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ABSTRACT Automatic and accurate cervical nucleus segmentation is important because nuclei carry
substantial diagnostic information for automatic computer-assisted cervical cancer screening and diagnosis
systems. In this paper, we propose a cervical nucleus segmentation method in which pixel-level prior
information is utilized to provide the supervisory information for the training of a mask regional convo-
lutional neural network (Mask-RCNN), which is then employed to extract the multi-scale features of the
nuclei, and the coarse segmentation and bounding box of the nuclei are obtained by forward propagation of
the Mask-RCNN. To refine the segmentation, a local fully connected conditional random field (LFCCRF)
that contains unary and pairwise energy terms is employed. The nuclear region of interest is determined
by extending the bounding box, the coarse segmentation in the nuclear region is used to construct the
unary energy, and the pairwise energy is contributed by the position and intensity information of all of the
pixels in the nuclear region. By minimizing the energy of the LFCCRF, the final segmentation is realized.
We evaluated our method by using cervical nuclei from the Herlev Pap smear data set in this paper, and the
precision, recall, and Zijdenbos similarity index were all found to be greater than 0.95 with low standard
deviations, demonstrating that our method enables more accurate and stable cervical nucleus segmentation
than the current state-of-the-art methods.

INDEX TERMS Conditional random field, deep learning, Mask-RCNN, Pap smear screening.

I. INTRODUCTION
Cervical cancer is one of the most common causes of cancer
death among women worldwide, with nearly 0.27 million
deaths every year. Most of these deaths occur in low- to
middle-income countries due to the financial investments
required to establish andmaintain the necessary health infras-
tructure, including laboratory and skilled human resources,
which are unavailable or insufficient in many settings. In con-
trast, in high-income countries, where Pap smears have been
used for population-based cytology screening for more than
three decades, cervical cancer morbidity and mortality are
much lower [1]. Pap smear testing was proposed by George
Papanicolaou in 1942 [2] and is one of the simplest and

most important methods of clinical cytology screening for the
prevention and early detection of cervical cancer [3].

Traditionally, cytology screening is performed manually
by a cytologist or pathologist; hence, it is highly repetitive
and time-consuming and may be subject to human mistakes
evenwhen the cytologist or pathologist is experienced. There-
fore, the development of automatic computer-assisted cytol-
ogy screening and diagnosis systems for cervical cancer is
of great significance. The main objectives of such systems
are to identify abnormal cells in samples containing thou-
sands of cells that contain mostly normal cells and to show
these abnormal cells to doctors. In reality, doctors determine
anomalies mainly based on the 2001 Bethesda System [1],
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and these anomalies are mostly found in the characteristics
of the nuclei (e.g., in their shapes, colors, and sizes), which
play a prominent role in the decision [4]. Therefore, such
systems generally require segmentation, feature extraction,
and classification of nuclei [5]. The accuracy and efficiency
of the segmentation are important, since segmentation is the
first step in this process, but it is quite challenging to achieve
sufficient accuracy and efficiency due to complicated cases
such as those involving irregular shapes, pool contrast, blur-
riness, and inhomogeneous chromatin distributions.

Many cervical nucleus segmentation methods have been
proposed thus far, using various techniques such as Otsu-
based thresholding [6], k-means[7], superpixel [8]–[11], level
set [12]–[15], watershed [16]–[19], and active contour model
(ACM) [20] methods. In some approaches, mainly spa-
tial information is used to segment the nuclei [6], [21].
For instance, Tareef et al. [6] segmented nuclei by apply-
ing anisotropic diffusion filtering to reduce the noise and
smooth the inconsistent regions, performing contrast-limited
adaptive histogram equalization to improve the local image
contrast, adopting H-maxima filtering to remove small and
low-contrast regions, applying Otsu thresholding to the fil-
tered images to identify the candidate nuclei, and finally
using the regularized level set algorithm to refine the nuclear
boundaries. Li et al. [21] converted color images into
grayscale images; denoised the grayscale images by non-
local means filtering; applied spatial k-means clustering to
divide the image pixels into three classes, where the dark-
est class corresponded to nuclei; and extracted the nucleus
regions by performing filtering using simple geometric infor-
mation. In these methods, however, almost no prior informa-
tion from the nucleus is used, which is significant for nucleus
segmentation.

A number of methods have been proposed for nucleus
segmentation from cervical smear images using shape prior
information such as a regular shape [5], [22]–[24] or trained
shape [25]. Specifically, Garcia-Gonzalez et al. [5] intro-
duced a multiscale algorithm for nucleus extraction in which
a multiscale edge detector and mean-shift filter were used
to determine the spatial location of the edge and select the
candidate nucleus by ellipse parameter calculation, a variety
of techniques such as level set and watershed methods were
employed to segment the nucleus region, and finally a support
vector machine and an artificial neural network were utilized
to extract the true nucleus. Plissiti et al. [25] obtained a
compact representation of the shape of the nuclear boundary
by performing training on a set of images containing sin-
gle nuclei and then used it to guide the deformation of the
initial nuclear boundaries to achieve the final segmentation.
In recent years, it has become a trend to use trained shapes
to perform segmentation of cytology images of cervical
cells [8], [26] due to the ability to represent complex
shapes, which are widespread in abnormal cervical cells.
Recently, methods involving using pixel level priors to train
nucleus segmentation models [27], [28], which contain not
only shape features, but also more complex features, have

been investigated. Song et al. [27] utilized a multiscale con-
volutional network (MSCN) to extract scale-invariant fea-
tures, acquired a coarse segmentation to assign each pixel
by maximizing the prediction of the MSCN at its location,
and finally employed a graph partitioning method to refine
the coarse segmentation. Zhang et al. [28] trained a fully
convolutional network (FCN) [29] to learn a model that could
perform pixel-to-pixel prediction for nuclei to achieve coarse
segmentation, cropped the sub-regions of both the prediction
and the nucleus image according to the coarse segmentation,
and finally used the prediction and nucleus image along with
a graph-based approach to achieve the refined segmentation.
The experimental results demonstrated state-of-the-art per-
formance. However, an FCN only utilizes single-scale feature
maps, so the coarse segmentation may be inconsistent when
the receptive field of the last pool layer of the backbone of the
FCN is smaller than the nuclei, and the coarse segmentation
may interpret the nucleus region as background when the
receptive field is larger than the nuclei.

To overcome these issues, we combined a mask regional
convolutional neural network (Mask-RCNN) [30] and a local
fully connected conditional random field (LFCCRF) to seg-
ment cervical cell nuclei in this study. The Mask-RCNN
uses multi-scale feature maps to acquire stronger semantic
features to localize the cervical nuclear boundary gener-
ally, that is, to perform coarse segmentation of the cervical
nuclei. Then, we incorporated the coarse segmentation and
abundant spatial information into the LFCCRF to refine the
nuclear boundary. We also conducted quantitative compar-
isons between our method and the current state-of-the-art
methods based on the Herlev dataset [31]. The remainder
of the paper is organized as follows. The proposed cervical
nucleus segmentation method is introduced in Section 2.
In Section 3, the description and preprocessing of the Herlev
dataset as well as the evaluation metrics are presented, and
the experimental results are shown. Discussions are given
in Section 4. Finally, conclusions and topics requiring future
work are presented in Section 5.

II. PROPOSED FRAMEWORK
To make full use of spatial information and prior knowl-
edge, a Mask-RCNN and an LFCCRF are employed in the
proposed method. A feature pyramid network (FPN) [32]
based on ResNet [33], and modified according to the images
of the cervical nucleus, is utilized as the backbone of
theMask-RCNN. Then, theMask-RCNN can be employed to
extract pyramid feature maps suitable for the images through
the pixel-level prior information of the nucleus. Next, recog-
nition and coarse segmentation of the nuclei are performed,
the nuclear region of interest (RoI) is obtained by extending
the bounding box of the nuclei provided by the recognition of
theMask-RCNN, and the coarse segmentation in the region is
fed into the LFCCRF, which contains position and intensity
information about all of the pixels in the region, to achieve
refinement. The flowchart of the proposed method is shown
in Fig. 1.
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FIGURE 1. Flowchart of the proposed method. For simplicity, only feature maps after the backbone are shown for RPN’s architecture, but all feature maps
exist behind every layer.

A. MASK-RCNN-BASED COARSE SEGMENTATION
The architecture of a Mask-RCNN is based on that of a
convolutional neural network (CNN), which is a deep neural
network mainly consisting of various types of layers. The
input of a CNN is usually an original image without complex
preprocessing, and the outputs of the layers of a CNN are
feature maps of various scales with various levels. Generally,
the extracted features go from low level to high level as the
receptive field expands owing to the deepening of the layers.
A CNN uses a back-propagation algorithm [34] to optimize
the weights of all of the weighted layers by minimizing the
loss, which can be defined differently as different image
tasks. Generally, a CNN has three main types of layers:
convolutional, pooling, and fully connected layers.

A traditional neural network establishes a connection
between the input and output by multiplying the input matrix
by the weight matrix, which is a fully connected operation;
consequently, it is time consuming. Thus, only a few features
are allowed to be trained. To extract features more efficiently,
the convolutional layer uses a local connection. It moves
a small fixed-size convolutional filter horizontally and ver-
tically along the input matrix to produce linear activation
responses in the form of a featuremap. Each neuron in the fea-
ture map is connected to the local receptive field of the input
matrix and obtained by two steps. In the first step, it multiplies
the values of the corresponding positions in the receptive
field and the filter, and then adds the multiplied values to
get the final value. The weights of the convolutional filter are
shared by all neurons. To extract features in a more varied
manner, multiple convolutional filters in the convolutional
layer are operated in parallel to produce multiple feature
maps, and various local features are then extracted. To prevent
vanishing/exploding gradients and to increase the efficiency
of the CNN back-propagation, the feature maps produced
by the convolutional filter are fed into a rectified linear unit
(ReLU) [35] in the proposed method. These feature maps of

the ReLU are then input into the next type of layer, which
is known as pooling, and are subsampled by selecting an
overall statistical feature of a small neighborhood to replace
the neighborhood. The overall statistical feature employed in
this case uses the maximum value (called max-pooling). The
pooling layer makes the CNN have translational, rotation,
and scaling invariance, and the dimensional reduction of
the feature vectors prevents network overfitting and further
reduces the computational complexity, while also causing
the details to be lost. Another important layer is the fully
connected layer with a filter size of 1×1, which encodes the
high-level features with strong semantic information suitable
for different image tasks. The weights of the convolutional
and fully connected layers are learnt and adjusted to represent
the input data better during the training process.

A Mask-RCNN constructs three stages for coarse segmen-
tation: feature extraction, region proposal, and prediction.

In the first stage, an FPN based on ResNet, with the refined
basic feature extraction layers and the reduced subsequent
feature extraction layers according to the images of the cervi-
cal nucleus, is applied as the Mask-RCNN backbone. Recent
evidence [36]–[38] indicates that network depth is of crucial
importance but has some side effects on network learning,
such as vanishing/exploding gradients and training accuracy
degradation. The former problem has been addressed by nor-
malized initialization and intermediate normalization layers,
and ResNet can solve the latter problem by applying a resid-
ual learning block to a CNN, as in Fig. 2.

The residual block is defined as

y = F (x)+ x. (1)

Here, the input feature maps are represented as x and
the output of the merge layer is represented as y, which
can be obtained by adding the weights of the corresponding
positions of x and F(x). Therefore, F(x), the output of the
three convolutional layers with the ReLU, becomes a residual
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FIGURE 2. Residual learning block. (a) Flowchart of a residual learning block. (b) Convolutional block applied in our study. (c) Identity block applied in
our study. In (b) and (c), the elements of the convolutional layer are arranged as ‘‘Convolutional layer with filter size, number of channels of filters,
stride of filter (if not specified, it has a default value of 1).’’

mapping from x to y. The identity mapping is a shortcut
connection between the input feature maps and the merge
layer (as the side line of Fig. 2(a)), simply performing identity
mapping from x to y. Thus, because of the reference of the
input, the weights of the convolutional layers are easier to
learn than they would be if there were no shortcut connec-
tions. In the ResNet, almost all of the weighted layers consist
of residual learning blocks, except for the first convolutional
layer. Thus, because of the region field size requirement,
the block must expand the region field. Hence, there are
two types of blocks, i.e., convolutional and identity blocks,
whose forms in this study are as shown in Figs. 2(b) and 2(c),
respectively. The convolutional block can increase the region
field size by increasing the stride of the first convolutional
layer from one to two. To match the dimension, the shortcut
connection should also increase the stride to two. The identity
block extracts sufficient features of the scale determined by
the convolutional block in front of it. The first, second, and
third convolutional layers in Figs. 2(b) and 2(c) have filter
sizes of 1×1, 3×3, and 1×1, respectively, and the first and
third convolutional layers are responsible for reducing and
restoring the number of filters (shown in Figs. 2(b) and 2(c)
as c) to leave the second convolutional layer with fewer
weights to learn. This design is reliable and has been demon-
strated to provide high accuracy efficiently [30]. The details
of the ResNet architecture used in this study are provided
in Table 1.

A nucleus image is commonly simpler than an image of
a scene in nature, so the number of blocks of conv4_x is
reduced to prevent overfitting [33]. In addition, considering
the low resolution that is widespread in images containing
normal nuclei, the convolutional layer with a filter size of 7
in conv1_x is replaced with three convolutional layers with a
filter size of 3 to extract more detailed basic features.

TABLE 1. Details of the ResNet architecture used in this study.

Although ResNet has a powerful representation, it has been
proven that better performance can be obtained by using pyra-
mid representations to address multi-scale image tasks [32].
Therefore, an FPN based on the ResNet is employed to extract
multi-scale features in the proposed method.

An FPN contains three parts: a bottom-up pathway, a top-
down pathway, and lateral connections, as illustrated in Fig. 3.

The bottom-up pathway is the feed-forward computation of
the ResNet, because every stage has the same scale and the
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FIGURE 3. Flowchart of an FPN based on the ResNet. An FPN contains three parts: a bottom-up pathway,
a top-down pathway, and lateral connections.

deeper the layer, the better the feature representation, so the
activation of the output of the last residual block of each stage
is employed to form the corresponding reference set of feature
maps of the pyramid level.

The top-down pathway first upsamples the feature maps
with a coarser spatial resolution but stronger semantic infor-
mation from the higher pyramid levels than those of the lower
pyramid levels by a factor of two. The upsampled features
are then merged with the corresponding bottom-up features,
which go through a 1×1 convolutional layer (to reduce the
channel dimensions of all of the levels of the pyramid and
to make them have a uniform value of 256) by element-wise
addition. This process is called lateral connection and is per-
formed by each stage in the top-down pathway, as depicted.
Then, a 3×3 convolutional layer is appended to each merged
feature map to reduce the aliasing effect due to upsampling.
The outputs of all of the 3×3 convolutional layers form the
final set of feature maps for our ResNet based FPN backbone;
here, the set is denoted as {P2,P3,P4,P5}. Note that in Fig. 3,
P6 is simply a stride two subsampling of P5 and only for
covering a larger nuclear region.

In the second stage, a region proposal network is slid across
the multi-scale feature maps provided by the FPN for region
proposal.

An RPN [39] is a small network, as shown in Fig. 4,
where the red box is a window that slides over the feature
pyramid of the abovementioned backbone. Note that the
level of the feature pyramid in which sliding is performed
is determined by the size of the RoI [32]. Then, the sliding
window is mapped to a 512-dimensional vector by a con-
volutional layer with a filter size of 3×3, and the vector is
fed into two sibling 1×1 convolutional layers, one of which
is used for box regression and the other for box classifica-
tion. At each sliding window location, k region proposals
are obtained simultaneously, so the layer for box regression
outputs 4k coordinates for k boxes, and the layer for box
classification outputs 2k scores for probability estimation
of whether the box represents an object in each proposal.
The k proposals are parameterized relative to k reference
boxes, which are called anchors and are centered at the sliding
window.

The anchors are selected based on the intersection-over-
union ratio (IoU) of the anchor and ground-truth (GT) boxes.
The anchor with the highest IoU overlap with a single GT box
and anchors with IoU higher than 0.7 for all of the GT boxes
are assigned positive labels, whereas anchors with IoU less
than 0.3 for all of the GT boxes are assigned negative
labels.
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FIGURE 4. Architecture of the RPN. The red box is a window that slides over the feature pyramid of the
abovementioned backbone.

The loss function of the RPN is defined as

L({pi}, {ti}) =
1
Ncls

∑
i

Lcls(pi, p∗i )+λ
1
Nreg

∑
i

p∗i Lreg(ti, t
∗
i ).

(2)

Here, pi is the probability that the predicted i-th anchor
is an object. If the anchor is positive, the GT label p∗i is
one, and vice versa. ti is the parameterized coordinate of the
bounding box predicted by the RPN, and t∗i is the coordinate
of the GT corresponding to the positive anchor. Lcls is the
log loss of the binary classification (object/non-object), and
Lreg is the smooth L1 loss [40] of the predicted bounding
box and GT box. The total loss of the RPN is normalized
by Ncls, Nreg, and a balancing weight λ. Finally, the
RPN acquires a series of region proposals by adjusting the
network weights via training.

In the third stage, the features inside any region pro-
posal are converted into a small feature map with fixed
spatial dimensions of H×W (7×7 for nuclear recognition
and 14×14 for nuclear segmentation because of the required
segmentation precision) by a technique called RoIAlign,
which can fix the misalignment of a traditional technique
called RoIPool, caused by quantization when calculating
the RoI boundaries and bins. Two branches follow to finish
the bounding-box recognition and mask segmentation of the
nuclei, as shown in Fig. 1.

In the first branch, each feature map is fed into two con-
catenated fully connected layers followed by two sibling
fully connected layers. One of the sibling layers is used
for box regression and outputs four values encoding refined

bounding-box positions for each region proposal of N object
classes, and the other is used for box classification and out-
puts the probability estimates over N + 1 classes (one is
background). The classification loss Lcls is the log loss of
the N + 1 classes, and the regression loss Lreg is the smooth
L1 loss [40] of the bounding box generated by the RPN
and the GT box. In our case, the object class is only nuclei,
so N is one.
The second branch is parallel to the first branch and com-

posed of RoIAlign and a tiny FCN, which consists of simply
a few stacked convolutional layers followed by a transposed
convolutional layer. The FCN enables the training for seman-
tic segmentation due to the pixel-to-pixel correspondence.
It should be noted that because the input of the tiny
FCN consists of the feature maps of RoIAlign, which have
low resolutions, and the stride of the transposed convolutional
layer of the tiny FCN is set to two to control the number
of weights, the pixel-to-pixel correspondence is actually one
‘‘pixel’’ of feature maps to four ‘‘pixels’’ of the fixed-size
GT mask (resized to 28×28) of the RoI.

The mask branch predicts the nuclear binary segmentation
mask for each RoI from the RPN. For each mask, a sigmoid
is performed on each pixel of the last feature map of the
tiny FCN:

S
(
ωi,j
)
=

1
1+ e−ωi,j

. (3)

where ωi,j is the value at position (i, j) of the feature map,
and Lmask is the average binary log loss of all S(ωi,j).
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Hence, the network is trained by using the definition of the
multi-task loss for each sampled RoI:

L = Lcls + Lbox + Lmask . (4)

The Mask-RCNN method is a region-based technique for
semantic segmentation and can be used to predict object
bounding boxes and corresponding masks. The mask predic-
tion is based on the region proposals provided by the RPN,
and adding themask loss to themulti-task loss promotesmore
accurate region proposal. The mutual promotion between the
mask prediction and region proposal leads to precise local-
ization of the nuclear boundary in general.

B. LFCCRF-BASED REFINEMENT
Some problems still exist in coarse nucleus segmentation
produced by the Mask-RCNN. Because the second branch
of the prediction stage is performed using feature maps with
strong semantic information but low resolution, the details
of the nuclear boundary are lost. Thus, if the RoI has a
resolution similar to that of the fixed-size GT mask, the loss
of segmentation details is mainly due to the low-resolution
feature map, whereas more details are lost when the GTmask
of the RoI is reduced to the fixed-size GT, which is coarse
itself. To address this issue, we chose to apply an LFCCRF,
which is performed on a local region including detected
nuclei. The local region is obtained by extending the nucleus
bounding box provided by the Mask-RCNN. For a bounding
box with width Wb and height Hb, the local region can be
obtained simply by extending Wb and Hb to Wb +1Wb and
Hb + 1Hb, respectively. In this study, 1Wb and 1Hb were
both set to 20 pixels to ensure the entire nucleus area was
involved, and the center of the local regionwas the same as the
bounding box.

The LFCCRF takes into account the relationships among
all of the pixels in the nuclear RoI. To refine the coarse
segmentation of the Mask-RCNN, the cost function of
the LFCCRF, consisting of all of the pixel labels obtained
from the coarse segmentation, as well as the position and
intensity information of three channels in the local region,
is minimized.

The pixel label information is derived from the
segmentation of the Mask-RCNN, in which the value of
each position corresponds to a label variable in the label set
L = {l1, . . . , lk}, where k = 2 represents the background
and nuclei. All of the variables constitute a random field
Y = {Y1, . . . ,YNP}, where Yj is the label corresponding
to position j. Random field X = {X1, . . . ,XNP} is defined
on another set of variables, NP is the number of pixels
in the nuclear RoI, and Xj represents the color vector of
pixel j in the corresponding region from the cell image. Then,
the conditional random field (X , Y ) can be represented by a
Gibbs distribution:

P (Y |X ) =
1

Z (X)
exp (−E (Y |X )), (5)

where Z (X ) is the normalization term

Z (X) =
∑
Y

exp (−E (y |X )). (6)

E(Y |X ) represents the energy when the pixel distribution
of the input cell image is X and the label distribution is Y .
The goal of the LFCCRF is to find the random field y ∈ LN

corresponding to the maximum a posteriori (MAP). Because
the pixel distribution of cell image X is used as the condition,
the representation of condition X is omitted from the subse-
quent derivation for convenience. Then, for the distribution
of y ∈ LN , the corresponding Gibbs energy is

E (Y ) =
∑
i

ψu (yi)+
∑
i<j

ψp
(
yi, yj

)
. (7)

The first item is the unary energy term, which is only
related to the labels from the coarse segmentation. In this
study, the coarse segmentation of the Mask-RCNN was used
directly, enabling the formula to be expressed as

ψu (yi) = − log (yi) ψu (yi) = − log (yi). (8)

The second term is a pairwise energy term that is related to
each pixel label from the coarse segmentation and the posi-
tions and intensity vectors of all of the pixels. The equation
is

ψp
(
yi, yj

)
= µ

(
yi, yj

){
exp

(
−

∣∣ppi−ppj∣∣
2θ2α

2

−

∣∣ppi−ppj∣∣
2θ2β

2)

+ exp

(
−

∣∣ppi − ppj∣∣
2θ2γ

2)}
, (9)

where µ(yi, yj) is the label compatibility function, and the
Potts model was used in this study:

µ
(
yi, yj

)
=

{
0, yi = yj
1, yi 6= yj

(10)

The first exponential term in (9) is called the appearance
kernel, the second exponential term is called the smooth
kernel, and pp represents the pixel position. For RGB images,
the appearance kernel measures the similarity of pixels in
a five-dimensional space. That is, encouraging pixels with
similar positions and similar colors have consistent classifi-
cation. θα and θβ control the sensitivity of the proximity and
similarity between the pixels, the smooth kernel is used to
remove isolated small areas, and θγ controls the sensitivity
of the proximity between the pixels.

The quantity of pairwise energy terms for the LFCCRF is
tremendous, which typically entails high computational com-
plexity. Hence, we utilized an efficient inference method
based on the mean field approximation proposed by Krähen-
bühl and Koltum in this study [41]. In this method, a simple
distribution Q(y) is computed that can replace the original
distribution P(y) of the LFCCRF, and each y is independent
within this distribution:

Q (y) =
∏
i

Qi (yi). (11)
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FIGURE 5. Samples of seven classes and the corresponding GT images in the Herlev dataset. First row: samples; second row: corresponding
GT images.

Then, the Kullback–Leibler (KL) divergence of Q and P is
minimized:

D (Q ‖P ) =
∑
y

Q (y) log
(
Q (y)
P (y)

)
. (12)

Finally, the equation of the iterative update process is

Qi (yi = l) =
1
Zi

exp{−ψu (yi)−
∑
l′∈L

∑
i6=j

ψp
(
yi, yj

)
Qj
(
l ′
)
}.

(13)

The nuclear RoI of the coarse segmentation of the Mask-
RCNN and the corresponding nuclear RoI of the cell image
is taken as the input of the inference, and the iterated y is the
output of the LFCCRF, that is, the final segmentation of the
nucleus.

III. EXPERIMENTAL RESULTS
A. DATASET
The method proposed in this paper was evaluated by using
a common dataset, the new version of the Herlev Pap
smear dataset. The dataset was collected by Herlev Uni-
versity Hospital and the Technical University of Denmark
and contains 917 images of single Pap smear cells. The
images in the Herlev dataset were obtained at a magnification
of 0.201 µm/pixel with an average image size of 156×140.
Among all of the images, the longest length of a side is
768 pixels, and the shortest is 32 pixels, so the range of
side lengths in the dataset is wide. The cell images in the
Herlev Pap smear dataset are divided into seven classes:
(a) superficial squamous, (b) intermediate squamous,
(c) columnar, (d) mild dysplasia, (e) moderate dysplasia,
(f) severe dysplasia, and (g) carcinoma in situ, where the

TABLE 2. Details of the distribution of 917 cell images in the Herlev
dataset.

first three classes of cells correspond to normal cells, and
the last four classes correspond to abnormal cells. Each
cell image has an associated GT image depicting the cell
nuclei, cytoplasm, and background area manually labeled by
cytologists and physicians. Samples of the seven classes and
the corresponding GT images are shown in Fig. 5.

The details of the distribution of the 917 cell images in the
Herlev dataset are summarized in Table 2.

In the GT, the nuclei and cytoplasm of the major cell are
represented in light and dark blue, respectively; the gray area
is the surrounding background of the major cell; and the
red area is unrelated to the major cell and may contain the
nuclei and cytoplasm of other cells, which are not labeled.
Thus, if the GT is utilized for training directly, some inter-
ference will be introduced, and it is difficult to separate the
region of the major cell completely by limiting the length and
width. Considering the subtraction of the mean values of the
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FIGURE 6. Extraction of major cell regions. First row: samples of seven classes; second row: corresponding extraction of major cell regions of
seven classes.

three channels of the dataset during theMask-RCNN training,
the areas in the original images corresponding to the red areas
in the GT images were replaced by the mean values of the
three channels for the dataset in this study. Fig. 6 shows the
results of region extraction from the cell images in Fig. 5.

For each pixel label in the cell images, if the pixel corre-
sponds to the region of the cell nuclei in the GT, it is assigned
a value of one, and the pixels in the remaining regions are
assigned a value of zero.

B. EVALUATION MEASURES
We employed three pixel-level measurements to compare the
segmentation quality of our proposed approach with those of
other methods: the precision, recall, and Zijdenbos similarity
index (ZSI) [42]:

Precision =
TP

TP+ FP
, (14)

Recall =
TP

TP+ FN
, (15)

and

ZSI =
2TP

2TP+ FP+ FN
, (16)

where TP is the number of correctly detected pixels, FP is
the number of detected pixels that are not in the GT, and
FN is the number of pixels in the GT that are not detected.
That is, the precision is the ratio between the number of
correctly detected pixels and the total number of detected
pixels, and the recall is the ratio between the number of
correctly detected pixels and the total number of pixels in
the GT. Thus, low precision indicates high false detection
and low recall indicates high missed detection. Therefore,
reliable segmentation requires both precision and recall to

perform well. Another measurement, ZSI considers TP, FP,
and FN comprehensively, and according to [42], the detected
segmentation boundary and GT are well matched if ZSI is
higher than 0.7.

C. PERFORMANCE COMPARISON
In this section, all of the experimental details and compar-
isons are provided. We performed all of the experiments
using NVidia GeForce GTX 1080 Ti with 12 GB memory
and deep learning architecture [43], [44] and Windows 10
installed on an Intel Core i7 CPU with 16 GB RAM. For
objective and robust demonstration of our method, we con-
ducted 10-fold cross validation, i.e., we trained 10 models for
10-fold validation sets.

We trained the Mask-RCNN for 400 epochs using stochas-
tic gradient descent with a momentum of 0.9, a learning rate
of 0.001, a batch size of four, weights decayed by 0.0001,
and gradients clipped to 5.0 in each epoch. The weights
were initialized by a model pre-trained on ImageNet [45],
which is composed of natural images. We experimented
with longer training times and other settings of the training
hyper-parameters, but little improvement was achieved and
the loss curve after 300 training epochs became smooth.
Thus, we adopted models trained with 400 epochs for the
coarse segmentation. To adapt the feature extraction net-
work and minimize the image compression, the shorter
sides of all of the cell images were rescaled to a length
of 512.

In the refinement, θα , θβ , θγ , and the number of iterations
ni should be set. By combining many experimental results
and the analysis of [41] [CRF], we set θα = 1, θβ = 20, and
θγ = 10. For the number of iterations, the KL divergence

VOLUME 6, 2018 53717



Y. Liu et al.: Automatic Segmentation of Cervical Nuclei Based on Deep Learning and a Conditional Random Field

FIGURE 7. Results obtained by applying our segmentation method to the Herlev dataset. First row: original images; second
row: results of coarse segmentation by the Mask-RCNN (blue boundaries); third row: results of refined segmentation
(green boundaries); fourth row: GT results (red boundaries).

of Q and P almost stopped descending when ni > 10; hence,
we set ni = 10 considering the computational complexity.
Several Herlev dataset samples segmented by using our

method are shown in Fig. 7. Despite many sources of inter-
ference, such as irregular shapes, pool contrast, blurriness,
and inhomogeneous chromatin distributions, the boundaries
obtained by using our method are highly matched with
the GT. In addition, the details that were not obvious in
the coarse segmentation were refined well by the LFCCRF,
indicating that ourmethod overcomes these types of inference
effectively.

The results were compared with those obtained using
other methods [17], [21], [28], [46] that utilize popular
techniques such as ACM, multi-scale watershed, and FCN.
It should be noted that the results of [17] and [21] were
obtained from [17]. The quantities used for comparison are
shown in Table 3. For the average of three measurements,
our method achieved 0.96, 0.96, and 0.95 for the preci-
sion, recall, and ZSI respectively, representing significant
improvement over the other methods. For abnormal types
of nuclei, it becomes more difficult to overcome the inho-
mogeneous chromatin distribution and the highly irregular

shape of the nucleus with increasing abnormality. Thus, it is
difficult to perform all three measurements well. Nonethe-
less, our method yielded parameter measurements all greater
than 0.95 with low standard deviations for abnormal types of
nuclei.

IV. DISCUSSION
In this study, we utilized both pixel-level prior information
and information about the spatial domain of the nuclear RoI
to overcome the difficulties that are widespread in cervical
nucleus images, such as irregular shapes, pool contrast,
blurriness, and inhomogeneous chromatin distributions. The
Mask-RCNNmethod is a powerful technique that uses pixel-
level prior information for coarse segmentation; the second
row of Fig. 7 reveals accurate general localization. However,
the segmentation is based on an FCN,which inevitably causes
loss of spatial details. Hence, we chose to employ an LFCCRF
to refine the coarse segmentation by minimizing the cost
function, which consists of all of the pixel labels from the
coarse segmentation, as well as the position and intensity
information of three channels of the nuclear RoI. As a result
of the full use of pixel-level prior information and the spatial
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TABLE 3. Comparison of the performance of our method with those of different nucleus segmentation methods using the Herlev dataset.

information of the nuclear RoI, the refined segmentation
results in the third row of Fig. 7 are well matched with
the GTs.

Both accurate and stable abnormal nucleus segmentation
are crucial for clinical diagnosis. Many previous methods

involved limited use of prior knowledge, and although the
results of some of them are highly accurate, their standard
deviations are low. As shown in Table 3, our segmentation
results for abnormal types of nucleus are both more accurate
and more stable than those of the other methods.
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V. CONCLUSION
Cervical nuclear segmentation plays an important role in
automatic cytology screening and diagnosis for cervical can-
cer. In this paper, we presented a novel nuclear segmen-
tation method in which a Mask-RCNN is combined with
an LFCCRF. This technique involves adequate integration
and utilization of prior and spatial information. The Mask-
RCNN generally provides accurate boundary localization,
mainly because of the robust semantic information obtained
under the supervision of the pixel level prior information, and
the LFCCRF explores the spatial information, including the
position, intensity, and coarse segmentation results obtained
by using the Mask-RCNN in the nuclear RoI, to refine the
nuclear boundary. The experimental results on the Herlev
dataset demonstrate that the proposed method clearly pro-
vides nuclear segmentation superior to that achievable by
using the other methods. We believe that the results are reli-
able for subsequent analyses of automatic cytology screening
and diagnosis for cervical cancer.

Although this work noticeably improved the cervical
nucleus segmentation performance, the accuracy of the
abnormal nuclear segmentation still needs to be enhanced
owing to its clinical significance. In addition, the current
work can be easily extended to cytological screening of other
cancers.
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