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ABSTRACT Latin hypercube designs are frequently used in estimating the mean output value of computer
simulations given random environmental factors. Sliced Latin hypercube designs are designs that can be
partitioned into a number of batches so that both the whole design and the batches achieve optimal univariate
uniformity. Such designs are useful for computer simulations that are carried out in batches, come from
multiple resources, or have categorical variables. All existing sliced Latin hypercube designs have equal
batch sizes. In this paper, we propose a new type of sliced Latin hypercube design that has unequal batch
sizes and show their advantages theoretically and numerically.

INDEX TERMS Computer simulation, data integration, emulation, sampling methods, uncertainty.

I. INTRODUCTION
Computer simulations are frequently used in product and
engineering design. In many scenarios, the output of com-
puter experiments is influenced by environmental factors that
can be assumed to follow random distributions [1]. To solve
the problem of uncertainty, we need to compute the mean
output value using sampling techniques. Let X denote an
input value in [0, 1]d and f (X ) denote the output value, then
the mean output value of f (X ) is µ =

∫
[0,1]d f (x)dx. Using

a design D ⊂ [0, 1]d with n runs, we usually transform
the variables to the uniform distribution on [0, 1] and use
µ̂ =

∑
x∈D f (x)/n to estimate µ.

Clearly, the accuracy of µ̂ is closely related to the design.
We can also write a design with n runs as an n × d matrix,
where each row gives one design point. Using this defini-
tion, a design with n points is called an Latin hypercube
design (LHD) if each column of it has exactly one point
in each of the n bins of (0, 1/n], · · · , ((n − 1)/n, 1]. LHDs
achieve optimal univariate uniformity. As a result, µ̂ com-
puted from an LHD is more accurate than that obtained from
independent runs [4]. Also because LHDs can be constructed
for any d and n, it is desirable to use an LHD to estimate µ,
especially for large d problems. Reference [5] proposed the
first type of LHD, referred to as ordinary LHD hereinafter.

A sliced Latin hypercube design (SLHD) is an LHD that
can be partitioned into a number of small LHDs called slices
or batches [6]. In some applications, for some uncontrollable

reasons the computer runs in one or more batches may break
down. In this case an SLHD is desirable because when no
batch breaks down, the whole design achieves optimal uni-
variate uniformity while when one or more batches break
down, the remaining runs still have some uniformity prop-
erties. SLHDs are also useful for computer experiments with
categorical variables, from multiple sources and model vali-
dation.

The original SLHD proposed in [6] and its variants
(see [7]–[10]) have the restriction that sizes of the batches
must be equal. However, in some applications we may want
designs with unequal batch sizes. For instance, consider the
situation that computer experiments are carried out by a
number of computers, where the runs from each computer
consist of a batch. If all computers have the same computing
capability, then the batch sizes should be equal. On the other
hand, if some computers have faster computation speed than
others, in order to finish all computer runs in a fixed time,
the batch sizes should be assigned according to the speed of
computers and should be unequal. This calls for SLHDs with
unequal batch sizes. Onemethod that generates sliced designs
with unequal batch sizes is flexible sliced designs (FSD)
proposed in [11]. From an FSD, each batch is an LHD and
the whole design has some uniformity properties. However,
the whole design of an FSD does not achieve optimal uni-
variate uniformity and are not LHD. Finally, themethod given
in [12] constructs designs with two batches for which both the
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first batch and the whole design are Latin hypercube designs.
However, from this method, the second batch is not a Latin
hypercube design.

In this paper, we propose a new type of SLHD called sliced
Latin hypercube designs with unequal batch sizes (referred to
as USLHDs hereinafter). Both its whole design and its slices
are LHDs. Furthermore, its number of slices is flexible and its
batch sizes are unequal. We give the construction of USLHDs
in Section II and provide some properties of USLHDs in
Section III. In Section IV, we corroborate the usefulness of
USLHDs in estimating the mean output value by numerical
comparisons on two toy examples and two real examples in
engineering and circuit analysis. Section V concludes this
paper. All proofs are provided in the Appendix.

II. CONSTRUCTIONS
A. CONSTRUCTION FOR DESIGNS WITH TWO SLICES
In this section, we give two algorithms to construct USLHDs.
In this subsection, we give our first algorithm that is applica-
ble to USLHDs with two slices. This algorithm serves as the
building block for our general algorithm.

We first give some definitions. For an integer n > 0, let
Zn denote the set {1, · · · , n}. For two positive integers a, b,
let mod(a, b) denote the integer c ∈ Zb which is congruent
to a modulo b. For sets A and B, let A \ B denote the relative
complement of B in A. Let n1 and n2 denote the sizes of the
two batches, n = n1 + n2, g be the greatest common divisor
of n1 and n2, n′1 = n1/g, n′2 = n2/g, and n′ = n/g. Our first
algorithm is given below:

Algorithm 1
Step 1: Generate an n1-dimensional vector α =

(α1, . . . , αn1 ). The α1 is generated from the discrete
uniform distribution on Zn′ . For i = 2, · · · , n1,
generate ri from the discrete uniform distribution on
{0, 1, · · · , n′2} and compute αi = mod(αi−1 − ri, n′)+
n′(i − 1), where the α1 and the ri’s are generated
independently. Randomly permute α to get α∗.

Step 2: Generate an n2-dimensional vector β =

(β1, . . . , βn2 ). Let li denote the ith smallest
element of Zn \ {dα1/n′1e, · · · , dαn1/n

′

1e}. For
i = 1, · · · , n2, generate βi independently
from the discrete uniform distribution on
{n′2(li − 1) + 1, · · · , lin′2} ∩ {n

′(i − 1) + 1, · · · , in′}.
Randomly permute β to get β∗.

Setp 3: Generate εα and εβ independently from uniform dis-
tributions on (0, 1]n1 and (0, 1]n2 , respectively, and let
ρ = (α∗ − εα)/(n′1n) and τ = (β∗ − εβ )/(n′2n). Let
h(1) = (ρT , τT )T .

Setp 4: Repeat Steps 1-3 to obtain h(2), · · · , h(d), and letH =
(h(1), · · · , h(d)). The H , its first n1 rows and its last n2
rows give the USLHD and its two slices, respectively.

This algorithm guarantees that all of the first slice, the second
slice, and the whole design are Latin hypercube designs.

FIGURE 1. The probability mass function of α1 and α2. The probability in
the black zones is zero and the probability in white zones is 1/20.

Meanwhile, each run of the design obeys uniform distribution
on (0, 1]d . These results are given in Theorem 1 and Theo-
rem 2.

We remark that we cannot use the first column of an ordi-
nary LHD with n1 runs as ρ. This is because not every LHD
can be extended to an LHD with more runs. For instance,
consider the case with n1 = 2, n2 = 3 and n = 5.
The ρ = (0.42, 0.53) is a probable column of an ordinary
LHD. However, based on this ρ there is no τ that makes
h(1) a column of an LHD, because both 0.42 and 0.53 lie in
[2/5, 3/5) but a column of an LHD should contain exactly
one point in [2/5, 3/5). To solve this problem, we force the
difference among entries of ρ to be larger than 1/n. This is to
guarantee that no two ρis fall within the same interval among
(0, 1/n], · · · , ((n− 1)/n, 1]. In the meantime, from Proposi-
tion 1 that will be given in Section III, our Step 1 guarantees
that the set {n′2(li−1)+1, · · · , lin

′

2}∩{n
′(i−1)+1, · · · , in′}

is non-empty, insuring the validity of our Step 2. We provide
a simple example to illustrate Algorithm 1.
Example 1: Consider n1 = 2, n2 = 3 and d = 1. Clearly,

g = 1, n′ = n = 5, n′1 = 2 and n′2 = 3. Figure 1
shows the probability mass function of α1 and α2. Suppose
we sample α1 = 2. Then α2 = mod(2 − r2) + 5 and
r2 follows the discrete uniform distribution on {0, 1, 2, 3}.
When r2 = 0, 1, 2, 3, the mod(2 − r2) = 2, 1, 5, 4, respec-
tively. Therefore, the range of α2 is {6, 7, 9, 10}. Suppose
we sample α2 = 6 and α∗ = (6, 2)T . Then the set Zn \
{dα1/n′1e, · · · , dαn1/n

′

1e} in Step 2 is {2, 4, 5}. So β1, β2
and β3 are sampled from {4, 5, 6} ∩ {1, 2, 3, 4, 5} = {4, 5},
{10, 11, 12} ∩ {6, 7, 8, 9, 10} = {10} and {13, 14, 15} ∩
{11, 12, 13, 14, 15} = {13, 14, 15}, respectively, with equal
probability. Suppose we sample β1 = 5, β2 = 10,
β3 = 13, β∗ = (13, 5, 10)T , εα = (0.7580, 0.7430)T

and εβ = (0.392, 0.6560, 0.1705)T . Then h(1) =

(ρT , τT )T = (0.5242, 0.1257, 0.8405, 0.2896, 0.6553)T .
Clearly, exactly one entry of h(1) falls within each of the
(0, 1/5], · · · , (4/5, 1], exactly one entry of ρ falls within
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each of the (0, 1/2] and (1/2, 1] and exactly one entry
of τ falls within each of the (0, 1/3], (1/3, 2/3] and
(2/3, 1].
We remark that the probability mass function given in

Figure 1 is not the only choice to construct USLHDs. Any
function that makes the (5, 6) cell black and that each column
and row contains exactly one black cell works.

B. CONSTRUCTION OF DESIGNS WITH ARBITRARY
NUMBER OF SLICES
In this subsection, we give our general algorithm to construct
designs with arbitrary number of slices, assuming that there
are t1 slices of size m1, t2 slices of size m2 and m1 6= m2. Let
n1 = t1m1, n2 = t2m2 and g, n, n′1, n

′

2 and n
′ be defined in the

same way as in Section II-A. The algorithm is given below:

Algorithm 2
Step 1: Generate an n1-dimensional vector α and an n2-

dimensional vector β by Steps 1 and 2 in Algorithm 1.
Step 2: Generate α∗ = (α∗1 , . . . , α

∗
n1 ). For i = 1, · · · ,m1,

randomly permute {α(i−1)t1+1, · · · , αit1} to obtain
{α

(1)
(i−1)t1+1

, · · · , α
(1)
it1
}. For j = 1, · · · , t1, randomly

permute {α
(1)
j , α

(1)
t1+j

, · · · , α
(1)
(m1−1)t1+j

} to obtain
{α∗(j−1)m1+1

, · · · , α∗jm1
}.

Step 3: Generate β∗ = (β∗1 , . . . , β
∗
n2 ). For i = 1, · · · ,m2,

randomly permute {β(i−1)t2+1, · · · , βit2} to obtain
{β

(1)
(i−1)t2+1

, · · · , β
(1)
it2
}. For j = 1, · · · , t2, randomly

permute {β
(1)
j , β

(1)
t2+j

, · · · , β
(1)
(m2−1)t2+j

} to obtain
{β∗(j−1)m2+1

, · · · , β∗jm2
}.

Setp 4: Generate εα and εβ independently from uniform dis-
tributions on (0, 1]n1 and (0, 1]n2 , respectively, and let
ρ = (α∗ − εα)/(n′1n) and τ = (β∗ − εβ )/(n′2n). Let
h(1) = (ρT , τT )T .

Setp 5: Repeat Steps 1-4 to obtain h(2), · · · , h(d), and letH =
(h(1), · · · , h(d)). The H , rows (i − 1)m1 + 1 to im1 and
rows (j − 1)m2 + 1 + n1 to jm2 + n1 give the USLHD,
its ith m1-run slice and its jth m2-run slice, respectively.

We remark that Algorithm 1 is a special case of
Algorithm 2 when t1 = t2 = 1.

III. PROPERTIES
In this section, we give some sampling properties of designs
constructed from Algorithm 2. Firstly, Proposition 1 below
validates our algorithms.
Proposition 1: We have dαi/n′1e 6= dαj/n

′

1e for any i,
j = 1, · · · , n1, i 6= j, and {n′2(lk −1)+1, · · · , lkn′2}∩{n

′(k−
1)+ 1, · · · , kn′} 6= ∅ for any k = 1, · · · , n2.
Next, we show that our generated designs are SLHDs.
Theorem 1: Let h = (h1, . . . , hn) denote an arbitrary

column of H . We have

(i) Exactly one entry of h falls within each of the
(0, 1/n], · · · , ((n− 1)/n, 1].

(ii) Exactly one entry of {h(i−1)m1+1, · · · , him1} falls within
each of the (0, 1/m1], · · · , ((m1−1)/m1, 1] for any i =
1, · · · , t1;

(iii) Exactly one entry of {h(j−1)m2+1+n1 , · · · , hjm2+n1} falls
with each of the (0, 1/m2], · · · , ((m2 − 1)/m2, 1] for
any j = 1, · · · , t2;

(iv) Exactly one entry of {h1, · · · , hn1} falls within each of
the (0, 1/n1], · · · , ((n1 − 1)/n1, 1].

(v) Exactly one entry of {hn1+1, · · · , hn} falls within each
of the (0, 1/n2], · · · , ((n2 − 1)/n2, 1].

Theorem 1 (i)-(iii) verify that the whole design and each
batch are LHDs. Theorem 1 (iv) and (v) further show that the
combination of the m1-size batches and the combination of
the m2-size batches are also LHDs. Finally, µ̂ is an unbiased
estimator ofµ and µ̂→ µ as n→∞ if and only if the design
points are uniformly distributed [13]. Theorem 2 shows that
this is true for USLHD.
Theorem 2: The (h(1)i , · · · , h

(d)
i ) follows the uniform dis-

tribution on [0, 1)d for i = 1, · · · , n.
From above results, similar to SLHD with equal batch

sizes, USLHD achieves optimal univariate uniformity for
both the whole design and its batches.

IV. NUMERICAL COMPARISON
In this section, we compare USLHD to some other schemes.
Assume there are 3 low configuration computers and 3 high
configuration computers for a numerical integration task, and
from the time constraint we can arrange at most 6 and 8 com-
puter trials for each low and high configuration computers,
respectively. As discussed in Section 1, we propose to use
a USLHD with t1 = 3, m1 = 6, t2 = 3, m2 = 8, n1 = 18,
n2 = 24 and n = 42 to accomplish this task, where each 6-run
batch is used for each low configuration computer and each
8-run batch is used for each high configuration computer. We
consider four other strategies as follows.
OLHD: Use one ordinary LHD [5] with 42 runs. Randomly
assign 6 runs to each low configuration computer and 8 runs
to each high configuration computer.
OneSLHD: Use one SLHD [6] with 6 slices of 6 runs. Assign
each slice to one computer.
TwoSLHD: Use two SLHDs, one with 3 slices of 6 runs and
the other with 3 slices of 8 runs. Assign each 6-run slice to
one low configuration computer and each 8-run slice to one
high configuration computer.
FSD: Use a flexible sliced design with 3 slices of 6 runs
and 3 slices of 8 runs [11]. Assign each 6-run slice to one
low configuration computer and each 8-run slice to one high
configuration computer.

We consider two circumstances. In the first situation, µ̂
is computed using all experiments. In the second situation,
one low configuration computer fails and µ̂ is computed
from runs of two low configuration computers and three high
configuration computers. We compare the root mean square
errors(RMSE) of µ̂ under the two circumstances from the five
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schemes. The RMSE is defined as follows.

RMSE =

√√√√ 1
N

N∑
i=1

(µ̂i − µ)2

Here, N is the times we repeat to compute the RMSE. Four
examples are provided to show the advantage of the USLHD
scheme.

A. EXAMPLE 1
The first model is:

F1: f (x) = log(x1x2x3x4x5),

where x is uniformly distributed on [0, 1]5 [14]. This function
is also used for numerical comparison in [6] and [11]. Table 1
gives the RMSEs of µ̂ under the two circumstances from the
five schemes. The results are averaged among 104 indepen-
dent trials. Clearly, OLHD and USLHD perform the best for
Situation 1 when all runs are used and USLHD performs the
best for Situation 2 when one slice is removed.

TABLE 1. Root mean square errors for F1.

B. EXAMPLE 2
We employ the function

F2: f (x) = log(1/
√
x1 + 1/

√
x2)

as the computer model, where x is uniformly distributed on
[0, 1]5. The RMSEs are given in Table 2. Similarly, OLHD
and USLHD perform the best for Situation 1 when all runs
are used and USLHD performs the best for Situation 2 when
one slice is removed.

TABLE 2. Root mean square errors for F2.

C. EXAMPLE 3: BOREHOLE FUNCTION
Our third example is the borehole function, which character-
izes the flow ofwater through a boreholewhich is drilled from
the ground surface through two aquifers [15]. The model for-
mulation is based on assumptions of no groundwater gradient,
steady-state flow from the upper aquifer into the borehole and
from the borehole into the lower aquifer, and laminar, isother-
mal flow through the borehole. The output of this model is
the flow rate through the borehole, which is computed by the

equation

F3: f (x) =
2πx3 (x4 − x6)

log (x2/x1)
[
1+ 2x7x3

log(x2/x1)x21x8
+ x3/x5

] .
Table 3 gives the eight inputs and their ranges.

TABLE 3. Inputs and their ranges of the borehole model.

We compute the mean output value using the five schemes
and report the RMSEs in Table 4. Seen from the results,
OLHD performs the best and USLHD takes the second place
for Situation 1, while USLHD is the best for Situation 2.
TABLE 4. Root mean square errors for F3.

D. EXAMPLE 4: OTL CIRCUIT FUNCTION
The Output Transformer Less (OTL) circuit function
describes an OTL push-pull circuit [16]. OTL is a term used
to describe amplifiers that do not have an output transformer.
Usually, the output transformer is amajor source of distortion.
Amplifiers without the output transformer therefore produce
cleaner and less distorted sound. The output Vm of the OTL
circuit function is the midpoint voltage given the six input
factors. The OTL circuit function is given as follows:

F4: Vm =
(Vb1 + 0.74)β(Rc2 + 9)

β(Rc2 + 9)+ Rf
+

11.35Rf
β(Rc2 + 9)+ Rf

+
0.74Rf β(Rc2 + 9)

(β(Rc2 + 9)+ Rf )Rc1
,

where

Vb1 =
12Rb2

Rb1 + Rb2
.

The six input factors are shown in Table 5.

TABLE 5. Inputs and their ranges of the OTL circuit model.

Tables 6 gives the results on RMSEs. Again, OLHD per-
forms the best and USLHD takes the second place for Situa-
tion 1, while USLHD is the best for Situation 2.
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TABLE 6. Root mean square errors for F4.

Results from the four examples are very consistent. OLHD
and USLHD perform the best for Situation 1 when all runs
are used. This is probably because OLHD, OneSLHD and
USLHD are LHDs, TwoSLHD and FSD are not, and that
OneSLHD has fewer total size than other schemes. USLHD
performs the best for Situation 2 when one slice is removed.
This is probably because USLHD achieves optimal univariate
uniformity for both the whole design and the removed batch.
Comparing to USLHD, OLHD has inferior uniformity for
removed runs, OneSLHD has smaller size, and TwoSLHD
and FSD have inferior uniformity for the whole design. To
sum it, USLHD has the uniformly best performance.

V. CONCLUSIONS AND DISCUSSION
In this paper, we propose new SLHDs with unequal batch
sizes, for which both the whole designs and their slices are
LHDs. Numerical results show our designs are desirable in
estimating the mean output value of computer experiments
that are carried out in batches. Compared to SLHD proposed
in [6], our method allows the batch sizes to be unequal. One
shortcoming of our method is that it only allows two different
batch sizes. Nevertheless, it is possible to apply our method to
wider applications. For instance, for experiments with three
distinct batch sizes, m1, m2 and m1 + m2, we can construct
a USLHD with batch sizes m1 and m2 and then merge
some batches to obtain (m1 + m2)-run batches. MATLAB
codes for generating USLHDs are available in supplementary
materials.

APPENDIX
PROOFS
Proof 1 (Proof of Proposition 1): For i = 1, · · · , n1 − 1,

we have

αi+1 − αi = mod(αi − r, n′)+ in′ − αi
≥ n′ + (n′1 − n

′) = n′1.

Then, for any i, j = 1, · · · , n1 and i 6= j,|αi−αj| ≥ n′1. There-
fore, dαi/n′1e 6= dαj/n

′

1e. It suffices to show n′2(lk − 1)+ 1 ≤
kn′ and n′(k − 1)+ 1 ≤ lkn′2 with k = 1, · · · , n2. Because lk
is the k-th smallest element of Zn \{dα1/n′1e, · · · , dαn1/n

′

1e},
we have that dαlk−k/n

′

1e ≤ lk − 1, dαlk−k+1/n
′

1e ≥ lk + 1
and lk ≥ k . Firstly, we show the proof of n′2(lk −1)+1 ≤ kn′

by two cases.
Case 1: lk = k . It is easy to know it holds.
Case 2: lk − k ≥ 1. Clearly,

d
αlk−k

n′1
e ≤ lk − 1 ⇒ αlk−k ≤ n

′

1(lk − 1)

⇒ n′(lk − k − 1)+1 ≤ αlk−k≤n
′

1(lk−1)

⇒ n′2(lk − 1)+ 1 ≤ kn′.

Then, n′2(lk − 1) + 1 ≤ kn′ holds. Secondly, from
dαlk−k+1/n

′

1e ≥ lk + 1, we have αlk−k+1 ≥ lkn′1 + 1. Then,
we prove n′(k − 1)+ 1 ≤ lkn′2 in cases.
Case 1: lk − k = n1.
We have lkn′2 = (k + n1)n′2 ≥ (k − 1)n′ + 1.
Case 2: lk − k < n1.
Clearly,

αlk−k+1 ≥ lkn′1 + 1
⇒ n′(lk − k + 1) ≥ lkn′1 + 1
⇒ lkn′2 ≥ (k − 1)n′ + 1,

which completes this proposition.
Proof 2 (Proof of Theorem 1): From Proposition 1 and

the process of generating β, we have dγie 6= dγje with
i, j = 1, · · · , n, i 6= j, where γi = αi/n′1 for i ≤ n1 and
γi = βi−n1/n

′

2 for i > n1. So we have dhine 6= dhjne.
Therefore, exactly one entry of h falls within each of the
(0, 1/n], · · · , ((n− 1)/n, 1].

Clearly, {dα1/n′e, · · · , dαn1/n
′
e} = {1, · · · , n1} holds.

Then {dα(1)i /(n
′t1)e, dα

(1)
t1+i

/(n′t1)e, · · · , dα
(1)
(m1−1)t1+i

/(n′t1)e}
equals to {1, · · · ,m1} for any i = 1, · · · , t1. So the elements
of

{dα∗(i−1)m1+1/(n
′t1)e, · · · , dα∗im1+1/(n

′t1)e}

are in {1, · · · ,m1} and not equal to each other. Hence, exactly
one entry of {h(i−1)m1+1, · · · , him1 , } falls within each of
the (0, 1/m1], · · · , ((m1 − 1)/m1, 1]. Similarly, Exactly one
entry of {h(j−1)m2+1+n1 , · · · , hjm2+n1} falls with each of the
(0, 1/m2], · · · , ((m2 − 1)/m2, 1] for any j = 1, · · · , t2.
Clearly, {dα1/n′e, · · · , dαn1/n

′
e} = {1, · · · , n1} leads to that

exactly one entry of {h1, · · · , hn1} falls within each of the
(0, 1/n1], · · · , ((n1−1)/n1, 1]. Similarly, exactly one entry of
{hn1+1, · · · , hn} falls within each of the (0, 1/n2], · · · , ((n2−
1)/n2, 1]. This completes the proof.

Proof 3 (Proof of Theorem 2):We consider the probabil-
ity mass function of α firstly. For a ∈ Z ′n, P{α1 = a} = 1/n′

is satisfied. Then, for a = n′ + 1, · · · , 2n′,

P{α2 = a} = P{mod(α1 − r, n′)+ n′ = a}

=

n′2∑
k=0

P{r = k}P{α1 ≡ k + a(mod n′)} = 1/n′.

Similarly, for i = 3, · · · , n1, P{αi = a} = 1/n′, for any a =
n′(i−1)+1, · · · , in′. Then, we consider the probability mass
function of β. For i = 1, · · · , n2 and any a = n′(i − 1) +
1, · · · , in′, let k = da/n′2e and L be the number of elements
in {n′(i−1)+1, · · · , in′}∩ {n′2(k−1)+1, · · · , kn′2}. Simple
analysis shows that i ≤ k ≤ i+ n′1. Then, we have

P{βi = a} = 1/L ∗ P{k is the i-th smallest element of
Zn \ {dα1/n′1e, · · · , dαn1/n

′

1e}}. (1)

When k = i, then L = in′2 − n
′(i− 1) = n′ − in′1. So

P{βi = a} = 1/L ∗ P{α1 ≥ in′1 + 1}

= 1/(n′ − in′1) ∗ (n
′
− in′1)/n

′

= 1/n′.
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And when k = i + n′1, then L = in′ − (k − 1)n′2 = in′1 −
n′2(n1 − 1). Thus

P{βi = a} = 1/L ∗ P{αn1 ≤ (k − 1)n′1}

= 1/[in′1 − n
′

2(n1 − 1)] ∗ [in′1 − n
′

2(n1 − 1)]/n′

= 1/n′

When i < k < i+ n1, the number of elements of the set {x :
x ≤ k − 1, x ∈ {dα1/n′1e, · · · , dαn1/n

′

1e}} is k − i. Namely,
dαk−i/n′1e ≤ k−1. Meanwhile, k is the i-th smallest element,
so, dαk−i+1/n′1e ≥ k + 1. Simple analysis shows that the
necessary and sufficient condition of the i-th smallest element
k ∈ (i, i+n1) is dαk−i1/n′e ≤ k−1 and dαk−i+1/n

′

1e ≥ k+1.
Therefore, (1) turns to

P{βi = a}

= 1/L ∗ P{dαk−i/n′1e ≤ k − 1, dαk−i+1/n′1e ≥ k + 1}

= 1/L ∗ P{αk−i ≤ n′1(k − 1), αk−i+1 ≥ kn′1 + 1}.

We discuss it in three cases.
Case 1: n′2(k − 1)+ 1 ≤ n′(i− 1).
In this case, L = kn′2 − n′(i − 1). Besides, it is clear that

n′1(k − 1) = n′(k − i)+ n′(i− 1)− n′2(k − 1) ≥ n′(k − i)+ 1,
so P{αk−i ≤ n′1(k − 1)} = 1. Besides, kn′ + 1 = n′(k − i)+
in′−kn′2+1, then P{αk−i+1 ≥ kn

′

1+1} = [kn′2−n
′(i−1)]/n′.

So P{βi = a} = 1/n′.
Case 2: n′2(k − 1) ≥ n′1(i− 1) and kn′2 ≤ in

′.
For this situation, we have L = n′2. Besides,

P{βi = a}

= 1/L ∗ P{αk−i ≤ n′1(k − 1), αk−i+1 ≥ kn′1 + 1}

= 1/n′2

in′−kn′2+n
′

2∑
p=1

n′∑
q=in′−kn′2+1

P{αk−i = n′(k − i− 1)+ p,

αk−i+1 = n′(k − i− 1)+ q} (2)

When in′ − kn′2 = 0, then (2) is expressed as

P{βi = a} = 1/n′2

n′2∑
p=1

n′∑
q=1

P{αk−i = n′(k − i− 1)+ p,

αk−i+1 = n′(k − i− 1)+ q}

= 1/n′.

And when in′ − kn′2 > 0 and n′2 + 1 ≥ in′ − kn′2,

P{βi = a} = 1/[n′n′2(n
′

2 + 1)][2
in′−kn′2∑
p=1

(n′2 + 1− p)

+ ((k + 1)n′2 − in
′
+ 1)(n′2(k + 1)− in′)]

= 1/n′.

Moreover, when in′− kn′2 > 0 and n′2+ 1 ≤ in′− kn′2. Then,

P{βi = a} = 1/[n′n′2(n
′

2 + 1)][2
n′2∑
p=1

(n′2 + 1− p)] = 1/n′

Case 3: kn′2 ≥ in
′
+1.We have that L = in′−n′2(k−1) and

kn′+1 = n′(k− i)+ in′−kn′2+1 ≤ n′(k− i), so P{αk−i+1 ≥
kn′1 + 1} = 1. Moreover, n′1(k − 1) = n′(k − i) + n′(i −
1) − n′2(k − 1) ≥ n′(k − i) + 1, so P{αk−i ≤ n′1(k − 1)} =
[in′ − n′2(k − 1)]/n′. Then, P{βi = a} = 1/n′.
Clearly, we have P{α∗i = a} = 1/(n1n′) for any i =

1, · · · , n1, a = 1, · · · , n1n′ and P{β∗j = b} =

1/(n2n′) for any j = 1, · · · , n2, n = 1, · · · , n2n′. For any
x ∈ [0, 1) and i = 1, · · · , n2, let x0 = dxn1n′e, so

P{hi < x} =
a=x0∑
a=1

{P{α∗i = a}P{(a− ε)/(n1n′) < x}}

= 1/(n1n′)[
a=x0−1∑
a=1

P{(a− ε)/(n1n′) < x}

+ P{(x0 − ε)/(n1n′) < x}]

= 1/(n1n′)[x0 − 1+ 1− x0 + xn1n′]

= x

Thus, hi is a U[0, 1) random variable with i = 1, · · · , n1.
Similarly, for i = n1+1, · · · , n, x ∈ [0, 1) and x0 = dxn2n′e,

P{hi < x} =
b=x0∑
b=1

{P{β∗i−n1 = b}P{(b− ε)/(n2n′)} < x}}

= 1/(n2n′)[
b=x0−1∑
b=1

P{ε > b− xn2n′}

+ P{ε > x0 − xn2n′}]

= 1/(n1n′)[x0 − 1+ 1− x0 + xn2n′]

= x

Therefore, for i = 1, · · · , n, hi is a random vari-
able on U[0, 1). Because of the independence, we have
(h(1)i , · · · , h

(d)
i ) follows the uniform distribution on [0, 1)d for

i = 1, · · · , n. This theorem holds.
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