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ABSTRACT This paper presents a new entropy minimization criterion for both symbol timing and carrier
frequency recovery for wireless receivers. Synchronization is achieved by minimizing the entropy estimated
from the eye diagram and the constellation diagram. Key implementation details are addressed toward
the realization of entropy-based synchronization algorithms. In addition, the performance is evaluated in
controlled conditions. It is shown that, as an alternative to the maximum likelihood criterion, entropy
minimization has great potential and offers certain advantages for synchronization in wireless communi-
cation, particularly for pulse shaping filters with small excess bandwidth, as well as in multipath fading
channels.

INDEX TERMS Entropy minimization, symbol timing, carrier recovery, synchronization, multipath.

I. INTRODUCTION
In coherent wireless communications systems, synchroniza-
tion is a key operation at the receiver; it is usually realized
between the matched filter and the equalizer. The two main
functions of the synchronizer are symbol timing and carrier
recovery. The purpose of symbol timing recovery is to recover
the symbol clock from the modulated waveform, so that it can
down-sample the waveform with the correct symbol timing
offset (STO). Hence, at the output of a matched filter, a signal
that is sampled at the ideal instant can have maximum signal
to noise ratio (SNR) and no intersymbol interference (ISI) [1].
Also, to recover the information embedded in the phase mod-
ulation in coherent communication systems, the down con-
verter must have exactly the same frequency as the carrier of
the signal. However, in practice, the local oscillator frequency
deviates from the input signal’s carrier frequency. As such,
the carrier frequency offset (CFO) has to be compensated.
Moreover, in some applications, such as underwater acoustic
communications, the channel may constantly change due to
the time-variant environment or Doppler effect. Therefore a
continuous and fast estimation and compensation of the STO
and CFO is essential to maintain the link reliability.

Various synchronization algorithms have been described
in the literature. While data-aided (DA) synchronization
offers a superior performance, in this work, non-data-
aided (NDA) schemes are approached to maintain a high
spectral efficiency. A feedforward timing correction architec-
ture is described for fast convergence rate.

Most synchronization algorithms follow the maximum
likelihood (ML) criterion or its approximation. For example,
the Oerder and Meyr (O&M) algorithm [2] is a square-law
nonlinearity (SLN) estimator exploiting the cyclostationary
properties of the modulated signal, and is one of the most
commonly used NDA feedforward STO estimator. It has been
proven that this algorithm and its variants [3] can be asymp-
totically interpreted as anML estimator [4], [5]. For feedback
configurations, the NDA Gardner timing error detector and
its DA counterpart, the zero-crossing detector can also be
derived from the ML criterion [1]. The NDA feedforward
CFO estimator proposed in [6] employs the fourth-order
cyclostationary property, and still follows the ML criterion.
Also, various DA feedforward CFO estimators attempt to
maximize the inner product between the training sequence
and the data samples. All these CFO estimators can be treated
as generalized ML estimators [1].

The primary contribution of this paper consists in the
definition of a unified synchronization criterion, relying on
entropy minimization (EM) as an alternative to the ML crite-
rion. Specifically, the entropy of the eye diagram is evaluated
for symbol timing recovery, and the entropy of the constella-
tion diagram is measured for carrier frequency recovery. For
both applications, the synchronization parameter that leads
to a minimum entropy value is considered to be optimum.
A similar concept, the minimum error entropy which is an
important and highly effective optimization criterion in infor-
mation theoretic learning can be found in [7]. Note that it
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has been shown in [8] that the CFO of phase-shift keying
(PSK) and quadrature amplitude modulation (QAM) modu-
lated signals can be recovered by minimizing the entropy of
the instantaneous phase probability density function (PDF),
and the phase entropy is obtained by linear search with high
computational complexity. In comparison, in the proposed
work, a more generic entropy criterion is employed, where
both the phase and amplitude components are considered.
This concept has been briefly introduced in our previous
work [9]. However, to the best of the authors’ knowledge,
this is the first work that provides a non-ML, unified criterion
for both symbol timing and carrier recovery and that also
includes an extensive conceptual analysis.

For demonstration purposes, a custom estimation
algorithm is provided to evaluate the entropy of the signal
eye diagram and constellation. Many practical issues can be
encountered when implementing EM based synchronization
algorithms. These issues include undesired local minima,
insufficient oversampling rate and the vanishing of the gradi-
ent. The next contribution of this work is a practical imple-
mentation that addresses these issues.

The performance of the proposed symbol timing and
carrier frequency recovery criterion is also evaluated in con-
trolled conditions. The effects of various channel impair-
ments, including noise and multipath, are analyzed on the
system performance. The EM based algorithms are found to
have improved performance when the pulse shaping filter has
a small excess bandwidth, so that it allows better spectral effi-
ciency. It is also demonstrated that the EM criterion provides
a higher SNR than the ML criterion for timing recovery in
multipath channels.

This paper is organized as follows. In Section II, an entropy
minimization criterion for synchronization is introduced.
A customized entropy estimation algorithm, and its imple-
mentation issues are discussed in Section III. In Section IV,
the performance of the algorithm is evaluated in controlled
conditions. Finally, conclusions are drawn in Section V.

II. ENTROPY MINIMIZATION BASED SYNCHRONIZATION
In this section the entropyminimization criterion is presented.
Specifically, the signal model adopted in this paper is pre-
sented in Section II-A. The standard ML criterion is briefly
introduced in comparison to the EM criterion in Section II-B.
Then, the application of the EM criterion to symbol timing
using the eye diagram entropy is explained in Section II-C,
while the constellation diagram entropy used for carrier fre-
quency recovery is explained in Section II-D.

A. SIGNAL MODEL
In this work, it is assumed that the signal is transmitted using
coherent modulation schemes with an alphabet size of M ,
where M is a power of two. In the following discussion,
quadrature phase shift keying (QPSK) modulation is used to
validate the performance, but the application is not limited
to low order modulation schemes. In fact, the discussion
can be easily extended to other PSK or QAM modulations.

The received binary information follows an independent iden-
tical distribution (i.i.d.). The modulated data are pulse shaped
to limit the bandwidth occupancy. A standard pulse shaping
filter is used at the transmitter, which is designed under
the Nyquist criterion, such that there is no ISI at the ideal
sampling instants.

At the receiver, the over-sampled passband signal goes
through a down converter and a matched filter first. Then,
a timing recovery is applied, and it is followed by a carrier
frequency recovery. Such a design is based on the idea that
the decimated samples are sufficient for the CFO estimation,
and the estimation has less computational burden because it
operates at a reduced rate.

At baseband, the i-th data sample xi after timing and carrier
frequency recovery can be expressed as [10]

xi[τ, f1] = y(iT + τ, f1)e−j2π f1iT , (1)

where y is the output of the matched filter, τ and f1 are the
STO and the CFO respectively, and T is the symbol period. To
estimate the STO andCFO, the EMcriterionwill be presented
in Section II-C and Section II-D respectively.

B. MAXIMUM LIKELIHOOD VERSUS
ENTROPY MINIMIZATION
The estimation of the STO and CFO can be considered to
be an optimization problem. Except for a few heuristic meth-
ods, most algorithms are based on maximizing a likelihood
function. In [1], for the NDA symbol timing recovery, this
criterion yields the objective function3(τ ), which is equal to

3(τ ) =
N∑
i=1

|xi(τ )|2, (2)

while the DA carrier frequency recovery often uses the
objective function 3(τ ), defined as

3(f1) =

∣∣∣∣∣
N∑
i=1

c∗i xi(τ, f1)

∣∣∣∣∣ , (3)

where c∗i is the complex conjugate of the i-th training symbol.
These two objective functions are actually aimed at maximiz-
ing the energy of the data sample set. This ML based estima-
tion method uses second-order statistics of the samples and
is suitable for linear channels with additive white Gaussian
noise (AWGN). However, for channels that are dominated
by ISI, and cannot be modeled with second-order statistics
appropriately [11], a criterion that considers higher order
statistics is a more reasonable approximation.

The entropy is a measure of randomness or uncertainty of
a signal, and it is a function of the signal PDF. As explained
in [12], the higher order statistics are taken into considera-
tion by measuring entropy. According to information theory,
the minimum entropy of any type of communication signal
is equal to the entropy of the transmitted information. It is
understood that the purpose of synchronization is to remove
the interference due to the STO and CFO. This specific inter-
ference introduces extra entropy to the received signal and,
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as such, the entropy can be used as a cost function towards
synchronization. Unlike the ML criterion, the EM criterion
does not model the interference using a statistical model,
making it difficult to prove the EM criterion mathematically.
However, it will be demonstrated through rigorous numerical
simulations in the rest of the paper.

The Shannon entropy is the most commonly used mea-
sure of the quantity of information embedded in a signal.
Assuming M possible observations of a one-dimensional
discrete signal, with pk representing the probability of the
k-th occurrence, the Shannon information entropy HS is
expressed as [13]

HS = −
M∑
k=1

pk log pk , (4)

where the logarithmic function usually uses base two, and
the corresponding entropy unit is expressed in bits. In the
next two sections, the Shannon entropy is used as a metric
to evaluate the eye diagram and constellation diagram.

C. EYE DIAGRAM ENTROPY AND SYMBOL
TIMING RECOVERY
To recover the symbol timing, in this work the entropy of the
eye diagram is utilized. Ideally, the down-sampling instant
should be located in the middle of the eye diagram where
the eye opening reaches its maximum. The symbol timing
recovery can be then interpreted as an algorithm to adjust the
timing instant with a proper STO on the eye diagram.

The eye diagram is composed of time domain signal traces
that are periodically overlaid in a window with a length
of one or two symbol periods. The eye diagram entropy is
defined as the entropy of the signal that is distributed at a
certain timing instant on the eye diagram. This can be further
explained using Fig. 1. The eye diagram in Fig. 1(a) is sliced
vertically at four timing instants. The signal probability dis-
tributions at each timing instant are estimated using the his-
togram in Fig. 1(b). The histogram is a simple visualization of
the data distribution where bins are defined, and the number
of data samples within each bin is tallied. Here the number of
samples is normalized and presented as probabilities. Then,
the eye diagram entropy can be found using (4).

For example, a given modulation scheme with an alphabet
size of M is implemented to transmit random data in an
ideal channel. At the receiver, with perfect timing recovery,
the signal samples can only be distributed equally within M
possible symbols. The probability that the samples belong
to the k-th symbol is pk = 1/M . Substituting pk into (4),
the minimum eye diagram entropy is defined as

minHeye = −
M∑
k=1

1
M

log2
1
M
= log2M , (5)

which is exactly the same as the amount of information
carried by each symbol.

The minimum eye diagram entropy only exists when the
perfect symbol timing is achieved, because according to the

FIGURE 1. Signal probability distribution at four timing instants on a
typical eye diagram. (a) Timing instants on a typical eyediagram.
(b) Histograms of signal probability distribution.

Nyquist criterion, there is zero ISI at these timing instants.
For a timing instant that deviates from the middle of the
eye, the Nyquist criterion is violated and the interference
from adjacent symbols increases the randomness. An analyt-
ical relationship between the eye diagram entropy and the
timing instant is difficult to demonstrate; however, it can
be observed that as the timing instant shifts away from the
center, the signal energy from current symbol decays, and the
interference energy grows, leading to increased randomness.
Therefore, the entropy, being a measure of randomness, will
also increase. Since each interference pulse from adjacent
symbols carries the same amount of information, if the span
of the pulse shaping filter isNspan, the maximum eye diagram
entropy will beNspan times the amount of information carried
by each symbol, which can be presented as

maxHeye = Nspan log2M . (6)

To summarize, the EMbased symbol timing recovery seeks
the timing instant with minimum eye diagram entropy. The
eye diagram entropy can be seen as an indicator of the ISI that
is introduced by adjacent symbols. Effectively, the desired
timing instant with zero ISI is the instant with minimum eye
diagram entropy.

D. CONSTELLATION DIAGRAM ENTROPY AND
CARRIER FREQUENCY RECOVERY
The EM criterion can also be applied to recover the carrier
frequency. When the passband signal is down converted to

VOLUME 6, 2018 53321



X. Liu, J.-F. Bousquet: Symbol Timing and Carrier Frequency Recovery Based on Entropy Minimization

baseband, the complex data can be visualized as a constella-
tion diagram. However, if the frequency of the local oscillator
is different (even by a very small margin) from the carrier
of the signal, the resulting constellation diagram rotates and
cannot be demodulated reliably. The estimation of a CFO
that is much smaller than the symbol rate is discussed in
this section, since for a large CFO, a preceding coarse carrier
recovery is usually required.

FIGURE 2. Constellation diagrams with different CFOs and the
corresponding histograms of signal probability distribution.

The randomness of the signal distribution on the con-
stellation diagram can be quantitatively measured by the
constellation diagram entropy. Similar to the eye diagram
entropy, the histogram can be used for probability estima-
tion. However, a 2D histogram is needed to present both in-
phase and quadrature components (or phase and amplitude
components when considering the polar coordinate system)
on the constellation diagram. Examples of noise free QPSK
constellation diagrams with zero, mild and strong CFO with
their corresponding histograms are shown in Fig. 2. The
constellation diagram entropy can be estimated with these 2D
histograms. According to (4), the highest probability peaks
in the histogram indicate the lowest entropy (as observed
in Fig. 2(a)). The probability that a sample occupies a given
bin can be roughly considered to be equal in all bins. There-
fore, it can be approximated by pconst ≈ 1/nbin, where nbin
is the number of histogram bins loaded with signal samples.

Thus, the constellation entropy is given by

Hconst ≈ −nbinpconst log2 pconst ≈ − log2
1
nbin

. (7)

For example, when the CFO is zero, min nbin = M , and the
minimum constellation entropy is

minHconst = log2M , (8)

which is the same as (5). There is also an upper limit on the
constellation entropy when the rotation of the constellation
results in samples that are uniformly distributed along a circle
such that separate clusters can no longer be distinguished.
This phenomenon will be further discussed in Section III-C.
Note that an analytical discussion is provided in [8] and
demonstrates that, for PSK modulation, the entropy has a
global minimum and corresponds to a CFO equal to zero.

III. IMPLEMENTATION OF SYMBOL TIMING AND
CARRIER FREQUENCY ESTIMATION
In this section, a customized entropy estimation algorithm
is provided. Then the EM criterion will be implemented for
symbol timing and carrier frequency estimation. Practical
issues are addressed, and the estimation algorithms are dis-
cussed in detail.

A. CUSTOMIZED ENTROPY ESTIMATION ALGORITHM
According to the Shannon entropy defined by (4), the entropy
is a function of the PDF of the observations. A common
technique is to use the histogram for probability estimation as
shown in Fig. 1 and Fig. 2. In this section, the Rényi entropy
is utilized as an alternative customized entropy estimation
algorithm for the purpose of conceptual verification.

The Rényi entropy is a generalization of the Shannon
entropy. It is defined as [14]

HR =
1

1− β
log

( M∑
k=1

pβk

)
, (9)

where β is the order of the Rényi entropy. As explained
in [15], when the order β → 1, the Rényi entropy tends to
be equal to the Shannon entropy. Following [12] the quadratic
Rényi entropy (β = 2) is chosen in this work such that
a further simplification can be made. Using β = 2 in (9),
the quadratic Rényi entropy is given by

HR2 = − log
( M∑
k=1

p2k

)
. (10)

Note that in (10), the logarithm function is external to the sum
of the quadratic probabilities. Because the logarithm function
is monotonic, minimizing (10) is equivalent to maximizing
its internal portion. Since the search for a minimum entropy
relies on a relative value ofHR2, the logarithm function can be
dropped out without affecting the estimation result. This can
be attractive when implemented on elementary processors
that cannot process advanced math functions. Recall that for
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the Shannon entropy given in (4), the sum of pk log pk is
simplified to the sum of p2k here.
As suggested in [16], the kernel density estimation (KDE)

is used to evaluate the argument of the logarithm function
in (10). As such, for a set of N samples, i = 1, . . . ,N ,
the sample probability at an observation ξ can be estimated by

p(ξ ) =
1
N

N∑
i=1

Kr (ξ − xi), (11)

where Kr (·) is a kernel function with a positive parameter r .
Then, by substituting (11) into (10) and after some simplifi-
cation, we have

HR2 = − log
(

1
N 2

N∑
i=1

N∑
j=1

Kr
(
xi − xj

) )
, (12)

where p2k in (10) is directly estimated by the kernel function.
The simplest kernel function, the top-hat kernel is given by

Kr (x) =

{
1, |x| ≤ r
0, otherwise.

(13)

where the threshold r is used to determine the quantiza-
tion level in which samples are grouped for entropy estima-
tion. The choice of r will be detailed later in this section.
Using (12) and (13), the entropy can be estimated by
measuring the distances between samples instead of using
histograms.

From the discussion above, the customized entropy estima-
tion algorithm is summarized using the following steps:

1) For a given set of observations with N samples, cal-
culate all the distances dij between each sample pair
xi and xj, where 1 ≤ i < N and i < j ≤ N . Then,
the distance dij is given by

dij =
∥∥xi − xj∥∥ , (14)

where ‖·‖ represents the Euclidean norm.
2) Define a separation threshold r and count the number

of dij that satisfy dij > r , and denote the number of
separated sample pairs as Hsp.

3) After normalization, express the modified Rényi
entropy (MRE) as

HMRE =
Hsp

N (N − 1)/2
. (15)

The resultingHMRE is themodified version of the quadratic
Rényi entropy in which the logarithm function is dropped.
Because of the normalization, the value of HMRE is limited
between 0 to 1 and is unitless. Intuitively, HMRE is a measure
of the amount of sample dispersion, since it counts the num-
ber of sample pairs with distances greater than the threshold r .
The choice of the threshold r (often referred as bandwidth

in KDE [17]) exhibits a strong influence on the results. It can
be derived arithmetically from sophisticated algorithms to
achieve an optimal probability estimate [17]. Note that the
absolute entropy value is not important, and the threshold r

is empirically set to be equal to the root-mean-square value
of the noise.

Another design parameter for MRE estimation is the num-
ber of samples, which is equal to a few hundred in our appli-
cation. Entropy estimation is more accurate with a growing
number of samples, but the number of distance calculations
grows quadratically. Note that the computational complexity
can be reduced by using other distance metrics presented
in [18]. However, this will cause a reduced tracking ability,
which means that the algorithm cannot adapt to the time vary-
ing channel effectively. As such, the choice for the number of
samples depends both on the dynamic channel conditions and
the hardware capabilities.

B. SYMBOL TIMING OFFSET ESTIMATION
STO estimation can be implemented by searching for
the instant with minimum entropy in the eye diagram.
In this section, the following practical issues are addressed:
1) resolving local minima in the entropy curve, 2) examining
the timing recovery in presence of CFO, and 3) providing
accurate STO estimation at low oversampling rate.

The entropy reaches a global minimum in the center of
the eye diagram, but in practice, when the timing instant is
close to the symbol transition area, the entropy may decrease
and create local minima. Local minima could result in false
STO estimation especially at low SNR conditions, and par-
ticularly if gradient based search algorithms are used. Since
the entropy local minima occur when the samplemagnitude is
small, an additional threshold can be introduced to eliminate
these data samples in the entropy estimation.

The following steps summarize the MRE estimation algo-
rithm with the additional threshold:

1) Define a threshold rmg and build a new sample set
where all samples with a magnitude greater than rmg
are included. The number of samples in the new set is
denoted as Nmg;

2) Find all the Euclidean distances dij between each sam-
ple pair xi and xj in the new sample set, where 1 ≤ i <
Nmg and i < j ≤ Nmg;

3) Define an aggregation threshold r . Count the number
of dij for which dij < r (note this inequality is different
from its counterpart in Section III-A), and denote the
number of aggregated sample pairs as Hag;

4) Express the bounded modified Rényi entropy
(BMRE) as

HBMRE = 1−
Hag

N (N − 1)/2
. (16)

A typical case is given here to show how the EM based
STO estimation works. The received signal consists of a
frame of QPSK modulated random symbols, which are pulse
shaped to generate a baseband complex envelope. The over-
sampling rate is 40 to provide a better eye diagram resolution.
An AWGN channel is assumed with Es/N0 = 18 dB. After
the matched filter, the eye diagram of the real component of
the signal is shown in the upper part of Fig. 3, and both the
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MRE and BMRE estimation results are shown in the lower
part. The thresholds are r = 0.25 and rmg = 0.3.

FIGURE 3. An typical eye diagram (upper) and the corresponding eye
diagram entropy (lower).

In Fig. 3, the entropy reaches a global minimum in the
center of the eye diagram, and its value is close to 0.75. This
minimum entropy value can be derived as follows. Since the
QPSK symbols are i.i.d, there are four clusters distributed on
the constellation diagram, and each cluster consists of N/4
samples. The threshold r is designed such that the condition
of dij < r can only be satisfied between samples located
in the same cluster. For 4 clusters, Hag ≈ 4 (N/4)2 /2
(assuming N � 1). Thus, the minimum value of the BMRE
is approximated by

minHBMRE ≈ 1−
4 (N/4)2 /2

N 2/2
= 0.75. (17)

The minimum value of MRE in the eye diagram center can
also be derived in a similar way to the BMRE. The entropy
increases with the absolute value of STO, indicating more
randomness introduced by ISI. When the STO is beyond
±0.35, the MRE estimation decreases and creates a local
minimum in the symbol transition. This phenomenon is also
illustrated in the eye diagram, where the samples aggregate
into three visible groups (with amplitudes of ±1 and 0).
The result of the BMRE algorithm coincides with that of

the original MRE algorithm in most of the timing instants,
but the local minima near ±0.5 become flat. As such, with
the BMRE estimation algorithm, the local entropy minima
due to the symbol transitions are removed, and the STO can
be estimated with higher accuracy.

Next, the impact of timing recovery in presence of uncom-
pensated CFO will be evaluated. Theoretically, the previous
analysis of eye diagram entropy still holds, but the CFO does

introduce extra entropy in the estimation. To understand how
the CFO affects the eye diagram entropy, another simulation
that is similar to what was demonstrated in the early part of
this section is conducted with an extra CFO at 1% of the sym-
bol rate introduced. The eye diagram and the corresponding
entropy are depicted in Fig. 4.

FIGURE 4. An eye diagram with carrier frequency offset (upper) and the
corresponding eye diagram entropy (lower).

The eye diagram shows an eye that is completely closed:
the center of the eye or optimum timing instant cannot
be identified by only observing the eye diagram. However,
the optimum timing instant can be clearly identified with the
entropy curve. Both theMRE and the BMRE algorithms have
the same global minimum at zero STO.

In Fig. 4, it is also interesting to observe the entropy plot at
a symbol transition. With the MRE algorithm, the local min-
ima aremore noticeable andmay lead to a false STO estimate.
However, the BMRE algorithm shows superior performance:
the curve is not flat anymore but continues growing with the
same gradient as a function of timing offset. This feature
shows a good adaptation of the BMRE algorithm and proves
that the ‘‘symbol timing recovery before carrier recovery’’
receiver configuration is feasible.

In the previous discussion, a global search for STO with
minimum eye diagram entropy requires a high oversampling
rate (normally more than 10 samples per symbol). However,
this is not always available in practice, especially for high
speed communication. Recall that the O&M algorithm uses
as low as 4 samples per symbol, and its STO is given by

τ =
T
2π

arg

{
N∑
i=1

|xi|2e−j2π (i−1)/Nsps
}
, (18)

where T is the symbol period and Nsps is the oversampling
rate. The operation arg {·} returns the phase angles in radians.
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The guiding principle of the O&M algorithm is to apply a
discrete Fourier transform (DFT) to the squared signal x2i , and
the STO is extracted from the angle of the resulting spectrum
line at the symbol rate.

The theory behind (18) is that the squared signal x2i is a
periodic signal with the same frequency and phase as the
pulse shaped symbols due to the cyclostationary property of
xi. Thus, even with a low oversampling rate, the STO can
still be estimated by DFT. The eye diagram entropy curve
exhibits a similar property as x2i within one period. Therefore,
the same approach can be applied to the EM based symbol
timing algorithm. To be specific, x2i in (18) can be replaced
with the eye diagram entropy Hi, such that the STO can be
found with

τ =
T
2π

arg


Nsps∑
i=1

Hie−j2π (i−1)/Nsps

 . (19)

Note that (19) assumes that the entropy curve is symmetric
to the center of the eye diagram, but the symmetry may
not be maintained at low SNR or in a multipath channel.
In these conditions, the algorithm may result in large estima-
tion variance.

Although the complexity of the STO estimation is reduced
by using less samples (similar to the O&M algorithm),
the EM based method still requires higher computational
load than conventional algorithms, because of the nature of
entropy estimation. The MRE and BMRE algorithms can
relieve certain computational load by using approximation
methods, but the complexity remains higher than the conven-
tional methods. Nonetheless, the entropy analysis provides
more insights on the signal eye diagram and helps locate the
maximum eye opening, as will be shown in Section IV.

The STO estimation discussed in this section assumes that
the symbol period is known to the receiver and that there is
no time scaling during transmission. Thus, the symbol timing
recovery discussed here is equivalent to locating a timing
offset on the eye diagram. If this assumption does not hold,
a symbol period estimation is required. Such an estimation
can be done by searching for the symbol period that can
minimize the whole eye diagram entropy.

C. CARRIER FREQUENCY ESTIMATION
In this section, the implementation of the EM based CFO
estimation algorithm is detailed. Similarly to the STO esti-
mation discussed above, the proposed algorithm is also NDA.
The constellation diagram entropy is measured by defining
an adequate range for the trial CFO, and a global search is
applied to find the minimum entropy. The characteristics of
the entropy curve are shown first and then a method that can
increase the global search efficiency is proposed.

In Section II-D, it can be noted that the constellation
entropy is almost flat when the CFO is greater than a maxi-
mum frequency. This maximum frequency can be considered
as the effective search range for EM based CFO estimation.
The entropy curve within the frequency limit has a V-shape

‘‘trough’’ (negative peak) and the entropy global minimum is
located in the middle of the trough. For a given modulation
scheme, the range of the trough is affected by the CFO (f1),
the symbol rate 1/T , and the number of data samples N
in the window. For example, the M -PSK modulated signal
has a minimum constellation phase difference 2π/M . The
accumulated phase shift due to CFO is given by 2π f1NT . The
constellation entropy increases with the CFO until the accu-
mulated phase shift is greater than the minimum constellation
phase difference. Therefore, the CFO search range is given by

|f1| <
1

MNT
, (20)

and when the CFO is larger than 1/MNT , the entropy curve
becomes flat.

Using (20), if N is equal to a few hundred samples, a given
CFO that can fall into the entropy search range must be on the
order of 0.1% of the symbol rate, which is relatively small
compared to the CFO range that needs to be covered. The
resulting entropy curve as a function of trial CFO is generally
flat with the exception of a sharp trough. A similar result
has also been reported in [8]. Consequently, the linear search
requires very fine steps to achieve high frequency resolution,
and the potential gradient descent algorithm may not con-
verge due to lack of gradient. In other words, an efficient
search algorithm cannot be applied.

In order to cover a large estimation range without intensive
computation, an algorithm that can expand the width of the
trough is required. To increase the trough width, a possible
solution is to reduceN . However, the lack of samples will lead
to an inaccurate PDF and entropy estimation. Instead, a block
average algorithm inspired by [19] is adopted to smooth the
entropy curve. The data samples are equally segmented into L
blocks, and the entropy of the i-th block is denoted as Hi(f1).
The block averaged constellation diagram entropy is given by

Hconst (f1) =
1
L

L∑
i=1

Hi(f1). (21)

The CFO is assumed to be constant for the set of data
samples. Thus, each block possesses the same entropy curve
but with random fluctuation due to the lack of samples for
probability estimation. By averaging the entropy curve using
small blocks, a wide and smooth entropy trough is achieved.
The new trough is L times wider than the original one.

With the same settings as in Section III-B, the numerical
simulation of the constellation diagram entropy is compared
using 1) 400 samples, 2) 50 samples and 3) block averaged
400 samples with a block size of 50 samples (L = 8). The
results are plotted as a function of the CFO in Fig. 5. Perfect
symbol timing is assumed, and the CFO search range is swept
within 1% of the symbol rate.

As discussed in Section II-D, the entropy curve should
reach the global minimum with the CFO equal to zero.
In Fig. 5, the entropy curve using 400 samples has only
one global minimum when the CFO is equal to zero and
no other local minimum. But its curve has a very narrow
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FIGURE 5. Constellation diagram entropy for carrier frequency recovery.

trough as predicted. The entropy estimated using 50 samples
has a trough boundary at ±0.5% of the symbol rate, which
agrees with (20). In fact, the trough range is expanded by
8 times, but many fluctuations and local minima appear.
In comparison, the entropy curve using the block averaging
has the same expanded trough as the entropy estimated using
50 samples, but the local minima are smoothed out, leaving
only the global minimum at the zero CFO.

Given the expanded entropy trough, a more efficient two-
step linear search, similar to the algorithm described in [8],
can be readily applied. First, a coarse search through the fre-
quency range of interest with step size equal to the half trough
width can provide an approximate CFO estimate. A second
search with a fine frequency step near the coarse estimation
result can improve the accuracy of the CFO estimate.

Recall that the computation complexity grows quadrati-
cally with the number of samples, so breaking down the sam-
ple set into small blocks can significantly reduce the required
computation. For example, if the 400 samples are equally
divided into 8 blocks, it is easy to find that compared to the
algorithm without block averaging, this algorithm requires
eight times less number of Euclidean distance calculations
(defined by (14)). This is a significant reduction in computa-
tional complexity.

Compared to the linear search algorithm proposed in [8],
the block average method for CFO estimation reduces the
computational complexity by calculating less sample pair
distances. However, similar to the STO estimation using (19),
it is still more complex than the conventional ML based
algorithms because of the estimation of entropy instead of
energy. The EM based algorithms are not appropriate for
computation sensitive tasks. On the other hand, note that since
the computing of the entropy for each trial STO or CFO is
independent, it is possible to perform in parallel mode (such
as using a multi-core processor or FPGA) to accelerate the
estimation.

IV. PERFORMANCE EVALUATION
In this section, the performance of the symbol timing and
carrier frequency estimation algorithms presented in the

previous section are assessed in controlled conditions. The
estimation error variance in AWGN channel is used as the
major figure of merit. Also, the effect of multipath impair-
ment is analyzed on the system performance.

First, the performance of the symbol timing estimation
algorithm (19) is examined in presence of AWGN. The O&M
algorithm described by (18) is used here to represent the ML
estimator for comparison.

FIGURE 6. Timing error variance of two symbol timing algorithms with
two rolloff factors.

The performance comparison in presence of AWGN is
shown in Fig. 6. In this figure, the QPSK modulation is eval-
uated, but similar results are expected for other PSK or QAM
modulation schemes. A pulse shaping filter is used to limit
the bandwidth. The rolloff factor used in the evaluation is
α = 0.25 and 0.05 respectively. The small excess bandwidth
conditions are chosen to accommodate a recent bandwidth
efficient communication standard [20]. The choice is also
motivated by the fact that using small rolloff factor represents
the worst case with respect to the timing error variance.

AWGN is introduced at the receiver, such that the symbol
energy to noise spectral density ratio (Es/N0) ranges from
5 to 40 dB. For each Es/N0 setting, the average of 500 Monte
Carlo trials are taken. In each trial, a block size of 100 sym-
bols are used to estimate the STO. The proposed algorithm
(19) is used for the EM based STO estimation. After nor-
malization by the symbol period, the variances of the timing
error (also known as the jitter variance in some literature [21])
with respect to the symbol period are represented in Fig. 6.
Following [1], the modified Cramér-Rao bound (MCRB) is
also shown as the theoretical limit.

Several conclusions can be drawn from Fig. 6. Generally,
the EM based symbol timing algorithm has lower error vari-
ance than theO&Malgorithm for both rolloff factors and for a
large range of Es/N0. With the O&M algorithm, larger rolloff
factor generates smaller error variance. When the Es/N0 is
greater than 25 dB, the variance value reaches a lower limit
because of its strong self-noise [1]. In contrast, the tim-
ing error variance of the EM based algorithm changes less
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significantly with different rolloff factors. Also, it suffers less
from the self-noise.

The O&M algorithm has less error variance when
Es/N0 < 9 dB and α = 0.25. This is because the O&M
algorithm, as an example ML algorithm, is designed under
AWGN assumption. In fact, the EM based algorithm is
favored in small excess bandwidth conditions, because the
eye diagram entropy estimation can effectively measure the
ISI. However, if a pulse shaping filter with larger excess band-
width is used (α > 0.5 for example), the O&M algorithmwill
have a performance very close to the MCRB [1].

As explained in Section III-B, the EM based symbol timing
estimation is insensitive to the CFO, but it is interesting to
understand how the performance changes in the presence of
CFO. The simulation settings are generally the same as for
the last one, except that different modulation schemes, BPSK
and QPSK, are evaluated, and the rolloff factor is set to 0.25.
The introduced CFO is 1% of the symbol rate, and the timing
variances are plotted in Fig. 7.

FIGURE 7. Performance of two symbol timing estimation algorithms in
the presence of CFO.

For BPSK modulation, the EM based algorithm shows a
good performance that is close to the MCRB when the Es/N0
is below 30 dB. It has the highest performance improvement
compared to the O&M algorithm. However, for QPSK mod-
ulation, the performance improvement is marginal. This is
because, for the EM based algorithm in (19), it is assumed
that the eye diagram entropy curve is symmetrical to the
center of the eye diagram, and this only stands with low
modulation order and low noise level. Another example of an
asymmetrical eye diagram entropy condition will be analyzed
in the following simulation.

A key issue that coherent communication systems are
facing is the multipath channel impairment. Unpredictable
channel impulse responses violate the Nyquist ISI criterion,
and the communication performance is compromised. The
nature of EM based symbol timing estimation is to search
for the timing instant with minimum ISI, which makes it
more suitable for these conditions than ML based algorithms.

To demonstrate this, a set of BPSK modulated symbols with
α = 0.5 is transmitted. For simplicity, a multipath channel
with impulse response h(t) is given by

h(t) = δ(t)+ 0.5δ(t − 1.4T )+ 0.2δ(t − 3.5T ). (22)

At the receiver, the eye diagram and the timing instants esti-
mated by both O&M and EM algorithms are plotted in Fig. 8
for Es/N0 equal to 15 dB.

FIGURE 8. An eye diagram after a multipath channel and the
corresponding timing estimation results.

The eye diagram in Fig. 8 is almost closed and shifted
from the center due to ISI. The bit error rates (BER) of
demodulated samples recovered by the two algorithms are
compared without equalization. The EM algorithm can find
the maximum eye opening and achieves a BER of 1.2%.
In contrast, the BER is 5.9% if using the O&M algorithm. As
one can observe in Fig. 8, the samples recovered by the O&M
algorithm have the highest energy output, but with strong ISI.

The results from the channel given by (22) is not a special
case. To evaluate the timing recovery algorithms in realistic
multipath channel conditions, a measured impulse response
of an underwater acoustic channel in Fig. 9 is considered.
The multipath channel models utilize the amplitudes and
delays of the five greatest impulses from the measured data.
Both Rayleigh and Rician fading are tested, where the Rician
K-factor is set to 3. The channel model is quasi-static, such
that the channel parameters are constant within each trial. The
final results are the average of 500 Monte Carlo trials.

The transmit signal are QPSK modulated, and 3000 ran-
dom symbols are sent in each trial with a symbol rate
of 240 Bd. At the receiver side, a symbol-spaced decision
feedback equalizer is placed after the timing recovery to
compensate for the multipath channel. Both the equalizer’s
feedforward and feedback filters have 6 complex weights.
The adaptive algorithm used in the equalizer is a recursive
least square (RLS) with a forgetting factor of 0.95. The first
1000 symbols are the training signal, and the symbol error
rate (SER) is calculated with the equalizer’s output for the
rest 2000 symbols.
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FIGURE 9. Impulse response of a multipath underwater acoustic channel.

TABLE 1. Symbol error rate (%) in multipath fading channels.

The simulation results are summarized in Table 1. The SER
when synchronizing to the middle of the first arrival is also
calculated as a reference. Note that if the equalizer converges
during the training, the SER of a single trial is negligible.
However, if it fails to converge, the SER can be up to around
75% for QPSK modulation. Therefore, the averaged SER
listed in the table is an indicator of how often the equalizer
fails to converge with the given timing recovered samples.

As can be observed, the SER of the EM algorithm signifi-
cantly outperforms that of the O&M algorithm for all rolloff
factor settings and fading conditions. As such, the equalizer
is much more likely to converge using the EM based timing
recovery algorithm. It can be observed in Table 1 that in
small rolloff factor conditions, using the first arrival does not
always provide optimum down-sampling positions, since the
maximum eye opening is shifted due to ISI as shown in Fig. 8.
In fact, it is clear that the EM algorithm provides better SER
when the rolloff factor is small.

Next, the performance of CFO estimation in presence of
AWGN is evaluated. For the carrier frequency recovery test,
perfect symbol timing is assumed. The signal is QPSK mod-
ulated with a CFO equal to 1% of the symbol rate. Three
algorithms are compared for CFO estimation: the EM based
algorithm, the open loop and the classic ML algorithm.

The open loop algorithm proposed in [22] estimates the
CFO by averaging the differential phase error over the win-
dow. For QPSK modulation, the CFO is given by [1]

f1 =
1

8πT
arg

{
N∑
i=2

(
xix∗i−1

)4}
. (23)

The classic ML algorithm uses the same global search
method as the EM algorithm. The objective function is

given by

3(f1) =

∣∣∣∣∣
N∑
i=1

x4i e
−j8π f1iT

∣∣∣∣∣
2

. (24)

In (24), the CFO is estimated by searching for the trial CFO
that yields the highest energy or alternatively by applying
a computationally efficient FFT based implementation [6].
Note that both (23) and (24) are NDA algorithms and a power
of 4 is applied to the signal to remove the modulation. This is
not necessary in the EM algorithm. The CFO that is estimated
using the three algorithms is normalized by the symbol rate,
and for each Es/N0 condition, 500 trials are conducted to
compute the variance. The results are shown in Fig. 10, where
the MCRB is also included as a reference.

FIGURE 10. Performance of three carrier frequency recovery algorithms.

In Fig. 10, the EM algorithm shows a much smaller fre-
quency variance than the open loop algorithm. This demon-
strates its robustness for CFO estimation. However, the per-
formance of the classic ML algorithm is mostly the same as
the MCRB, making it slightly better than the EM algorithm.
It is not surprising that the classic ML algorithm provides
a smaller variance than the EM algorithm in AWGN, since
theoretically it is the optimum solution in these conditions.

The CFO estimation performance for both the EM and
classic ML algorithms in multipath channels has also been
examined. The performance of the two algorithms has no
significant difference in terms of SER if the same timing
recovery is given. This is because no ISI gain can be provided
to the EM based algorithm in contrast to its gain for the STO
estimation. The EM algorithm has an estimation variance that
is slightly larger than that of the classicML algorithm, similar
to the results observed in AWGN channel. Nonetheless, this
demonstrates the usefulness of the proposed estimator as a
universal timing recovery algorithm.

V. CONCLUSION
In this paper, entropy minimization has been proposed as a
synchronization criterion for wireless coherent receivers. It is
an alternative to the maximum likelihood criterion, which is
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the foundation of most standard synchronization algorithms.
The symbol timing and carrier frequency offset estimation are
implemented by measuring the entropy of the eye diagram
and the constellation diagram. The optimum timing delay is
found by searching the timing instant with minimum eye dia-
gram entropy, while the carrier frequency offset is estimated
by searching through a range of frequencies to minimize the
constellation diagram entropy.

Implementation constraints have also been presented.
A modified version of the quadratic Rényi entropy and the
kernel density estimation method are employed to estimate
the probabilities. The proposed method is insensitive to the
local minima and the carrier frequency offset. Also, it can
extract the timing delay without the need for a high over-
sampling rate. The carrier frequency recovery algorithm uses
block averaging to expand the estimation range without com-
promising its accuracy.

Although the estimation requires more computational load
than the conventional algorithms, it can provide more insights
on the signal presentations. The performance of the proposed
timing and frequency recovery algorithms is compared with
that of standard approaches by running a set of numerical sim-
ulations. It is shown that the entropy minimization has great
potential and offers certain advantages for synchronization.
Particularly, in multipath fading and small excess bandwidth
conditions, the timing recovery using the entropy minimiza-
tion based algorithm can significantly improve the equalizer’s
convergence, and its symbol error rate outperforms that of
the maximum likelihood based algorithm, by at least a factor
of two.
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