system when the grid-impedance is not
negligible. Furthermore, the analysis and experimental results
also confirm that the adoption of the proposed imbalance
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compensation algorithm can improve the stability of the sys-
tem by decreasing the coupled-impedance introduced by the
unbalanced load.
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