
Received July 11, 2018, accepted September 6, 2018, date of publication September 19, 2018, date of current version November 9, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2871003

Perceiving Artistic Expression: A Formal
Exploration of Performance Art Salsa
KAYHAN ÖZCIMDER1, (Member, IEEE), ZHAODAN KONG 2, (Member, IEEE),
SHUAI WANG3, (Student Member, IEEE), AND JOHN BAILLIEULL 4, (Fellow, IEEE)
1Department of Mechanical and Aerospace Engineering, Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
2Department of Mechanical and Aerospace Engineering, University of California at Davis, Davis, CA 95616, USA
3Division of Systems Engineering, Boston University, Boston, MA 02215, USA
4Division of Systems Engineering, Department of Mechanical Engineering, Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA

Corresponding author: John Baillieul (johnb@bu.edu)

This work was supported in part by the U.S. Air Force Office of Scientific Research through MURI07 Program under Grant
FA9550-07-1-0528 and in part by the Office of Naval Research through MURI10 Program under Grant N00014-10-1-0952.

ABSTRACT This paper studies artistic expression in human movement by exploring the performance art
form salsa. The motions of a salsa performance are constructed as concatenations of motion primitives,
each of which specifies the movement of the dance pair over the course of eight musical beats. To analyze
the syntax of artistic expression, the choreography of dance performances is represented by a transition
model that is based on humanoid robot representations of the dancers. In order to assess the quality of a
performance, two distinct metrics are explored. By integrating the performance metrics into the proposed
transition system, it is possible to create an algorithm that is capable of autonomously recognizing the
dance moves and evaluating the quality of the performance with a score. To validate the model, a dance
pair performed four distinct salsa dance sequences observed by an artificially intelligent (AI) judge. The
video recordings of the performances are also shown to a dance audience for evaluation. By looking at the
correlation between the dance audience and the AI judge’s scores, we conclude that the proposed model
performs well in evaluating the artistic merit of the dance.

INDEX TERMS Artificial intelligence, art, non-verbal communication, discrete-event systems.

I. INTRODUCTION
How can we measure ‘success’ in human or animal group
behavior? In team sports, such as basketball, American foot-
ball or soccer, ‘success’ can simply be defined as an execution
of a team strategy that results in a score on offense or prevents
the opponent team from scoring on defense. In animal group
behavior, success can be defined as the protection of the group
members from predators or finding a food source. However,
if one considers performance art, such as dance, the definition
of success might not be that clear, since the overall goal in art
forms is not as explicit compared with those in sports or ani-
mal behavior. Nevertheless, we observe that, in dance compe-
titions, such as the popular television show Dancing with the
Stars, the judges’ scores consistently agree with each other,
which means that they may use similar performance metrics
in judging the performances.1 This brings up the question
of whether there exists a formal way of evaluating a dance

1It could also mean that the judges influence each other. An AI judge
would presumably be immune from such influence.

performance. In what follows, this question is examined by
using a transition system model representation of salsa dance
and by incorporating performance metrics to evaluate salsa
performances.

A vast amount of work on understanding animal and
human collective behavior has been published, e.g. [1]–[8].
One subject that the researchers are interested in is how each
member within a group behaves individually to accomplish a
shared group objective. In study [1], Young et al. show that a
group of starling birds can maintain the cohesion of the group
by each individual only interacting with its closest neighbors.
The study [3] shows that a bee in a hive can use dance-
like motions to communicate the distance and direction of
a food source to other bees. Leonard et al. [2] discuss flock
logic wherein a group of people is constrained to nearest
neighbor interactions based on simple rules assigned to indi-
viduals. It is argued that constrained local interactions of the
group drive the whole group to generate recognizable motion
patterns.
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Lessons learned from animal and human collective motion
have inspired applications to build artificial multi-agent sys-
tems [9]–[11]. The study [9] shows how to generate a tra-
jectory that is synchronized with the musical beats for each
individual quadcopter so that the whole group can perform a
choreographed robotic dance. In [10] and [11] ballet is used
as an art form to study how to construct ballet movements
for humanoid robots. A state transition model is built with
each state representing a transition between two ballet poses.
The model is then used to generate ballet phrases. In order
to define success, the term ‘expressivity’ is introduced as a
figure of merit to convert the movement generation problem
into an optimization problem.

However, one interesting challenge that remains to be
addressed is understanding the interactions between humans
and artificially intelligent systems. There exist studies such
as [12]–[15] that investigate the social element of human
robot interactions in various settings such as communication
and artistic reflection. In linewith these studies, here we study
a setting in which an artificially intelligent (AI) observer is
required to assess artistic merit in human dance performances
based on criteria learned from human judges.

In conducting a formal study of this particular human-AI
interaction, we investigate the dance form salsa. We explore
two performancemetrics in salsa dance via formal constructs.
The first one is purely related to the skill level of the per-
formers. Different performance levels can be captured by the
number of moves a dancer can perform. In what follows,
we propose two different levels. They are beginner level
and intermediate level, each of which are represented by a
transition model. Different from the ballet as studied in [10],
a salsa performance involves a pair of dancers, a leader and
a follower. The leader is generally a male dancer who is
responsible for choosing the sequence to be performed and
for signaling his decisions by gestures and motions. The
follower is generally a female dancer who is responsible for
executing the corresponding moves that are communicated
by the leader. The second performance metric aims to quan-
tify the artistic appeal of an execution that is perceived by
the audiences. Here we introduce, two distinct components
of measured artistic appeal. The first component measures
the energy consumed by the dancers in an execution. It is
shown that more energetic performances are more likely to
be favored by audiences. The second component measures
the diversity of the moves in a performance. Audiences gen-
erally prefer a performance that does not involve too much
repetition. Finally, the proposed metrics will be used to con-
struct an artificially intelligent (AI) judge that is capable of
recognizing the dance moves and evaluating the quality of a
dance performance.

Parts of the discussion that follow are based on our
previously published work in the American Control Confer-
ence (ACC) [17], IEEE Conference on Decision and Con-
trol (CDC) [18] and [19]. The performance metrics and the
transition system representation of salsa dancers have pre-
viously been used in the studies [17], [18] to investigate

a forward problem: generating choreographed automated
dance sequences by humanoid robots. In this study, we inves-
tigate an inverse problem which involves the evaluation of a
dance execution.

A. WHY SALSA?
Salsa is a Latin dance form which is popular around the
world [20]. Different from other dances, which are generally
the result of years of practice, two dancers without any prior
practice can perform and enjoy salsa. This is achieved by
a universal set of moves and communication signals that
can be easily learned by both the leader and the follower
dancers. Hence, equipped with the prior knowledge of the
moves, the dancers can perform salsa as long as the leader as a
decision maker executes the correct gestures to communicate
and the follower correctly estimates the upcoming moves
during the dance. Salsa can be seen as a particular type of
collective motion in which the collective goal is to perform
an artistically appealing dance while each individual has to
fulfill his/her role as a leader or a follower.

In order to study salsa formally, in this paper we are going
to use two mathematical models that use two key features of
salsa. The first feature is that every distinct move in salsa has
to be performed in eight musical beats by the dancers. This
enables us to discretize a salsa performance into moves of
eight beat intervals and to assign a letter to each move from
a finite-sized alphabet M := {A,B, . . .}. By this method,
a salsa performance can be represented as a concatenation
of letters (one might think this as similar to a DNA sequence
in biology). The second feature of salsa is the characteristics
of leader-follower interaction. The leader (generally a male
dancer) is responsible to communicate with the follower (gen-
erally a female dancer) by using gestures in order to signal
his move decisions. Here, we use S := {SA, SB, SC , . . . } to
represent the collection of the signals communicated by the
leader to the follower to signal the corresponding moves from
the setM. For instance, the leader can push and pull the arms
of the follower (SA) to signal backward and forward steps
(move A) [17].

II. SALSA WITH TOPOLOGICAL CONSTRAINTS
We define two different levels of salsa performances based
on the size of the move set. Beginner Level Salsa (BLS) is
defined as the performance with four fundamental moves
which are assumed to be the foundation of advanced level
salsa performances as well. In BLS every move starts and
ends with the same pose, the leader chooses the move
sequence from the set of four moves MBLS := {A,B,C,D}
without any constraints on the dance move transitions. Inter-
mediate Level Salsa (ILS) is defined as the performance
extending the alphabet of possible moves from four to eleven
in order to capture advanced level salsa performance (Fig.1).

MILS := {A,B,C,D, J ,K ,M ,N ,O,P,T }. (1)

Notice thatMBLS ⊂MILS . The move setMILS is illustrated
in Fig. 1. Each move involves an initial (pi) and a final
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FIGURE 1. Initial (pi ) and final (pf ) pose illustrations for the eleven
moves in Intermediate Level Salsa. The blue agent represents the leader
and red agent represents the follower. For instance, move K starts with
the initial pose shown on the figure and during the execution the
follower rotates 2π in counter clock wise direction without breaking the
hand contact with the leader which results as the corresponding final
pose. More details about the moves and their physical descriptions can
be found in [19].

(pf ) pose that occur in ILS. One key difference between
BLS and ILS is that in ILS the dancers are not allowed to
break hand contact through the performance. Hand constraint
plays a major role in investigating move transitions based on
simple rules expressed in the language of topological knot
theory [19], [21].

To study the leader-follower interactions in ILS, each pose
can be described by a link in the topological knot theory,
[22] (Fig. 2). The link diagram representation allows us to
understand how move transitions are restricted by arm con-
straints in ILS. Since every move in MILS will end with a
corresponding final link, the next admissible move has to
have the same initial link for the transition to occur. This
defines the admissible move transitions which are depicted
in Fig. 3. Another problem is to investigate the transformation
from an initial to final link diagram in a move. The intercon-
nection between the physical dance moves and link transfor-
mations is studied by introducing a physical operator ∗(., .).
In this operator, the first component represents the follower’s

FIGURE 2. An example illustration of the topological link representation
of the initial and final pose of move B in ILS. Dancers and their arms are
represented by a three component link with a fixed orientation. The link
diagram representation is used to represent the dancers’ arms by
distinguishing the arm overpasses and underpasses. Link invariants, such
as linking number and Alexander Polynomials are calculated by
investigating each crossing and assigning positive or negative signs with
respect to the overpasses or underpasses for each link diagram. More
details about the topological features of the link diagram representations
for the dance poses can be found in [19] and [23].

rotation (in radians) and the second component represents the
direction of the rotation (CW for clockwise and CCW for
counterclockwise).

For instance, in move A, both the leader and the fol-
lower dancer step forward and backward. Since move A
does not involve any follower rotation, it is represented by
∗(0, 0). However, in move B, the follower rotates 2π in
clockwise direction which is represented by ∗(2π,CW ). The
connection between the physical moves and the topological
link transformations are discussed in more details in [19].
In salsa the leader is assumed to be the decision maker for
the sequence construction, and the allowable dance move
transitions decided by the leader are based on the syntactic
requirement of matching the topology of the initial pose of
a move with the topology of the final pose of the preceding
move.

Onemay observe from the Fig. 3 that there exist both deter-
ministic and nondeterministic transitions between the moves
in ILS. For instance, the moves T , J ,K ,B are followed deter-
ministically by the moves O,N ,P,M , respectively. On the
other hand, the moves in the set {A,C,D} can be followed
by any move from the set {A,C,D,T , J ,K ,B}. Differing
from Beginner Level Salsa, arm constraints play a major role
for the leader’s decision making for move transitions. Fig. 3
gives an insight on the dance move transitions that appear
in a real performance. If we assume that a dance pair starts
a salsa performance with move A, which has a final pose
with the dance pair holding hands without any arm crossings,
then the leader has an admissible set {A,C,D,T , J ,K ,B} of
move transitions. Notice that all of the moves in the set have
the same initial pose coinciding with move A’s final pose.

VOLUME 6, 2018 61869



K. Özcimder et al.: Perceiving Artistic Expression: Formal Exploration of Performance Art Salsa

FIGURE 3. The allowable transitions for each move in ILS based on the
physical/topological constraints. Admissible transitions are defined for
the equivalence of the final link of the move executed and the initial link
of the upcoming move. In the figure red arrows illustrate the admissible
move transitions including deterministic and nondeterministic
transitions. The admissible set is found by using the topological link
diagram equivalences of the poses of the moves in ILS. For an admissible
transition, the final link of a move and the initial link of the next must be
equivalent. In the physical world, this corresponds to the moves that can
be executed by the dance pair despite the arm constraints.

On the other hand, move B involves the follower dancer’s
2π rotation in the clockwise direction. Thus, it has to be
followed deterministically by moveMwhich is the follower’s
2π rotation in counter clockwise direction. The deterministic
transition is a result of the arm constraint since arm crossings
in the final pose of move B make it physically unfeasible for
the follower to rotate more in the CW direction. More detail
about the topological constraints on dance move transitions
can be found in [19]. The allowable transitions in BLS and
ILS (Fig. 3) can be used to build a state transition model
representation of the dancers.

III. SALSA AS A TRANSITION SYSTEM MODEL
In this section, we introduce a finite state machine represen-
tation of a pair of salsa dancers. We first define two separate
transition system representations for the leader dancer, Bob,
and the follower dancer, Alice. Finally, we combine them into
a single model through interactions between the two, which
is realized through the signal sent from Bob to Alice.

In order to describe the dancers’ movement as well as track
their motions, we use a humanoid robot to represent different
parts of a dancer’s body as illustrated in Fig. 4. It is assumed
that there exist fiducial points (red circles in Fig. 4) that rep-
resent tracked points on the humanoid robot representation.
The number and locations of the fiducial points are chosen in
order to be able to distinguish the moves performed in BLS
and ILS.

We define a state q to represent a pose in dance which is a
discretization of a move, and a salsa performance becomes a
concatenation of such poses. Moreover, qAl and qBo represent
the discrete states of the leader and the follower in a pose,
respectively. This framework is similar to the work presented
in [10] which shows the construction of a transition model
for the poses that occur in a ballet warm up routine. Our study

FIGURE 4. A humanoid robot that represents an actual dancer. The red
circles represent five fiducial points that are named as the Body,
Left/Right arm and Left/Right Leg. The number of fiducial points are
chosen to distinguish the moves in Beginner Level Salsa and Intermediate
Level Salsa.

differs from [10] in that we build a model of a pair of dancers.
Such a model requires modeling the communication between
the two dancers.
Definition 1: State transition model of a leader dancer and

his communication strategy is given as

GBo = (QBo,ActBo,→Bo, q0Bo, !). (2)

QBo is the set of all possible states representing the initial
pi and final pf dance poses (Fig.1). ActBo is the set of all
possible actions (set of physical moves represented by the
∗(., .) operator). q0Bo ⊆ QBo is the set of initial states. !(ActBo)
is the formal representation of leader’s decided action ActBo
that is transmitted to the follower (using his gestures and
motions). →Bo: (q′, a) 7→ q denotes a transition relation
(based on the topological constraints given in Sect.II. In this
expression, q′ ∈ QBo is the initial state, a ∈ ActBo is the action
that is executed by the leader and q ∈ QBo is the next state.

Similarly we can represent the follower dancer (Alice) by
the transition system,

GAl = (QAl,ActAl,→Al, q0Al, ?), (3)

where definitions of the components QAl , ActAl , q0Al in
Eqn. (3) are identical to those of the Eqn. (2) but the subscripts
are replaced with Al to represent Alice. ?(ActBo) is the repre-
sentation of signal received by the follower such that she can
make the proper move based on the signal she receives from
the leader dancer. Further, her transition→Al is defined as a
mapping (q′, ?, a) 7→ q′′. Based on ?(ActBo), the signal she
receives from the leader, she can execute an action a to move
from state q′ to q′′.
Definition 2: The dance pair (Fig. 5) is represented by

a single transition system by composing the two transition
systems (2) and (3). The combined system is

G = (Q,Act,→, q0), (4)
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FIGURE 5. The transition system representation of BLS, [18]. All the moves
in BLS have the same initial and final pose. There exists only one state for
the state machine representation of the leader and follower. Blue arrows
represent the transitions between the states which correspond to the
physical dance moves that are defined by the ∗(., .) operator. Move A, C
and D are represented by *(0,0) since there is no rotation of the follower.
However, move B is represented by ∗(2π,CW ) which corresponds to the
follower’s rotation of 2π in the clockwise direction.

where Q = QBo×QAl , Act ⊆ ActBo×ActAl , q0 ⊆ q0Al ×q
0
Bo.

The composition is achieved by synchronizing information
sent by the leader and received by the follower. A detailed
explanation of such composition can be found in textbooks on
discrete systems such as [24] and [25]. Notice that a perfect
synchronization is assumed here, i.e., the follower has no dif-
ficulty in interpreting the intended next move communicated
by the leader.

It is assumed that there exists a synchronous message
passing between these two transition systems such that fol-
lower can estimate the upcoming move perfectly without an
error [18]. In this paper, we are going to use model (4) to
recognize the sequences of movements that are being taken
by a dancer pair (Fig. 6) from the recordings of the locations
of the fiducial points.

The transition system model for a BLS based on (4) is
shown in Fig. 5. In BLS all of the moves start and end with
same pose ( [17], [19]). Thus, in Fig. 5, q1Bo and q

1
Al represent

the states which correspond to the poses of Alice and Bob,
respectively. Blue arrows represent the state transitions based
on the physical motions (described by the ∗(., .) operator)
required to perform each move A,B,C and D. Since, the fol-
lower does not initiate a rotation in the moves A,C and D,
the first and second components of the ∗(., .) operator are
zeros even though they are distinct dance moves. Distinctions
in these moves are represented by the subscripts ∗(0, 0)A,
∗(0, 0)C , ∗(0, 0)D. Bob sends his decision transition to Alice
through a signal !(ActBo) and Alice has the simultaneous
transition based in the signal ?(ActBo) she receives. For
instance, if the agents perform move A, the leader has a
transition q1Bo → q1Bo that is signaled to Alice. !(∗(0, 0)A)

FIGURE 6. Robotic representations of the leader (blue) and follower
dancer (red). The initial and final poses of move B in ILS are illustrated by
the left and right sub-figure, respectively. Initial pose occurs in the first
beat and final pose occurs in the last beat of a move performed in eight
beats. The arm positions in the final pose corresponds to the followers
rotation without breaking the hand contact.

is the formal representation of Bob pushing Alice’s hand
to make her move backward. Alice has the corresponding
transition q1Al → q1Al . Hence, the move A can be repre-
sented by a change of the state of the overall system (4) as
< q1Bo, q

1
Al >→< q1Bo, q

1
Al >.

The transition graph of the ILS is much more complex due
to the constraints that force the dancers to keep hand contact
through the dance. In Fig. 7, states of the leader and follower
including the transitions for ILS (blue arrows) are depicted.
The effect of the arm constraint can be observed from the
final poses of move B, which are represented by q1Bo in BLS
(in Fig. 5) and q2Bo (in Fig. 7) in ILS. In ILS, since the dancers
are not allowed to break their hand contact, rotation with arm
constraints will result in a different final pose in performing
move B in ILS than move B in BLS although the dancers
execute identical motions.

The associated dance poses in ILS shown in Fig. 1 are
decomposed into the poses for the leader and the follower
in Fig. 7. If one considers the initial and final poses illustrated
in Fig. 1, same poses occur when the agents are in the states
< q1Bo, q

1
Al > and < q5Bo, q

5
Al >, respectively.

Using the transition models defined for BLS and ILS,
a dance sequence can be observed by the following form,

[< qBo, qAl >ji, < qBo, qAl >jf ],

[< qBo, qAl >ji, < qBo, qAl >jf ], . . . (5)

where i and f stand for the initial and final state (pose),
respectively, and j ∈ MBLS for BLS or j ∈ MILS for ILS
and each bracket represents a move.

We use this bracket representation to distinguish the moves
(letters) performed by the dancers. For such a purpose,
the initial and final states of the leader and follower dancers
need to be observed. Moreover, observation of the transition
relations are needed in order to avoid ambiguities caused
by the moves that start and end with the same pose. The
recognized sequence of moves can be used to evaluate the
‘perceived success’ of the execution, which will be shown in
the next section, as well as to eventually build an artificially
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FIGURE 7. The transition system representation of ILS, [18]. Leader and
follower have five distinct states to represent the distinct poses in ILS.
Blue arrows represent the transitions between the states. Corresponding
∗(., .) operators for each transition are illustrated which involve the
follower’s 2π / π rotations in clockwise/counter clockwise directions. The
notation ∗(0,0)A,C,D is used to represent the moves A, C and D that are
already defined in BLS and that do not involve any follower rotation.

intelligent (AI) judge, which can recognize the moves and
then give a score (Section V).

IV. METRICS TO EVALUATE SALSA
A formal model of a salsa dance performance enables us
to solve two problems, a forward problem and an inverse
problem. Based on the underlying structure of the leader-
follower interactions during dance sequence generation,
the forward problem aims at automatically generating chore-
ographed dance sequences for the two robotic agents as
well as a communication protocol to achieve a satisfactory
performance [18]. In what follows we focus on solving the
inverse problem, i.e., to understand the notion of ‘perceived
success’ and what constitutes ‘optimal dance’. We propose
two metrics for BLS: energy and phrase complexity metrics.
The energy metric is defined as the distance (in hectome-
ters) covered by the dancers in the execution of the moves
in MBLS . The total energy of a dance sequence is calculated
by finding the frequencies of the letters and multiplying those

with their energy values. Phrase complexity is computed by
finding the entropy of each 4-letter phrase in a sequence.
Entropy of a phrase, [26], generated by the moves in BLS is

w = −
4∑

k=1

fk log2 fk , (6)

where fk is the frequency of each letter in a phrase. Then the
average phrase complexity (Wave) of a sequence is defined as
the fraction of the sum of phrase entropy values to the number
of phrases that appear in a sequence.

We further integrate these two metrics with the transition
model (4) for the evaluation of a salsa performance. If we
assume that a dance sequence is deconstructed as the bracket
representation given in (5), then the deconstructed sequence
can be evaluated based on the energy and phrase complexity
metrics. To give an an example, assume that the agents Alice
and Bob generate 20-letter long sequences. We partition a
20-letter sequence Seq into 4-letter phrases and assign a
complexity value for each phrase as in the following.

Seq =

20 letters︷ ︸︸ ︷
[

w1︷ ︸︸ ︷
−−−−][−−−−︸ ︷︷ ︸

4 letters

][−−−−][−−−−][−−−−]

(7)

For this particular case, we define the entropy vectorW such
that W = (w1, . . . ,wn) where wi ∈ {0, 0.811, 1, 1.5, 2},
i = 1, . . . , n where n is the number of 4-letter phrases in a
sequence (n = 5 in (7)). The possible values ofwi correspond
to the entropy values calculated by the frequency of each
letter in a 4-letter phrase in (6), e.g. phrase (AAAA) has phrase
complexity w = 0 but (BACD) has phrase complexity w = 2.
Below, we illustrate two possible sequences generated by
dancers with the moves from BLS. The first sequence is gen-
erated randomly and the second sequence is generated such
that the phrase complexity decreases through the sequence
with WSeq2 = (2, 1.5, 1, 0.811, 0).

Seq1: (ABCA)(BCAD)(BBBC)(BCDA)(BBDA)

Seq2: (ABDC)(BCAC)(CCBB)(DADD)(BBBB)

Similarly, an energy vector, E = (e1, . . . , en) can be intro-
duced for a sequence such that ei, where i = 1, 2, . . . , n, cor-
responds to the energy consumed by the agents in performing
the ith, 4-letter phrase in a sequence. The energy metric for a
sequence is defined as the total energy, Etotal = e1+ . . .+ en
consumed by the dancers to perform a dance sequence.

In order to compare the proposed metrics with humans’
perceptions of artistic value, the video recordings of ten salsa
sequences (performed by using the letters from the setMBSP)
are shown to a dance audience who is asked to evaluate
the performances. Strong correlations between these metrics
with the audience’s scores are reported and the details of the
performance metrics are presented in Section V. High corre-
lation between audience’s scores and the consumed energy by
the dancers (energy metric) implies that the dance audience
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FIGURE 8. An artificially intelligent (AI) judge scheme to evaluate salsa.
The AI judge involves two components: An observation component and
an evaluation component. The observation component consists of a
visual sensor to track the fiducial points on the humanoid representation
of the human dancers. The tracked values are compared with a library of
poses and move transitions. The sequence is deconstructed by
recognizing the initial and final pose in a move as well as the transition
between them. The deconstructed sequences are fed to a Score function
in the evaluation component which assigns a score based on the Energy
and Phrase Complexity metric (Eqn. (8)).

likes more energetic dance performances. This phenomenon
is used by the choreographers by placing the most energetic
dance sequence in the finale of a dance show in that it is
believed that the last section of a show will be the most
memorable by the audiences. However, if an energetic move
is repeated many times, it may become boring for the audi-
ences. Hence, a choreographer as well as dancers need to
balance between the energy and diversity of a constructed
dance sequence. Thus, the order of the moves in a sequence is
also relevant, and this is captured in our model by the phrase
complexity metric.

V. AN ARTIFICIALLY INTELLIGENT (AI) JUDGE
We are particularly interested in building an artificially intel-
ligent (AI) judge that observes and evaluates the artistic suc-
cess of a dance performance. The idea is similar to the judges
that appear in the Olympic games or dance competitions. The
judges in these contests have criteria that measure artistic
reflection and also the complexity of the execution. It would
be difficult for an AI judge to evaluate the warmth of a
dancer’s smile but instead it can evaluate artistic appeal of
a performance by using the energy and complexity metrics.
The overall scheme of an AI judge evaluating performance
art is shown in Fig. 8.
Our AI judge has two components: an observation compo-

nent and an evaluation component. We use the abstract model
given in (4) to represent the leader and follower dancer as
humanoid robots with tracked fiducial points. The goal of
the observation component is then to estimate a sequence of
states and the transition (Qo,→o) that best fit the observed
sequence of tracked fiducial points and the model. Here,Qo is
the set of observed states including the initial and final states
(poses) of the leader and the follower in a move and→o is the
observed transition between the initial and final state such that
→o: (qi, a) 7→ qf where qi, qf ∈ Q and a ∈ Acto represents
the actions that are executed by the agents between the initial
pose and final pose.

The purpose of the observation component is to decon-
struct a salsa performance into a letter (move) sequence with
the bracket representation proposed in (5). This is achieved by

detecting the x-y-z coordinates of the fiducial points defined
in Section III. This is similar to the idea of template matching
which is widely studied in computer vision [27]. Simply,
the tracked points’ coordinates are compared with the values
that are contained in a library of poses with an allowed
deviation δ. After detecting initial and final pose, the algo-
rithm resets and starts to track the new move. In the previous
sections, we have shown that there may be multiple moves
with equivalent initial and final poses. To avoid ambiguities
in dance move detection, we also include the observation of
the transition→o. This transition is captured by tracking the
velocities vx , vy and vz for each fiducial point.
The evaluation component first decomposes the observed

sequence into 4-letter phrases. It then calculates observed
phrase complexity Wo and observed phrase energy Eo as
described in Section IV. It finally computes the score of the
observed sequence based on the following Score function,
Score = a.Etotal + b.Wave + c. This function is a linear
combination of Etotal andWave where Etotal is the sum of the
energy values of the phrases and Wave is the average phrase
complexity that is calculated by dividing the total phrase
complexity value by the total number of phrases that appear
in a sequence.

The Score function is constructed as a linear function in
that it fits the evaluations collected from a previous study
which is reported in [17]. The study involved two dancers
who performed ten distinct salsa sequences by using the
moves in BLS. The dance sequences were recorded as video
and shown to a dance audience who was asked to evaluate
the videos with scores from 1 to 10. The scores of twenty
judges were collected and the averages were calculated for
each sequence. It is shown that the judges’ scores are highly
correlated to total energy Etotal (with a correlation coefficient
R=0.8) and average phrase complexityWave (R=0.75). Thus,
in this study we use previous data as a training set to estimate
the coefficients a, b and c in Score function (Fig. 9). The
Score function learned from the data has the form

Score = −17.94+ 16.Etotal + 0.833.Wave. (8)

In order to validate our AI judge, we asked our experienced
salsa dancers to perform four new dance sequences (each
of them having 20 letters) by using the moves in BLS. All
of the sequences are performed by the same two dancers in
order to exclude the effect of artistic reflection of a dancer’s
personal demeanor. The sequences constructed by the dancers
are given below.

V1: (BDCB)(DBCB)(DDBB)(CCDB)(DDBB)

V2: (BBBB)(BBBA)(ACAA)(AAAD)(AAAB)

V3: (AAAA)(ABAA)(BABA)(DACA)(DABC)

V4: (ABDC)(DABC)(BBAB)(AABA)(BBBB)

The video recordings of the dance sequences are shown to a
dance audience with a random order. Average scores in 1-to-
10 scale that are collected from 15 judges are, ScoreV1 = 9.1,
ScoreV2 = 3.09, ScoreV3 = 3.7 and ScoreV4 = 5.79.
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FIGURE 9. The least squares regression plane with coefficients estimated
from the previous data [17]. The x-coordinate is the average phrase
complexity of a dance sequence (bits), the y-coordinate is the total
energy consumed by the dancers (hectometers) and the z-coordinate is
the associated score assigned by the human judges.

The same video recordings are fed into the AI judge. For
the observation component, we use aMicrosoft Kinect sensor
in order to track the x-y-z coordinates of the fiducial points.
Microsoft’s open source C++ algorithm is modified for the
purpose of our experiment such that two distinct libraries
are contained in a movement library and transition library.
The q vectors that represent the poses of the leader and the
follower are integrated to the Kinect algorithm as a library
so that the algorithm seeks to match the tracked coordinates
of the fiducial points to one of the possible poses from the
library with the maximum deviation δ. Moreover, a library
of move transitions is incorporated into the C++ code which
includes the deviations of the coordinates with respect to time
for distinct physical moves described by the ∗(., .) operator.
The initial pose shown in the upper-left corner of the Fig. 1 is
incorporated into the algorithm as a trigger to start tracking
fiducial points of the dancers (Fig. 4).
The timer starts and stops with the recognition of initial

pose and final pose respectively. In Fig. 10, a snapshot of the
algorithm is shown including the stick figure representation
of a dancer and the detected letter which is illustrated in
the right bottom corner. Finally, the algorithm computes the
Etotal and Wave values for a recognized sequence which are
then supplied to the Score function given in Eqn. (8). The
dancers performed the sequences given as V1, V2, V3 and
V4 in the view of theMicrosoft Kinect sensor. Four sequences
are deconstructed by the AI judge and average phrase com-
plexity and energy values are computed for each sequence
which are then fed to the Score function. The score values
are calculated as 5.29, 2.88, 4.28, 3.69 for the sequences
V1, V2, V3 and V4 respectively. The correlation coefficient
between the audience’s scores and the scores assigned by the
AI judge is calculated as R = 0.81. Although the range of
the scores given by the audience are much higher than the
AI judge, the trend and the ranking of the scores are very
similar. The difference between the scales may be a result of
initial individual biases in the scale for the audience. Hence
we conclude that the strong correlation implies that our judge

FIGURE 10. A snapshot of the User Interface of the AI judge that uses
Kinect C++ algorithm to track the fiducial points on the stick
figure representations of the dancers. Recognized dance move is shown
on the right bottom corner to the user. Video of the constructed AI judge
detecting a dance sequence is available at https://www.
youtube.com/watch?v=eHX26GGBB3A&edit=vd.

performswell enough inmatching human’s perceived relative
artistic appeal for salsa performances.

VI. CONCLUSIONS
This study proposes a method to formally define artistic value
in human collective motion. A popular form of performance
art, salsa, is used as a prototype model for the analysis.
The state transition model of salsa is constructed by using
the states that correspond to the initial and final poses of the
abstract representations of the salsa dancers. We introduce
abstract representations of the dancers, and the transitions
between states are introduced as the physical dance motions
executed by the dancers. The model is then used as a base
for the recognition of the dance moves and the evaluation
of the detected sequences with respect to the metrics based
on the energy and entropy (diversity) of the dance phrases.
The general scheme of an artificially intelligent (AI) judge is
introduced along with its components that we refer to as the
observation and evaluation components. A score function is
proposed that assigns a score based on the metrics calculated
for the detected sequences. Finally, an implementation of the
AI judge to evaluate BLS is shown by using the Microsoft
Kinect sensor for fiducial point tracking and the C++ algo-
rithm for the evaluation. Extending the applications to ILS is
still on progress in that it requires a modified Energy metric
since in ILS, arm and body movements have major influ-
ence on dancers’ energy consumption and perceived artistic
success.

The idea of anAI judge can be extended to other fields such
as athletic competitions or other dance contests. One may
think of a diving competition in the Olympics as an example.
An AI judge can be constructed to capture the acrobatic
motion sequences performed by the divers and themetrics can
be modified to match the judging criteria for this particular
contest. In all such applications an appropriate alphabet of
motion primitives is needed to capture all of the possible
moves. Ideally, an AI judge with fixed evaluation metrics can
be potentially the most unbiased judge in any competition.
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